法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2024-12-22

人工蜂コロニーアルゴリズムの動的最大電力 点追従への応用

坂本, 秀人 / SAKAMOTO, Hideto

(出版者 / Publisher)法政大学大学院理工学・工学研究科

(雑誌名 / Journal or Publication Title)

法政大学大学院紀要.理工学・工学研究科編 / 法政大学大学院紀要.理工学・工 学研究科編

(巻 / Volume)
58
(開始ページ / Start Page)
1
(終了ページ / End Page)
3
(発行年 / Year)
2017-03-31
(URL)
https://doi.org/10.15002/00014175

人工蜂コロニーアルゴリズムの動的最大電力点追従への応用

APPLICATION OF ARTIFICIAL BEE COLONY ALGORITHM TO DYNAMIC MAXIMUM POWER POINT TRACKING

坂本 秀人

Hideto SAKAMOTO

指導教員 斎藤利通

法政大学大学院理工学研究科電気電子工学専攻修士課程

This paper studies application of the artificial bee colony algorithm to maximum power point tracking in Photovoltaic systems. Depending on insolation and temperature, the voltage-power characteristic becomes a complex multi-model shape and the maximum power point becomes time-variant. In order to track the maximum power point, this paper presents an improved algorithm including flexible re-assignment of individuals. Performing basic numerical experiments, the algorithm efficiency is investigated.

Key Words : Artificial Bee Colony, Maximum Power Point Tracking

1. まえがき

ABC アルゴリズム (Artificiale Bee Colony algorithm) とは群知能に基づくアルゴリズムの1つである. [1] ABC は 現在の自身と別個体の情報を参照し更新を行う,過去の状態 に影響を受けない探索が可能なアルゴリズムである. パワー エレクトロニクスの分野において, ABC は AD 変換器やデ ジタルフィルターの回路設計などに応用されている.[2]

太陽光発電システムは再生可能エネルギーの1つとして 注目されている.電力供給の効率化を図るためには最大電力 点(Maximum Power Point, MPP)を追従する必要がある. しかし,太陽電池のPV特性は温度,日射量などの外部影響 によって変化してしまう.特に複数のセルに当たる日射量の 差から発生する部分陰問題を考慮すると,PV特性は多峰性 の関数となり追従時に局所解へトラップされてしまう可能性 がある.[3][4]また,外部影響は時間経過に応じて変化するこ とでPV特性自体が変動するため時間経過に対応した MPP を見つける必要がある.

本論文では最大電力点追従の手法として再配置の条件を 変更した ABC アルゴリズムを提案する. 再配置の条件を変 更することで動的な PV 特性の追従が可能になると考える. また,提案したアルゴリズムと従来のアルゴリズムを用いて 簡単な性能比較を行う

- 2. 太陽光発電システムと目的関数
- 3. 太陽光発電システム

太陽電池のセル1つに対する等価回路を図1に示す. 簡 単のために *R_{sh} と R_s* は無視することにする. 本論文で最大 電力点の追従を行う太陽電池システムを図2に示す.

太陽電池の VI 特性を式(1)に示す.

$$i_{j} = f(v_{j}, S_{j}) = I_{ph} - I_{rs}(exp(\frac{qv_{j}}{kATn_{s}}) - 1)$$

$$I_{ph} = (I_{scr} + k_{i}(T_{s} - T_{r}))\frac{S_{j}}{100}, \ j = 1 \sim 3$$
(1)

図1太陽電池の等価回路

図 2 太陽電池モジュール回路図

数, q は電子素量, k はボルツマン定数, I_{scr} は短絡電流, k_i は短絡電流温度効率, I_{rs} は逆飽和電流, A は理想ダイオード 因子, T_s は太陽電池の温度である.

