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Abstract

The premature convergence problem and the exploration-exploitation trade-off problem are

the two major problems encountered by many swarm intelligence algorithms in both global

optimization and large scale global optimization. This thesis proposes that the two main

problems could be handled by several variants of Particle Swarm Optimization (PSO) de-

veloped below. Five variants of homogeneous PSO have been developed for multimodal and

large scale global optimization problems, and two variants of dynamic heterogeneous PSO

for complex real-world problems.

First of all, an individual competition strategy is proposed for the new variant of PSO,

namely Fitness Predator Optimization (FPO), for multimodal problems. The development

of individual competition plays an important role for the diversity conservation in the popu-

lation, which is crucial for preventing premature convergence in multimodal optimization.

To enhance the global exploration capability of the FPO algorithm for high multimodality

problems, a modified paralleled virtual team approach is developed for FPO, namely DFPO.

The main function of this dynamic virtual team is to build a paralleled information-exchange

system, strengthening the swarm's global searching effectiveness. Furthermore, the strategy

of team size selection is defined in DFPO named as DFPO-r, which based on the fact that

a dynamic virtual team with a higher degree of population diversity is able to help DFPO-r

alleviate the premature convergence and strengthen the global exploration simultaneously.

Experimental results demonstrate that both DFPO-r and DFPO have desirable performances



for multimodal functions. In addition, DFPO-r has a more robust performance in most cases

compared with DFPO.

Using hybrid algorithms to deal with specific real-world problems is one of the most

interesting trends in the last years. In this thesis, we extend the FPO algorithm for fuzzy

clustering optimization problem. Thus, a combination of FPO with FCM (FPO-FCM) al-

gorithm is proposed to avoid the premature convergence and improve the performance of

FCM.

To handle the large scale global optimization problem, a variant of modified BBPSO

algorithm incorporation of Differential Evolution (DE) approach, namely BBPSO-DE, is

developed to improve the swarm's global search capability as the dimensionality of the search

space increases.

To the best of our knowledge, the Static Heterogeneous PSO (SHPSO) has been stud-

ied by some researchers, while the Dynamic Heterogeneous PSO (DHPSO) is seldom sys-

tematically investigated based on real problems. In this thesis, two variants of dynamic

Heterogeneous PSO, namely DHPSO-d and DHPSO-p are proposed for complex real-world

problems. In DHPSO-d, several differential update rules are proposed for different parti-

cles by the trigger event. When the global best position 𝑝𝑔 is considered stagnant and the

event is confirmed, then 𝑝𝑔 is reset and all particles update their positions only by their per-

sonal experience. In DHPSO-p, two proposed types of topology models provide the particles

different mechanism choosing their informers when the swarm being trapped in the local op-

timal solution. The empirical study of both variants shows that the dynamic self-adaptive

heterogeneous structure is able to effectively address the exploration-exploitation trade-off

problem and provide excellent optimal solutions for the complex real-world problem.

To conclude,the proposed biological metaphor approaches provide each of the PSO al-

gorithms variants with different search characteristics, which makes them more suitable for

different types of real-world problems.

iv



Contents

List of figures xi

List of tables xv

Nomenclature xix

1 Introduction 1

1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Global Optimization Problem . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Large Scale Global Optimization Problem . . . . . . . . . . . . . . 3

1.2.3 Motivations of Our Research . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 8

2 Standard Particle Swarm Optimization (SPSO) 11

2.1 Basic Concept of SPSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Neighborhood Communication Topology . . . . . . . . . . . . . . 12

2.1.2 Definitions and Variables . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Pseudocode of SPSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

v



Contents

2.3 Variants of Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . 17

2.3.1 Fully Informed Particle Swarm (FIPS) . . . . . . . . . . . . . . . . 17

2.3.2 Bare Bones Particle Swarms Optimization (BBPSO) . . . . . . . . 19

2.3.3 Binary Particle Swarm Optimization (BBPSO) . . . . . . . . . . . 21

2.4 Strength and Weakness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Weakness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Fitness Predator Optimization for Multimodal Problems 25

3.1 Overview and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Predator-Prey Optimization (PPO) . . . . . . . . . . . . . . . . . . 26

3.1.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Proposal of Fitness Predator Optimization (FPO) . . . . . . . . . . . . . . 29

3.2.1 Basic Concept of FPO . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Pseudocode of FPO . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 A Method for Parameter Control . . . . . . . . . . . . . . . . . . . 33

