法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2024-12-27

量子化誤差と製造誤差による素子バラツキの 影響を 低減させた高精度マルチコイルモー タの実現

松尾, 遥 / MATSUO, Haruka

(出版者 / Publisher)法政大学大学院理工学・工学研究科

(雑誌名 / Journal or Publication Title)
 法政大学大学院紀要.理工学・工学研究科編 / 法政大学大学院紀要.理工学・工学研究科編
 (巻 / Volume)

(各 / Volume)
58
(開始ページ / Start Page)
1
(終了ページ / End Page)
8
(発行年 / Year)
2017-03-31
(URL)
https://doi.org/10.15002/00014193

量子化誤差と製造誤差による素子バラツキの影響を 低減させた高精度マルチコイルモータの実現

REDUCING AN INFLUENCE OF QUANTIZATION ERROR AND A CHARACTERISTIC VARIATION DUE TO MANUFACTURING VARIABILITIESS FOR DRIVING A HIGH PRECISION MULTI-COIL-MOTOR

松尾遥 Haruka MATSUO 指導教員 安田彰

法政大学大学院理工学研究科電気電子工学専攻修士課程

For the high precision driving, a multi-coil-motor (MCM) driven by digital-direct-drive-technology has been proposed. However, it is not suitable for driving MCM, since this digital-direct-drive-technology aims driving of speaker. This paper proposes two methods for a high precision driving. First method is a honeycomb-structured space vector delta-sigma modulation which can realize a multilevel quantization on a rotating coordinate system. Second method is a full-search dynamic three-phase multi-coil-motor matching which can reduce the influence of variations of a manufacturing of stator coils.

Key Words : Realization of high precision motor, Reduction of torque ripple, Reduction of quantization error, Reduce the influence of element variations, Multi-Coil-Motor, Space vector modulation

1. 研究背景

近年モータはあらゆる分野で使用されており、中でも 高品質な製品の製造には高精度なモータが不可欠である. 塗装機や研磨機に使用されるモータの精度が悪くモータ が振動してしまうと、塗装ムラや光沢ムラが生じてしま う.モータが振動する原因は多岐にわたるが、筆者らは 量子化誤差と製造誤差に注目し、これらの誤差の低減に 有力なデジタル直接駆動[1]と、Multi-Coil-Motor (MCM) [2]を用いた高精度駆動[3][4][5]についての手法を提案 していた.しかしデジタル直接駆動技術は元々スピーカ 駆動を想定したシステムであるため、モータ駆動を想定 したシステムではない.そこで本論文ではデジタル直接 駆動技術をモータ駆動に最適化したシステムを提案する ことで、更なる高精度モータの実現を目指す.

2. 従来手法

高精度なモータ駆動を目的とし、デジタル直接駆動技術によって駆動される MCM が提案されている. デジタル 直接駆動技術はマルチレベルの PDM 信号を生成する $\Delta \Sigma$ 変調器と、製造誤差による素子バラツキの影響を低減さ せる信号処理 Noise-Shaping Dynamic Element Matching (NSDEM) [6]によって構成される.

(1) Multi-Coil-Motor (MCM)

MCM はインナーロータ型の永久磁石同期モータの構造 を基に図1のようにステータコイルを複数に分割し,同 じ鉄心に重ねて巻く構造をしている.

本論文で使用する MCM は U, V, W の 3 相の コイルを 3 つ に分割した構造とする. 駆動するコイルを複数にしたた め,マルチレベルの駆動信号をドライバ回路で加算せず に 2 値の信号のまま出力することが可能である.回路内 で信号を加算する必要が無いため低電圧で各相に高分解 能な電流を流すことができる.また各コイルが開放端巻 線で独立しているため, MCM を駆動するドライバ回路で はフルブリッジ回路が採用されている.負荷に各コイル を独立して正,負,0(駆動しない)の3値で駆動する ことができるため,低出力時において駆動するコイルを 減らすことでドライバ回路でのスイッチング損失が低減 され低出力時の高効率駆動が可能である.

(2) ∆ ∑ 変調器

3相3コイルの MCM を駆動するために U, V, W の3相の Sin 波をΔΣ変調器によって3レベルの信号に量子化す る.ΔΣ変調器は図2のようにループフィルタと量子化 器によって構成されている,量子化器によって発生した 量子化誤差をループフィルタによって高帯域にシフトす るノイズシェーピングが大きな特徴である.またオーバ ーサンプリングとマルチレベル量子化によって,一般的 な1レベルの PWM 駆動に比べて高調波や量子化誤差が低 減され低騒音,振動の高精度駆動が実現できる.