S_j は各太陽電池の日射強度である. 日射強度を式(2) と図 3 に示す.

$$S_{1} = 2.5cos(\frac{5t}{8} + \frac{2\pi}{3}) + 85)$$

$$S_{2} = 20cos(\frac{5t}{16} + \frac{4\pi}{5}) + 55)$$

$$S_{3} = 10cos(\frac{5t}{23}) + 25)$$
(2)

各セルに流れる電流はそれぞれ $i_1 \equiv f(0, S_1), i_2 \equiv f(0, S_2), i_3 \equiv f(0, S_3)$ となる. 各セルでの電圧を式 (3) に示す.

$$v_1 = g_1(i_1) = f^{-1}(v_1, S_1) v_2 = g_2(i_2) = f^{-1}(v_2, S_2) v_3 = g_3(i_3) = f^{-1}(v_3, S_3)$$
(3)

図 3 各日射強度青が *S*₁, 赤が *S*₂, 紫が *S*₃ である.

3つのセルをあわせた電流を式(4)に示す.

$$v = G(i) = \begin{cases} g_1(i_1) & (i_2 \le i < i_1) \\ g_1(i_2) & (i_3 \le i < i_2) \\ g_1(i_3) & (0 \le i < i_3) \end{cases}$$
(4)

また,各セルおよび,セルをあわせた状態の VI 特性を図 4 に示す.太陽電池モジュールの PV 特性を式 (5) に示し,こ

図 4 各セルおよび太陽電池モジュールの VI 特性

の式を評価関数 F(v) とする. この PV 特性は多峰性の関数 である. また、 PV 特性を図 5 に示す. 図 5 のようにこの PV 特性は (a) \rightarrow (b) \rightarrow (c) \rightarrow (a) の順番で移り変わっていく

$$F(v) = vi = vG^{-1}(v) \tag{5}$$

図 5 各サンプリング時間における PV 特性

4. Rule-changed ABC アルゴリズム (RABC) ABC は探索開始時に *M* 個の個体が存在する. 各個体は 3 段階の探索を行う.

大域的探索では個体の位置 x_n と任意の 1 個体の位置 x_r の 2 つによって位置の更新を行う. 局所探索では相対価値確率 P_n をもとに個体を 1 つ選択し探索を行う. 再配置は個体の連続未更新回数 T_n が上限 T_{lim} を超えた場合に行う.

通常の ABC では探索回数 n において複数存在している 個体が同時に更新し探索を行う.しかし,実際のシステムに おいて動作点は同時に1つしか取ることができず,複数の個 体を同時に動作させることは難しい.そこで,本論文では個体 の更新を以下のように定義する.サンプリング時間 $t = n\Delta t$ において,1つの個体が更新される.ここで, Δt はサンプリ ング間隔とする.図??と図??に各手法での個体の定義を示 す.以下にアルゴリズムの定義をする.

Step 1 初期化

n = 0にする.初期固体として電圧 $v(n\Delta t)$ からなる個体 x_n 作成する.

$$x_n = v(n\Delta t) \tag{6}$$

個体は位置の他に連続未更新回数 T_n という情報を持つ. $T_n = 0$ として, 個体が更新されない場合に $T_n \leftarrow T_n + 1$ となる. Step 2 働き蜂探索

式(7)から更新候補個体 x_cを作成する.

$$x_c = x_n + \phi(x_n - x_r) \tag{7}$$

x_r は参照個体であり, *x_n* 以外の個体から1つ選択する. その後式 (8) に従って個体の更新を行う.

$$x_n \leftarrow \begin{cases} x_c & (F(x_c, t) > F(x_n, t)) \\ x_n & (F(x_c, t) \le F(x_n, t)) \end{cases}$$

$$\tag{8}$$

Step 3 見物蜂探索

各個体の評価値をもとに相対価値確率 P_n を作成し, ルーレット選択によって個体を 1 つ選択する.

Step 4 Step 3 で選ばれた個体に対して Step 2 を *M* 回 繰り返す.

Step 5 再配置

連続未更新回数 T_n が上限 T_{lim} を超えた個体 x_n を探索 領域内に再配置する.