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Experiment on Multimodal Problems . . . . . . . . . . . . . . . . 35

3.3.3 Experiment on Fixed-dimension Problems . . . . . . . . . . . . . . 38

3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 A New Hybrid Fuzzy Clustering Algorithm for Multivariate Data 45

4.1 Overview and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Fuzzy c-means Clustering Algorithm . . . . . . . . . . . . . . . . 46

4.1.2 Fuzzy Clustering with Quantum-based PSO . . . . . . . . . . . . . 49

vi



Contents

4.1.3 Pseudo F Statistic Method . . . . . . . . . . . . . . . . . . . . . . 50

4.1.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Fuzzy Clustering with Fitness Predator Optimization . . . . . . . . . . . . 52

4.2.1 Proposal of FPO-FCM Algorithm . . . . . . . . . . . . . . . . . . 52

4.2.2 Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . 52

4.3 FPO-FCM Algorithm with Mixed-F Index . . . . . . . . . . . . . . . . . . 59

4.3.1 The Mixed-F Statistic Method . . . . . . . . . . . . . . . . . . . . 59

4.3.2 The Flow Chart of FPO-FCM with Mixed-F method . . . . . . . . 60

4.3.3 Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . 62

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Dynamic Virtual Teams for Fitness Predator Optimization 65

5.1 Overview and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Dynamic Virtual Team Model . . . . . . . . . . . . . . . . . . . . 66

5.1.2 Algorithm of Dynamic Virtual Team Model . . . . . . . . . . . . . 68

5.1.3 Dolphin Partner Optimization . . . . . . . . . . . . . . . . . . . . 69

5.1.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Proposal of DFPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Study of Dynamic Virtual Team Model . . . . . . . . . . . . . . . 73

5.2.2 Modified Topology of Dynamic Virtual Team Model . . . . . . . . 75

5.2.3 Pseudocode of DFPO . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.4 A Method of Team size Selection in DFPO . . . . . . . . . . . . . 78

5.3 Proposal of DFPO-r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 A Method for Dynamic Team Size Selection . . . . . . . . . . . . 80

5.3.2 Pseudocode of DFPO-r . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



Contents

5.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Modified Bare Bones Particle Swarms for Large Scale Global Optimization 95

6.1 Overview and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.1 BBPSO-MC-lbest Algorithm . . . . . . . . . . . . . . . . . . . . . 96

6.1.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Proposal of BBPSO-DE for LSGO Problems . . . . . . . . . . . . . . . . . 100

6.2.1 Ring Topology of BBPSO-DE . . . . . . . . . . . . . . . . . . . . 100

6.2.2 Integrated BBPSO-DE with Differential Evolution . . . . . . . . . 102

6.2.3 Redefining the Sample Equations . . . . . . . . . . . . . . . . . . 103

6.2.4 Pseudocode of BBPSO-DE . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.2 Experimental Results and Discussion . . . . . . . . . . . . . . . . 108

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Dynamic Heterogeneous Particle Swarm Optimization 115

7.1 Overview and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1.1 Concept of the Heterogeneous PSO . . . . . . . . . . . . . . . . . 116

7.1.2 The Static Heterogeneous PSO Model: HGLPSO . . . . . . . . . . 116

7.1.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Proposal of Dynamic HPSO (DHPSO) . . . . . . . . . . . . . . . . . . . . 119

7.2.1 Proposal of DHPSO-d . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.2 Proposal of DHPSO-p . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

viii



Contents

7.3.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8 Conclusion and Future Work 143

8.1 The Knowledge Gained from This Study . . . . . . . . . . . . . . . . . . . 143

8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 151

Appendix A List of Research Papers 161

Appendix B Definitions of the Benchmark Functions 165

ix





List of figures

2.1 A few of swarm communication topology types . . . . . . . . . . . . . . . 13

2.2 Histogram of points sampled by BBPSO . . . . . . . . . . . . . . . . . . . 20

2.3 Positions of particles sampled by BBPSO on Ackley function . . . . . . . . 21

2.4 The standard logistic sigmoid curve . . . . . . . . . . . . . . . . . . . . . 22

3.1 Convergence curve of FPO on 10 dimensions of 𝑓2 with 1000 iterations . . 38

3.2 The trajectory of the position of FPO on 2-dimensional Rastrigin function . 39

4.1 Reformulated objective function 𝐽𝑚(𝑉 , 𝑋) . . . . . . . . . . . . . . . . . . 48

4.2 Convergence curve of FCM . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Convergence curve of FPO-FCM and QPSO-FCM . . . . . . . . . . . . . 58