(3) Noise-Shaping Dynamic Element Matching (NSDEM)

ΔΣ変調器によって生成されたマルチレベルの信号で MCMを駆動すると,MCMの各コイルの製造誤差による素子 バラツキの影響が無視できなくなる.図3のように入力 に対して出力が非線形となるため,高精度駆動の妨げと なる.この素子バラツキの影響を低減させる信号処理と してデジタル直接駆動技術はNSDEM[6]を搭載している. NSDEM はループフィルタとソート回路,セレクタ回路で 構成されている.各相に搭載された複数の素子の使用回 数をループフィルタでカウントし,ソート回路を用いて 駆動する素子を使用回数の少ない順番に並び替える.並 び替えられた順番からセレクタ回路によって駆動するコ イルを選択する.デジタル直接駆動においてNSDEM は各 相に搭載されており,各相の3つのコイルの使用回数が 均一になるように駆動コイルを選択することでバラツキ の影響を低減させる信号処理である.

図3 素子バラツキによる出力の非線形性

(4) Dynamic Three-phase Multi-coil-motor Matching (DTMM)

前述した NSDEM は、素子バラツキの影響を低減するた めに各コイルの使用回数を均一化することが目的であっ た. そこで使用回数の均一化を早めるために1つの相の 電流が生成する磁界を、他の2つの相の逆向きの電流が 生成する磁界で代用する信号処理である DTMM が提案 [4] [5] されている. 例えば図4(a) のようにU相のコイル に正の電流を流した際に生じる磁界と,図4(b)の様にV 相とW相のコイルに負の電流を流した際に生じる合成磁 界の向きと大きさは理想的には等しくなる. そのため U 相成分を表す組み合わせは従来の NSDEM の U1, U2, U3 の 3通りに加えて図4(b)の様な2相を用いる組み合わせ を加えると、12通り存在する.これはU相だけでなく、 V相とW相も同様である. △∑変調器から受け取った信 号を基に各相がこの12通りの中から使用回数の少ない コイルを使用する組み合わせで駆動することで、図5の ようにバラツキの平均を出力することになる. その結果 トルクむらを含む周波数スペクトラムが低減[4]し,回転 むらの低減[5]が実現できる.

図5 バラツキの平均化

(5) デジタル直接駆動技術

デジタル直接駆動技術の全体図を以下に示す.

DTMM は NSDEM を拡張する1つの提案手法であるため、 図6では描写されていない. デジタル直接駆動では U, V, W の3相に対してそれぞれ独立したマルチレベルム Σ 変調器を用いている. 各相の Δ Σ 変調器から発生され る量子化誤差が大きくなるタイミングが重なると、合成 磁界が生成される2次元平面座標系に対して大きな量子 化誤差が発生してしまう. そこで2次元平面座標系α, βの2軸に対応するベクトル量子化器を搭載したマルチ レベルの信号を生成する空間ベクトル変調器[7][8]が提 案されている.モータを駆動するための2次元平面座標 系α, βの2軸に対して適切な量子化が可能なため量子 化誤差の影響が少なくなるため高精度駆動が可能になり, 使用するΔΣ変調器の数を減らすことで回路規模の削減 も可能である.しかし[7][8]で提案された方式はマルチ レベルインバータやスター結線のモータの駆動を想定し たベクトル量子化器であるため, 各相複数のコイルをフ ルブリッジ回路によって正,負,0の3値で駆動する MCM には適していない. また空間ベクトル変調器は2相の信 号から3相の信号に変換しているため、3相独立してそ れぞれ信号処理を行う従来の NSDEM では素子バラツキの 影響を低減することができない. そこで本論文では MCM での駆動を想定した新しいベクトル量子化器を搭載した 空間ベクトル変調器と, NSDEM に代わる素子バラツキの 影響を低減させる新しい信号処理を提案することで、2 次元平面座標系α, βの2軸に対して適切な量子化が可 能な高精度 MCM 駆動の実現を目指す.