Step 6 探索終了判定

探索回数 n が上限 $n\Delta t = t_{max}$ となった場合, 探索を終 了する. 探索を終了しない場合は $n \leftarrow n+1$ とし Step 1 に 戻る.

また、Step 5 を以下の Step 5' に置き換えたものを Rulechanged ABC アルゴリズム (RABC) と定義する.

Step 5' 再配置

連続未更新回数 *T_n* が上限 *T_{lim}* を超え,かつ最良個体で はない個体 *x_n* を探索領域内の別の位置に再配置する.

5. 数值実験

探索で使用したパラメータは以下のとおりである.

サンプリング上限 $t_{max} = 40$, サンプリング間隔 $\Delta t = 0.05$, 更新回数上限 $n_{max} = 800$, 個体数 M = 5, 連続未更新回数上限 $T_{lim} = 5$

RABC での追従例を図 6 に示す. また, 提案手法と ABC の MPPT 過程を図 7 に示す.

図 6 RABC の追従過程例 1

(a)n = 20, (b)n = 200, (c)n = 400, (d)n = 600,
(e)n = 800. 各図の赤い点は各個体, 黄色の点は最大電力点である.

図 7 各アルゴリズムの MPPT 過程

(a)RABC, (b)ABC. 各図の赤い点は各個体, 黄色の線 は最大電力点である.

図 6 より各スナップショットにおいて n = 200 および t = 800の段階では MPP 付近をサンプルしていることがわ かる. 一方で追従開始直後である n = 20 と追従途中である n = 400 および n = 600 では MPP から離れた付近をサン プルしていることがわかる.

図 7 において n = 200 の段階までは RABC の方がより 追従できていることがわかる.しかし, n = 440 から n = 600 の最大電力が再上昇している段階においては両者とも追従が できていないことがわかる.これは前段階の最大電力点に個 体が集中しているためであると考える. 各アルゴリズムの性能比較を行うために以下の式 (9) に よって追従効率 *P_{ef}* および総合電力 *P_{all}* を定義する.

$$P_{ef} = 1 - \frac{\sum_{n=1}^{n_{max}} \frac{|F(x_n, n) - MP_n|}{MP_n}}{n_{max}}$$

(9)

 $P_{all} = \sum_{n=1}^{n_{max}} F(x_n, n)$ MP_n =Maximum Power at time n P_n =power of time n

RABC, ABC の追従効率および総合電力を表1に示す. 提案手法は従来手法よりも追従効率が向上していることがわ かる.

6. むすび

ABC アルゴリズムを動的な最大電力点探索に適用した. また,適用方法として再配置条件を変更したアルゴリズムを 提案し,性能の検討を行った.その結果,提案手法は粒子群最 適化に比べ追従効率がよいという結果が得られた.

今後の課題としては探索過程の詳細な解析, 更なる性能 比較などがあげられる.

参考文献

- D. Karaboga and B. Bastrurk, A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm, J. Global Opt. (2007) 459.
- 2) H. Lee, H. Nakano, and A. Miyauchi, A Tabu Artificial Bee Colony Algorithm for Effective Forwarding Power Adjustment in Wireless Sensor Networks, Proc. of NOLTA (2012) 22.
- 3) M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii and H. Ko, Maximum Power Point Tracking of Multiple Photovoltaic Arrays: A Particle Swarm Optimization Approach, IEEE Trans. Aeros. Elect. Systems, 47, 1 (2011) 367.
- H. Patel and V. Agarwal, Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions, IEEE Trans. Ind. Electron., 55, 4 (2008) 1689.
- R. Akeno, K. Tanakajima, and T. Saito, The Imaginary Particle Swarm Optimizer for Dynamic Maximum Power Point Tracking, Proc. IEEE/SMC, (2016) 2978.

表 1各アルゴリズムの性能比較

	$P_{ef}[\%]$	$P_{all}[W]$
RABC	89.3	892.8
ABC	85.8	858.9