4.4 The flow chart of FPO-FCM with Mixed-F . . . . . . . . . . . . . . . . . . 61

5.1 Diagram of dynamic virtual teams . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Mean optimum and running time of DPO with different team size on Rosen-

brock function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 The modified dynamic virtual team topology . . . . . . . . . . . . . . . . . 76

5.4 The performance comparison between DPO and DFPO on Rosenbrock func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 The running time comparison between DPO and DFPO on Rosenbrock func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xi



List of figures

5.6 Different population diversity in various population and dimensions on Ras-

trigin function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Mean optimization errors of Branin function with three algorithms in 20, 50

and 100 times iteration respectively . . . . . . . . . . . . . . . . . . . . . 89

5.8 Mean optimization errors of Shekel function with four algorithms in 20, 50

and 100 times iteration respectively . . . . . . . . . . . . . . . . . . . . . 89

5.9 Mean optimization errors of Shaffers N.2 function with four algorithms in

20, 50 and 100 times iteration respectively . . . . . . . . . . . . . . . . . . 90

5.10 The enhanced rate of mean global optimum and increased time rate . . . . . 91

6.1 Ring topology of explorer-swarm . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Ring topology of memory-swarm . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Group three swarms as one team swarm . . . . . . . . . . . . . . . . . . . 103

6.4 Convergence graphs of 𝑓1 & 𝑓2 on 1000 dimensions . . . . . . . . . . . . . 108

6.5 Convergence graphs of 𝑓3 & 𝑓4 on 1000 dimensions . . . . . . . . . . . . . 111

6.6 Convergence graphs of 𝑓5 & 𝑓6 on 1000 dimensions . . . . . . . . . . . . . 111

6.7 Comparison of mean best optimum errors on various dimensions . . . . . . 112

6.8 Comparison of computation time on various dimensions . . . . . . . . . . 112

7.1 Two typical topologies of SPSO . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Dynamic process of heterogeneity configuration in DHPSO-d . . . . . . . . 120

7.3 Two kinds of topologies in DHPSO-p . . . . . . . . . . . . . . . . . . . . 122

7.4 Computation time of different algorithms on benchmark functions with di-

mensions of 50 after 30 times of trails. . . . . . . . . . . . . . . . . . . . . 137

7.5 Computation time of LBestPSO and FA on benchmark functions with di-

mensions of 50 after 30 times of trails. . . . . . . . . . . . . . . . . . . . . 138

7.6 Computation time of different algorithms on benchmark functions with di-

mensions of 100 after 30 times of trails. . . . . . . . . . . . . . . . . . . . 138

xii



List of figures

B.1 3-D map for 2-d Rosenbrock function . . . . . . . . . . . . . . . . . . . . 166

B.2 3-D map for 2-d Rastrigin function . . . . . . . . . . . . . . . . . . . . . . 167

B.3 3-D map for 2-d Griewank function . . . . . . . . . . . . . . . . . . . . . 168

B.4 3-D map for 2-d Ackley function . . . . . . . . . . . . . . . . . . . . . . . 169

B.5 3-D map for 2-d Michalewicz function . . . . . . . . . . . . . . . . . . . . 170

B.6 3-D map for 2-d Levy function . . . . . . . . . . . . . . . . . . . . . . . . 172

B.7 3-D map for 2-d Branin function . . . . . . . . . . . . . . . . . . . . . . . 173

B.8 3-D map for 2-d Shaffers N.2 function . . . . . . . . . . . . . . . . . . . . 175

B.9 3-D map for 2-d Schwefel function . . . . . . . . . . . . . . . . . . . . . . 176

B.10 3-D map for 2-d Rotated hyper-ellipsoid function . . . . . . . . . . . . . . 177

B.11 3-D map for 2-d Sphere function . . . . . . . . . . . . . . . . . . . . . . . 178

B.12 3-D map for 2-d Zakharov function . . . . . . . . . . . . . . . . . . . . . . 179

B.13 3-D map for 2-d Sum of different powers function . . . . . . . . . . . . . . 180

xiii





List of tables

3.1 Experiment results for parameters setting in FPO . . . . . . . . . . . . . . 34

3.2 Evaluation test environment . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Experimental execution parameters . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Bounds and global optimums of benchmark functions . . . . . . . . . . . . 36