3. 提案手法

(1) ハニカム構造型空間ベクトル変調器

従来のハーフブリッジ回路によって駆動するスター結 線のモータと違い MCM はコイルを正,負,0の3値で独 立して駆動することができる.このとき3相3コイル3 値駆動の MCM が 2 次元平面座標系 α β 軸上に再現できる 合成磁界の種類は全部で127通りである. それぞれの 組み合わせを V0~V126とし、コイルの組み合わせを表1 に示す. 127通りの合成磁界のベクトルが指し示すべ クトルの終点を中心として、各点と均等な距離ごとに領 域を分割(ボロノイ分割)する.この領域をそれぞれ量 子化間隔とし、図7に示す.量子化間隔が正六角形を平 面充填したハニカム構造となっているため、この提案し たベクトル量子化器をハニカム構造型ベクトル量子化器 とする.ハニカム構造型ベクトル量子化器の量子化間隔 は、従来のベクトル量子化器の量子化間隔と比べて細か く分割されている.これは MCM の各相に複数のコイルが 搭載されていること、それぞれがフルブリッジ回路によ って独立して3値で駆動するため, 2次元平面座標に対 しての出力の自由度が高いためである. このハニカム構 造型ベクトル量子化器を搭載した空間ベクトル変調器を ハニカム構造型空間ベクトルΔΣ変調器 Honeycomb-structured Space Vector Delta Sigma Modulation (HSVDSM)として提案する.構成図を図8に示 す

図7 ハニカム構造型ベクトル量子化

		表	1		3 ŧ	泪:	3 値	直3	;]	イル	\mathcal{O}	量	子亻	Ľ۶	讨斤	ふま	ŧ		
	U1	U2	U3	V1	V2	V3	W1	W2	W3		U1	U2	U3	V1	V2	V3	W1	W2	W3
V0	0	0	0	0	0	0	0	0	0	V64	-1	0	0	0	0	0	0	0	0
V1	+1	0	0	0	0	0	0	0	0	V65	-1	-1	0	0	0	0	0	0	0
V2 V2	+1	+1	0	0	0	0	0	0	0	V66	-1	-1	-1	0	0	0	0	0	0
V3 V4	+1	+1	+1	-1	0	0	-1	0	0	V67	-1	-1	-1	+1	+1	0	+1	+1	0
V5	+1	+1	+1	-1	-1	0	-1	-1	0	V69	-1	-1	-1	+1	+1	+1	+1	+1	+1
V6	+1	+1	+1	-1	-1	-1	-1	-1	-1	V70	-1	0	0	0	0	0	+1	0	0
V7	+1	0	0	0	0	0	-1	0	0	V71	-1	-1	0	0	0	0	+1	0	0
V8 V0	+1	+1	0	0	0	0	-1	0	0	V72	-1	-1	-1	0	0	0	+1	0	0
V10	+1	+1	+1	-1	0	0	-1	-1	0	V74	-1	-1	-1	+1	+1	0	+1	+1	+1
V11	+1	+1	+1	-1	-1	0	-1	-1	-1	V75	-1	0	0	0	0	0	+1	+1	0
V12	+1	0	0	0	0	0	-1	-1	0	V76	-1	-1	0	0	0	0	+1	+1	0
V13	+1	+1	0	0	0	0	-1	-1	0	V77	-1	-1	-1	0	0	0	+1	+1	0
V14	+1	+1	+1	-1	0	0	-1	-1	-1	V/8	-1	-1	-1	+1	0	0	+1	+1	+1
V16	+1	0	0	0	0	0	-1	-1	-1	V80	-1	-1	0	0	0	0	+1	+1	+1
V17	+1	+1	0	0	0	0	-1	-1	-1	V81	-1	-1	-1	0	0	0	+1	+1	+1
V18	+1	+1	+1	0	0	0	-1	-1	-1	V82	-1	-1	0	-1	0	0	+1	+1	+1
V19 V20	+1	+1	+1	+1	0	0	-1	-1	-1	V83	-1	-1	-1	-1	0	0	+1	+1	+1
V21	+1	+1	+1	+1	+1	0	-1	-1	-1	V84	-1	-1	-1	-1	-1	0	+1	+1	+1
V22	0	0	0	0	0	0	-1	0	0	V85 V86	0	0	0	0	0	0	+1	+1	0
V23	0	0	0	0	0	0	-1	-1	0	V87	0	0	0	0	0	0	+1	+1	+1
V24	0	0	0	0	0	0	-1	-1	-1	V88	-1	0	0	-1	0	0	+1	+1	+1
V25	+1	+1	0	+1	+1	0	-1	-1	-1	V89	-1	-1	0	-1	-1	0	+1	+1	+1
V27	+1	+1	+1	+1	+1	+1	-1	-1	-1	V90	-1	-1	-1	-1	-1	-1	+1	+1	+1
V28	0	0	0	+1	0	0	-1	0	0	V91	0	0	0	-1	0	0	+1	+1	0
V29	0	0	0	+1	0	0	-1	-1	0	V93	0	0	0	-1	0	0	+1	+1	+1
V30	0	0	0	+1	0	0	-1	-1	-1	V94	-1	0	0	-1	-1	0	+1	+1	+1
V31	+1	+1	0	+1	+1	+1	-1	-1	-1	V95	-1	-1	0	-1	-1	-1	+1	+1	+1
V33	0	0	0	+1	+1	0	-1	0	0	V96 V97	0	0	0	-1	-1	0	+1	+1	0
V34	0	0	0	+1	+1	0	-1	-1	0	V98	0	0	0	-1	-1	0	+1	+1	+1
V35	0	0	0	+1	+1	0 +1	-1	-1	-1	V99	-1	0	0	-1	-1	-1	+1	+1	+1
V30	0	0	0	+1	+1	+1	-1	0	0	V100	0	0	0	-1	-1	-1	+1	0	0
V38	0	0	0	+1	+1	+1	-1	-1	0	V101	0	0	0	-1	-1	-1	+1	+1	0
V39	0	0	0	+1	+1	+1	-1	-1	-1	V102	+1	0	0	-1	-1	-1	+1	+1	1
V40	-1	0	0	+1	+1	+1	-1	-1	0	V104	+1	0	0	-1	-1	-1	+1	+1	+1
V41 V42	-1	-1	0	+1	+1	+1	-1	-1	-1	V105	+1	+1	0	-1	-1	-1	+1	+1	+1
V43	0	0	0	+1	0	0	0	0	0	V106	0	0	0	-1	0	0	0	0	0
V44	0	0	0	+1	+1	0	0	0	0	V107	0	0	0	-1	-1	0	0	0	0
V45	0	0	0	+1	+1	+1	0	0	0	V108	+1	0	0	-1	-1	-1	+1	0	0
V40 V47	-1	-1	0	+1	+1	+1	-1	-1	0	V110	+1	+1	0	-1	-1	-1	+1	+1	Ũ
V48	-1	-1	-1	+1	+1	+1	-1	-1	-1	V111	+1	+1	+1	-1	-1	-1	+1	+1	+1
V49	-1	0	0	+1	0	0	0	0	0	V112	+1	0	0	-1	0	0	0	0	0
V50	-1	0	0	+1	+1	0	0	0	0	V113	+1	0	0	-1	-1	0	0	0	0
V51	-1	0	0	+1	+1	+1	0	0	0	V114	+1	+1	0	-1	-1	-1	+1	0	0
V52	-1	-1	-1	+1	+1	+1	-1	-1	0	V116	+1	+1	+1	-1	-1	-1	+1	+1	0
V54	-1	-1	0	+1	0	0	0	0	Ő	V117	+1	+1	0	-1	0	0	0	0	0
V55	-1	-1	0	+1	+1	0	0	0	0	V118	+1	+1	0	-1	-1	0	0	0	0
V56	-1	-1	0	+1	+1	+1	0	0	0	V119	+1	+1	+1	-1	-1	-1	+1	0	0
V57	-1	-1	-1	+1	+1	+1	-1	0	0	V121	+1	+1	+1	-1	0	0	0	0	0
V59	-1	-1	-1	+1	+1	0	0	0	0	V122	+1	+1	+1	-1	-1	0	0	0	0
V60	-1	-1	-1	+1	+1	+1	0	0	0	V123	+1	+1	+1	-1	-1	-1	0	0	0
V61	-1	-1	-1	+1	+1	0	+1	0	0	V124	+1	+1	+1	-1	-1	0	-1	0	0
V62	-1	-1	-1	+1	+1	+1	+1	+1	0	V125	+1	+1	+1	-1	-1	-1	-1	-1	0
100							1.1.1		v	120		1.1.1							v

HSVDSM では2次元平面座標に対応する $\alpha \geq \beta$ の2相 信号を3相3レベルに量子化する.基本的な構成は一般 的な $\Delta \Sigma$ 変調器と同様である.量子化器からフィードバ ックした量子化値との差分をとることで量子化誤差を算 出する.量子化誤差を複数のループフィルタに通すこと でノイズシェーピングを行う.ループフィルタから出力 された α "と β "をハニカム構造型ベクトル量子化器に 入力する.ベクトル量子化器は α "と β "が指し示すベク トルの値に最も近い量子化値 V0~V126 へと量子化する. 例えば図9の場合 α "と β "が指し示す合成ベクトルは V30として量子化される.

あらかじめ用意されているテーブル(表1)を参考に 3相3レベルの信号が出力される.またこの時V30の α 軸と β 軸の値を量子化値としてフィードバックする.こ のように MCM をフルブリッジ回路で駆動することを想定 して2次元平面座標に対応した2相の信号を適切に量子 化することで、3相独立したマルチレベル $\Delta \Sigma$ 変調器と 比べて量子化誤差を大きく減らすことができる.その結 果 HSVDSM を MCM 駆動に使用することで、トルクむらの原 因となる量子化誤差が大きく低減され、更なる高精度駆 動が可能となる.