3.5 Experiment A: Statistical results on various dimensions of functions: 𝑓1 − 𝑓2 37

3.6 Experiment A: Statistical results on various dimensions of functions: 𝑓3 − 𝑓4 39

3.7 Experiment B: Statistical results of fixed dimensions of functions: 𝑓5 − 𝑓6 . 40

3.8 Experiment B: Statistical results of fixed dimensions of functions: 𝑓7 − 𝑓8 . 41

4.1 Description of benchmark data sets . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Evaluation test environment . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Parameters Setting of experiment A . . . . . . . . . . . . . . . . . . . . . 55

4.4 Parameters setting of experiment B . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Experimental results of A . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Experimental results of B . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Parameters setting of experiment . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Record of Mixed-F index of non-medical datasets . . . . . . . . . . . . . . 62

4.9 Comparison of the optimal number of clusters with four cluster indexes . . 63

4.10 Record of Mixed-F index of medical datasets . . . . . . . . . . . . . . . . 63

xv



List of tables

5.1 Evaluation test environment . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 The best mean optimum obtained by DPO with various team size on Griewank

& Rosenbrock functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 The mean optimum obtained by DPO with various team size on Rosenbrock

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Comparison of mean optimum obtained by DFPO with various team size on

Griewank & Rastrigin & Rosenbrock functions . . . . . . . . . . . . . . . 78

5.5 Bounds and global optimums of benchmark functions . . . . . . . . . . . . 84

5.6 Parameters setting on fixed-dimension multimodal functions . . . . . . . . 85

5.7 Parameters setting on six flexible dimensional functions . . . . . . . . . . . 85

5.8 Statistical results of optimization errors on fixed-dimension multimodal func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.9 Statistical results of optimization errors on 𝑓5 − 𝑓7 after 20 trials of 103,

2 × 103 function evaluations, respectively . . . . . . . . . . . . . . . . . . 86

5.10 Statistical results of optimization errors on 𝑓8 − 𝑓10 after 20 trials of 103,

2 × 103 function evaluations, respectively . . . . . . . . . . . . . . . . . . 87

5.11 Statistical results of optimization errors on 100-Dimension 𝑓5 − 𝑓7 after 20

trials of 2 × 103 function evaluations . . . . . . . . . . . . . . . . . . . . . 88

5.12 Statistical results of optimization errors on 100-Dimension 𝑓8 − 𝑓10 after 20

trials of 2 × 103 function evaluations . . . . . . . . . . . . . . . . . . . . . 88

5.13 Ranking of the best solution quality obtained by Table 5.9, Table 5.10, Table

5.11 and Table 5.12 with 5 kinds of algorithms on 𝑓5 − 𝑓10 . . . . . . . . . 91

5.14 Ranking of the averaged best solution quality obtained by Table 5.9, Table

5.10, Table 5.11 and Table 5.12 with 5 kinds of algorithms on 𝑓5 − 𝑓10 . . . 92

6.1 The bound and global Minimum of Benchmark Function . . . . . . . . . . 107

6.2 Experimental parameters setting of algorithms . . . . . . . . . . . . . . . . 107

xvi



List of tables

6.3 Statistical results of optimization errors on unimodal functions after 30 trials 109

6.4 Statistical results of optimization errors on multimodal functions after 30

trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1 Evaluation test environment . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2 The bounds and global minimums of benchmark functions. . . . . . . . . . 127

7.3 The control parameters setting of algorithms. . . . . . . . . . . . . . . . . 127

7.4 The statistical results of optimization errors on multimodal functions with a

population of 100 and 200 after 30 trials of 1 × 104 function evaluations . . 129

7.5 The statistical results of optimization errors on unimodal functions with a

population of 100 and 200 after 30 trials of 1 × 104 function evaluations. . . 130

7.6 𝑝 values of 𝑡-test between DHPSO-d and four comparative algorithms on

multimodal functions with a significance level of 𝛼 = 0.05 after 30 trials . 131

7.7 Performance comparison between DHPSO-d and four comparative algorithms

on 𝑓1--𝑓6 by 𝑡-test with a significance level of 𝛼 = 0.05. . . . . . . . . . . 131

7.8 Performance comparison between DHPSO-p and five compared algorithms

on 𝑓1--𝑓6 by 𝑡-test with a significance level of 𝛼 = 0.05. . . . . . . . . . . . 132

7.9 𝑝 values of 𝑡-test between DHPSO-d and four comparative algorithms on

unimodal functions with a significance level of 𝛼 = 0.05 after 30 trials . . . 133