しかし HSVDSM はマルチレベルの信号を出力するため, 駆動する各コイルの素子バラツキの影響により信号特性 が劣化してしまう.この素子バラツキの問題は従来のマ ルチレベルΔΣ変調器でも想定されており,前述した NSDEM を用いる事で対策をしている.しかし HSVDSM は従 来のΔΣ変調器と違い,2次元平面座標系に対して量子 化を行っているため,各相を独立して1次元に対してシ ャッフリングを行う NSDEM を後段に搭載してもバラツキ の影響を低減することができない.そこで全ての相を含 めて使用するコイルをシャッフリングする新しい信号処 理を提案し,後段に接続することで素子バラツキの影響 を低減させる.

(2) Full-search Dynamic Three-phase Multi-coil-motor Matching (FDTMM)

HSVDSMを用いた量子化誤差を低減した高精度 MCM 駆動を 実現するために,各コイルの素子バラツキの影響を低減 する必要がある.そこで前述した DTMM を基に,2次元平 面座標系に対して使用回数の少ないコイルを最も多く使 用している 駆動コイルの組み合わせを探索する Full-search Dynamic Three-phase Multi-coil-motor Matching (FDTMM)を提案する.

これは前述した DTMM のように、ある合成磁界を生成す る組み合わせが複数存在することに注目した信号処理で ある.例えばハニカム構造型ベクトル量子化器によって 生成される V30に注目する.表1より V30を生成するた めに駆動するコイルの組み合わせは

 $V30 \quad 1 = \{+V1, -W1, -W2, -W3\} \tag{1}$

である.式(1)の組み合わせは, V30を生成する際 に駆動するコイルがなるべく少なくなるような組み合わ せである.この他にも前述した DTMM のように異なる相の コイルを使用する組み合わせや,磁界を打ち消すような 組み合わせなどを含めると V30を再現する組み合わせは 複数存在する.その一部を下記に示す.

 $V30_2 = \{+U1, +U2, +V1, +V2, +V3 - W1\}$ (2)

 $V30_{3} = \{-U1, +U2, +V1, -W1, -W2, -W3\}$ (3)

式(2),(3)と図10に示したように,*V30_2, V30_3* は*V30_1*と比べて駆動するコイルの数や相が違う.しか し最終的な合成磁界は3種類とも同じ向き,大きさの合 成磁界を生成する.このように3値で駆動するMCM は一 つの合成磁界を再現するのに,複数の駆動コイルの組み 合わせが存在する.これは*V30*だけでなく*V0~V126*いず れも同様である.

FDTMM の構成を図11に示す. 各コイルが正か負で使用されると、それぞれに対応したループフィルタが加算される. Max module では各ループフィルタから受け取った使用回数の値の中で、最大の値を Selector module に送る. さらに、Selector module は前段のハニカム構造型空間ベクトル変調器(HSVDSM)から再現する合成磁界を表す Vx ($x=0\sim126$)の信号を受け取る.

Selector module にはあらかじめ全ての Vxを再現する 駆動コイルの組み合わせをテーブルとして記憶させてお く. その組み合わせは3相3コイルが3値で駆動する場 合, 3^9 通りと膨大であるため記述は省略する.

+U1	+U2	+U3]	[10	11	9	
-U1	-U2	-U3		5	4	5	(4)
+V1	+V2	+V3		8	6	7	
-V1	-V2	-V3	=	10	11	12	
+W1	+W2	+W3		5	4	5	
-W1	-W2	-W3		9	10	8	

だとすると Max module から出力された最大値(max)の信 号は-V3の12である.この時, Selector module では最 大値と各コイルの使用回数の差を算出し,各コイルを使 用した際の得点(Point)とする.

$$Point_A_n^x = \max-loopfilter_count$$

$$x = \{p(positive) \text{ or } n(negative)\}$$

$$A = \{U, V, W\} \quad n = \{1, 2, 3\}$$
(5)