7.10 Performance comparison between DHPSO-d and four comparative algorithms

on 𝑓7--𝑓10 by 𝑡-test with a significance level of 𝛼 = 0.05. . . . . . . . . . . 133

7.11 𝑝 values of 𝑡-test between DHPSO-p and five comparative algorithms on

unimodal functions with a significance level of 𝛼 = 0.05 after 30 trials . . . 134

7.12 Performance comparison between DHPSO-p and five comparative algorithms

on 𝑓7--𝑓10 by 𝑡-test with a significance level of 𝛼 = 0.05. . . . . . . . . . . 134

7.13 A modified Bonferroni procedure for DHPSO-d VS HGLPSO. . . . . . . . 135

7.14 A modified Bonferroni procedure for DHPSO-p VS HGLPSO. . . . . . . . 136

xvii





Nomenclature

Acronyms / Abbreviations

ABC Artificial Bee Colony

ACO Ant Colony Optimization

AFSA Artificial Fish-Swarm Algorithm

AIS Artificial Immune System

BA Bat-inspired Algorithm

BBPSO-DE Bare Bones Particle Swarms Optimization with Differential Evolution

BBPSO-MC Bare Bones Particle Swarms Optimization with Mutation and Crossover

BBPSO Bare Bones Particle Swarms Optimization

BPSO Binary Particle Swarm Optimization

CC Cooperative Co-evolution

CI Computational Intelligence

CLPSO Comprehensive Learning Particle Swarm Optimization

CSO Competitive Swarm Optimization

xix



Nomenclature

DE Differential Evolution

DFPO-r Dynamic Fitness Predator Optimization with random team size

DFPO Dynamic Fitness Predator Optimization

DHPSO-d Dynamic Heterogeneous Particle Swarm Optimization with differential

rules

DHPSO-p Dynamic Heterogeneous Particle Swarm Optimization with polymorphic

models

DHPSO Dynamic Heterogeneous Particle Swarm Optimization

DPO Dolphin Partner Optimization

EA Evolutionary Algorithms

EC Evolutionary Computation

EDA Estimation of Distribution Algorithms

EPUS-PSO Efficient Population Utilization Strategy for Particle Swarm Optimization

FA Firefly Algorithm

FCM Fuzzy c-means algorithm

FIPS Fully Informed Particle Swarm

FPO-FCM Fuzzy c-means Clustering with Fitness Predator Optimization

FPO Fitness Predator Optimization

FS Fuzzy System

GBPSO Global Best Particle Swarm Optimization

xx



Nomenclature

GO Global Optimization

GWO Grey Wolf Optimization

HGLPSO static Heterogeneous Particle Swarm Optimization combined with GBPSO

and LBPSO

HPSO Heterogeneous Particle Swarms Optimization

KHM K-Harmonic Means algorithm

LBPSO Local Best Particle Swarm Optimization

LSGO Large Scale Global Optimization

MCPSO Modified Competitive Particle Swarm Optimization

NN Neural Networks

PC Premature Convergence

PPO Predator-Prey Optimization

PPSO-FCM Fuzzy C-Mean based on Picard iteration and PSO

PSO Particle Swarm Optimization

QE Quantum Error

QPSO Quantum-behaved Particle Swarm Optimization

SGA Simple Genetic Algorithm

SHPSO Static Heterogeneous Particle Swarm Optimization

SI Swarm Intelligence

xxi



Nomenclature

SPSO Standard Particle Swarms Optimization

WDBC Wisconsin Diagnostic Breast Cancer

xxii



Chapter 1

Introduction

1.1 Research Background

Computational intelligence (CI) is a set of nature-inspired computational methodologies and

approaches to provide solutions for complicated problems and inverse problems [82]. It

primarily includes artificial neural networks (NN), evolutionary computation (EC), swarm

intelligence(SI), artificial immune system(AIS), and fuzzy systems (FS). Each of the CI parts

has its origins in biological systems. NNs model biological neural systems, EC models

natural evolution (including genetic and behavioral evolution), SI models the social behavior

of organisms living in swarms or colonies, AIS models the human immune system and FS

originated from studies of how organisms interact with their environment. The techniques

from these five components can be combined to form hybrid systems.

Swarm intelligence (SI) is the collective behavior of decentralized, self-organized sys-

tems, natural or artificial. The SI systems typically consist of a population of simple agents

interacting locally with one another and with their environment. Examples in natural sys-

tems of SI include ant colonies, bird flocking, animal herding, bacterial growth and so on.