$\begin{bmatrix} Point_{U_1}^p & Point_{U_2}^p & Point_{U_3}^p \end{bmatrix} \begin{bmatrix} 12-10 & 12-11 & 12-9 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}$))
$Point_{1}^{n} Point_{2}^{n} Point_{3}^{n} 12-5 12-4 12-5 7 8 7$	
$Point_{V_1}^p Point_{V_2}^p Point_{V_3}^p 12-8 12-6 12-7 4 6 5$	
$Point_{1}^{V_{1}} Point_{2}^{V_{2}} Point_{3}^{V_{3}} = 12 - 10 12 - 11 12 - 12 = 2 1 0$	
$Point_W_1^p Point_W_2^p Point_W_3^p$ 12-5 12-4 12-5 7 8 7	
$\begin{bmatrix} Po \operatorname{int}_{W_1^n} & Po \operatorname{int}_{W_2^n} & Po \operatorname{int}_{W_3^n} \end{bmatrix} \begin{bmatrix} 12-9 & 12-10 & 12-8 \end{bmatrix} \begin{bmatrix} 3 & 2 & 4 \end{bmatrix}$	
このように最大値と差をとることで、使用回数の少	な
いコイルの得点は高くなる. 例えば HSVDSM から出力さ	れ
た信号が V30 とする. 式(1), (2), (3), (6)より	
$V30_1 = \{+V1, -W1, -W2, -W3\}$ (7))
$= Point_V_1^p + Point_W_1^n + Point_W_2^n + Point_W_3^n$	
=4+3+2+4=13	
$V30_2 = \{+U1, +U2, +V1, +V2, +V3 - W1\}$ (8)	3)
$= Point_{1}^{p} + Point_{2}^{p} + Point_{1}^{p} + Point_{2}^{p} + Point_{2}^{p} + Point_{3}^{p} + Point_{4}^{p} W_{1}^{n}$	
=2+1+4+6+5+3=17	
$V30_3 = \{-U1, +U2, +V1, -W1, -W2, -W3\}$))
$= Point_{1}^{n} + Point_{2}^{p} + Point_{1}^{p} + Point_{1}^{n} + Point_{2}^{n} + Point_{2}^{n} + Point_{3}^{n}$	
= 7 + 1 + 4 + 3 + 2 + 4 = 21	

この時,式(9)の *V30_3*の点数が一番高くなる. 点数が 高いということは,使用回数の少ないコイルを多く使用 していると判断できるため *V30_3*のコイルの組み合わせ {-*U*1,+*U*2,+*V*1,-*W*1,-*W*2,-*W*3}を駆動する信号を出力する. このように FDTMM は HSVDSM で生成された *Vx*を再現する 組み合わせとして使用回数の少ないコイルを最も多く使 用している組み合わせを、全ての組み合わせの中から探 索し、使用することで素子バラツキの影響を低減させる 信号処理である. HSVDSM と FDTMM を組み合わせることで 従来の3相で独立したマルチレベル $\Delta \Sigma$ 変調器と NSDEM の組み合わせに対して量子化誤差を低減させ素子バラツ キの影響も考慮した、より高精度なモータ駆動の実現が 可能となる.

4. シミュレーション

提案手法である HSVDSM と FDTMM を MATLAB[9]上で実現 し, MCM モデル[10]を用いてシミュレーションを行う. シミュレーション条件と環境は表 2 と図 1 2 に示した. モデルに使用する素子の値は全て実物の MCM から測定し た.シミュレーションでは図8に示す α '' β ''の値から量 子化誤差の低減を 2 相平面座標系で確認し, MCM モデル が算出するトルクを周波数解析より比較することでトル クむらの低減を確認する.

表:	2 シミュレー	ション(実測)条							
	Drive voltage	6 [V]							
	Moment of inertia	0.0000087 [kg*m^2]							
	Viscous friction	0.0005							
	Number of pole pairs	5							
	Ru1=886 [mΩ] Rv1=839 [mΩ] Rw1=876 [mΩ]								
	Ru2=801 [mΩ] Rv2=804 [mΩ] Rw2=828 [mΩ]								
	Ru3=760 $[m\Omega]$ Rv3=747 $[m\Omega]$ Rw3=734 $[m\Omega]$								
	Lu1=216 [µ H] Lv1=213 [µ H] Lw1=234 [µ H]								
	Lu2=220 [µ H] Lv2=230 [µ H] Lw2=242 [µ H]								
	Lu3=231 [µ H] Lv3=231 [µ H] Lw3=222 [µ H] Mu12=212 [µ H] Mv12=216 [µ H] Mw12=231 [µ H]								
	Mu13=211 [µ H] Mv13=2	210 [μH] Mw13=215 [μH]							
	Mu23=220 [µ H] Mv23=2	225 [μH] Mw23=226 [μH]							
	.								

各相独立した $\Delta \Sigma$ 変調器を用いる従来手法と,提案手法 HSVDSM のループフィルタの出力を 2 軸平面座標 $\alpha \beta$ 軸において比較した. その結果を図13に示す.

赤色の線の円が生成したい回転磁界の軌跡であり,青 と緑の色の線が各方式においての2次の積分器の出力値 である.積分器の出力する値は量子化誤差の影響が大き くなるほど,赤色の円から離れた値となるため積分器の 値によって生成される円の最小半径と最大半径の差が大 きくなる.図13より平面座標系に対して適切に量子化 ができる HSVDSM の方が生成される円が赤色の円に近い 形となり,量子化誤差の影響が減少されていることが確 認できる.

図13 2次のループフィルタ出力値 (α^{''}, β^{''})

次に MCM モデルから算出されたトルクの周波数解析を 行う. なおこの MCM モデルは表 2 に示したようにコイル の素子バラツキを考慮してある. マルチレベルの PWM 変 調, $\Delta \Sigma$ 変 調器, $\Delta \Sigma$ 変 調器 + NSDEM, HSVDSM, HSVDSM+FDTMM の5つの駆動方式を比較した. PWM 変調は 3 レベルに分割された有限のデジタル PWM である. キャ リア周波数を 4 [kHz]とし,パルス幅は100分割である. $\Delta \Sigma$ 変調器, NSDEM, HSVDSM, FDTMM のクロック周波数は 400 [kHz]とした.負荷は MCM の定格負荷である 0.12 [Nm] とし,回転速度は 120 [rpm]で制御をかけずに同期で回 転させた. 結果を図14, その拡大図を図15に示す.

図14 トルクの周波数解析(シミュレーション) 青:PWM 紫:ΔΣ変調器 水:HSVDSM 赤:ΔΣ変調器+NSDEM 緑:HSVDSM+FDTMM

図15 図14の拡大図 (10 [kHz] ~ 100 [kHz]) 赤: Δ Σ 変調器 + NSDEM 緑: HSVDSM + FDTMM

トルクは直流成分のみであることが望ましい.直流成 分以外の周波数帯に存在するスペクトラムが大きくなる ほど、トルクむらが大きくなってしまう.素子バラツキ に対して対策を施していない PWM 変調、ΔΣ変調器、 HSVDSM は低周波においてコイルの素子バラツキの影響 からノイズフロアが上昇していることが確認できる.こ れに対してΔΣ変調器+NSDEM と HSVDSM+FDTMM は駆動 コイルをシャッフリングし使用回数の少ないコイルを優 先的に使用することでコイルの素子バラツキに対してノ イズシェーピングをかけている.この二つの方式を比較 すると提案手法である HSVDSM+FDTMM の方が図15より 全体的に約6[dB]スペクトラムが低減されていることが 確認できる.これは提案手法のベクトル量子化によって 量子化誤差の影響が低減されたことが大きな要因である.

5. 実測

提案手法である HSVDSM と FDTMM を FPGA ボードで実装 し、実物の MCM を駆動する.測定条件はシミュレーショ ンと同様で表2の通りである.また測定環境を図16に 示す.

シミュレーションと同様に PWM 変調, $\Delta \Sigma$ 変調器, $\Delta \Sigma$ 変調器+NSDEM, HSVDSM, HSVDSM+FDTMM の5つの駆動 方式について測定を行う. トルクメータから MCM のトル クを測定し, FFT 解析することで周波数特性の比較を行 う. トルクメータの測定可能な周波数帯域が低いため, 今回の測定では PWM 変調器はキャリア周波数を1 [Hz]と し, パルス幅を10分割とした. $\Delta \Sigma$ 変調器, NSDEM, HSVDSM, FDTMM のクロック周波数は 10 [Hz]に設定した. モータの駆動周波数は 0.1 [Hz]とし, 回転速度は 1.2 [rpm]と信号処理,モータの回転の両方とも非常に低速駆 動での測定となった. モータの回転が低速で不安定なた め、トルクメータの負荷を最大にし、軸を固定してトル クの測定を行った.結果を図17に示す.

軸を固定しているためロータが回転せず、トルクが直 流ではなく交流として表れる. そのため駆動周波数であ る 0.1 [Hz] が回転磁界のトルクとしてスペクトラムに表 れている. またクロック周波数 10 [Hz]に対してノイズ シェーピング特性が確認できる.この時 HSVDSM の方がΔ Σ変調器に比べて量子化誤差の影響が低減されているた め、ノイズシェーピングの頂点が低減している.シミュ レーションと同様に $\Delta \Sigma$ 変調器と HSVDSM はバラツキの 影響によって駆動周波数 0.1 [Hz]付近のノイズフロアが 上昇しているが、NSDEM や FDTMM を搭載することで素子 バラツキの影響が低減され、ノイズフロアも低減してい ることが確認できる. PWM 変調と比べると, 他の駆動方 式のノイズフロアが上昇している.これは低速で信号処 理を行ってモータを駆動したため、 コイルのヒステリシ ス特性により相互変調歪が現れているためだと考えられ る. PWM 変調は PWM 周期に対してのみスペクトラムが現 れるため相互変調歪は直流成分のみに現れる.しかしΔ Σ変調器等のノイズシェーピング特性をもつ信号処理に おいてはスペクトラムが連続して多数現れるため、これ ら全ての相互変調歪が広い帯域で現れているのだと考え られる. トルクメータで測定をするため信号処理を低速 で行っているため、本来これらの駆動方式はどれも高速 クロックで動作することが想定されている. そのため実 働には大きな影響はないと考えられる. 図17より、ト ルクむらの少ない高精度なモータを評価するには、回転 磁界を示す 0.1 [Hz]帯以外の周波数成分は少ないことを 示す必要がある. そこで駆動周波数 0.1 [Hz]に対して3 次,5次,7次,9次,11次,13次の高調波を足し合わ せた THD 特性を比較する. 結果を表3に示す. 表3より Δ Σ 変調器と NSDEM を組み合わせた従来方式の THD 特性 に対して,提案手法である HSVDSM と FDTMM を組み合わせ た THD 特性が大きく改善されている事が確認できる.

表3 THD 特性の比較

	THD
PWM	0.2179
ΔΣ変調器	0.0736
ΔΣ変調器+NSDEM	0.0078
HSVDSM	0.0836
HSVDSM+FDTMM	0.0046

6. 結論

本論文では更なる高精度駆動を目的とし、量子化誤差 を低減する HSVDSM と,製造誤差による素子バラツキの影 響を低減させる FDTMM を提案した.これらをシミュレー ション,および実測からトルクむらの成分が減少してい ることを確認した.これは HSVDSM が従来のΔΣ変調器と 比較してトルクに直結する2次元平面座標系に対して適 切に量子化ができているためである.また提案手法はセ ンサなどのフィードバック信号を用いておらず,バラツ キが未知の場合でもこの適応できることも大きなメリッ トである.これらの結果から,本提案手法を精密さの要 求される加工機などに適応することで,高品質な製品の 製造が可能となる.

今後は要求される精密さに適してコイルの使用個数を 増減することで精度と効率の両立を目指したい.

謝辞:本研究を行うにあたり,多くのご指導と助言をし て頂いた安田彰教授,研究環境の維持管理を行ってくだ さった吉野理貴様,研究への様々なアドバイスをしてく ださった西勝聡様,同研究室の皆様に深く感謝いたしま す.また,この場をお借りしまして多大なる協力を頂い た科学技術振興事業団 (JST)様,株式会社オリエンタル モータ様に厚く御礼申し上げます.

参考文献

- Ishikawa, T. et al. :A Highly Directional Speaker with Amplitude-Phase Control Using a Digitally Direct-Driven System, 2014 IEEE International Conference on Consumer Electronics, pp.135-136, 2014
- 2)原島昇:デジタル直接駆動モータシステムの大出力化 に関する研究,法政大学大学院理工学・工学研究科紀 要,Vol55,2014
- 3) Motoyama, Y. et al. :Improvement of voltage resolution of a motor driver circuit by a multi-coil drive, Future Energy Electronics Conference, 2015 IEEE 2nd International, pp.1-5, 2015
- 4) Matsuo, H. Motoyama, Y. Yasuda, A. :Realization of High Precision Multi-coils-motor, Future Energy Electronics Conference, 2015 IEEE 2nd International, pp.1-5, 2015
- 5) Matsuo, H. et al. :Driving a High-Precision Multi-coils-motor by Reducing an Influence of Manufacturing Variations, Journal of Energy and Power

Engineering, Vol. 11, No. 1, pp. 48-55, 2017

- Yasuda, A. Tanimoto, H. Iida, T. :A Third-order Modulator using second-order nose-shaping dynamic element matching, IEEE Journal of Solid-State Circuits, vol. 33, pp. 1879-1886, 1998
- 7) Jacob, B. Baiju, M. R. :Space-Vector-Quantized Dithered Sigma Delta Modulator for Reducing the Harmonic Noise in Multilevel Converters, IEEE Transactions on Industrial Electronics, Vol. 62, No. 4 pp. 2064-2072, 2014
- 8)本山佳樹, et al.: Reduction of current harmonics by Space Vector PDM using multicoils motor, 電気学会, モータド ライブ/家電・民生合同研究会, 電気学会研究会資料. MD 2016(40・42-54), pp. 1-4, 2016
- 9) MathWorks: Simulink,
- http://jp.mathworks.com/products/simulink/
- 10) 松尾遥, et al. : マルチコイルモータのモデルに関する一提案, 電気学会電子・情報・システム部門大会講 演論文集(CD-ROM), 2015