Nowadays, swarm intelligence is becoming a new research highlight. Most of research theo-
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ries and applications related to swarm intelligence proves that it is a kind of effective method

to solve variety of global optimal problems.

Particle Swarm Optimization (PSO) belongs to the field of Swarm Intelligence and is a

sub-field of Computational Intelligence. It is a population based stochastic optimization tech-

nique developed by Eberhart and Kennedy in 1995 [42], inspired by social behavior of bird

flocking or fish schooling. Based on the research of PSO, in this thesis, we propose several

improved homogeneous and heterogeneous PSO variants for global optimization problems.

1.2 Research Motivation

1.2.1 Global Optimization Problem

Global Optimization (GO) aims at characterizing and computing global optimal solutions

to problems with nonconvex, multimodal, or badly scaled objective functions [37]. Many

real-world problems, such as engineering, biotechnology, data analysis, environmental man-

agement, financial planning and other related areas, can be formulated as global optimization

problems.

This thesis considers the following global optimization problem:

⎧
⎪
⎨
⎪
⎩

𝑓 ∶ 𝑆 → ℜ

𝑓(𝑥∗) ⩽ 𝑓(𝑥), ∃𝑥∗ ∈ 𝑆; ∀𝑥 ∈ 𝑆
(1.1)

where 𝑆 ⊂ ℜ𝐷 is a nonempty compact set with 𝐷 dimensions [74]. 𝑓 ∶ 𝑆 → ℜ stands

for a real-valued nonlinear objective function for mapping from 𝐷 dimensional space to

one dimensional fitness value. In general, due to the absence of structural information and

the presence of many local extrema, global optimization problems are extremely difficult

to solve exactly. To solve such a problem, there are many different types of methods in
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the literature on global optimization, which can be categorized based on different criteria.

For instance, they can be classified by the properties of algorithms that search for new can-

didate solutions, such as deterministic and stochastic algorithms [74]. Most deterministic

algorithms involve the application of heuristics, such as modifying the trajectory (trajectory

methods) or adding penalties (penalty-based methods), to escape from local minima. On

the other hand, stochastic algorithms do not require any properties of the objective function.

Therefore, more attention has been paid to stochastic algorithms. Perhaps the most common

problem encountered by many GO methods, either deterministic or stochastic is the problem

of local minima. Especially in multimodal functions, the existence of many local minima

makes it quite difficult for most techniques to detect the global minimum.

1.2.2 Large Scale Global Optimization Problem

A Large Scale Global Optimization (LSGO) problem can be mathematically stated in the

equation 1.1. Specifically, there are 𝐷 number of variables in large scale setting (𝐷 > 100).

Most real-world optimization problems involve a large number of decision variables may be

formulated as large scale global optimization problems. For example, inverse problems in the

biological systems are a large-scale and highly time-consuming optimization problems [67],

[60]. With the arrival of big data, there is an unprecedented demand to solve optimization

problems with a number of feature variables, training instances, and classes [10]. The recent

advance in the area of machine learning has witnessed very large scale optimization problems

encountered in training deep neural network architectures (so-called deep learning), some of

which are involved in optimizing over a billion of connection weights in a very large neural

network [33]. These models are faced with some challenging characteristics such as strong

interaction among parameters and high multimodality.

Many optimization algorithms attempt to solve LSGO problems efficiently in a given

number of fitness evaluation budget. Unfortunately, most optimization methods suffer from
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the "curse of dimensionality" [4], which implies that their performance deteriorates quickly

as the dimensionality of the search space increases. There are two major reasons for the

performance deterioration of these algorithms. Firstly, the solution space of a problem often

increases exponentially with the problem dimension and more efficient search strategies are

required to explore all promising regions within a given time budget. Secondly, the search

space exponentially increases with the problem size; so an optimization algorithm must be

able to explore the entire search space efficiently, which is not a trivial task. In addition,

the characteristics of a problem may change with the scale. Because of such a worsening

of the features of an optimization problem resulting from an increase in scale, a previously

successful search strategy may no longer be capable of finding the optimal solution.

1.2.3 Motivations of Our Research

Individual Competition Strategy for Multimodal Optimizations

A major issue in global optimization, especially in multimodal optimization is premature

convergence problem. The term of premature convergence means that a population for an

optimization problem converged too early, resulting in being suboptimal. An accepted hy-

pothesis is that maintenance of high diversity is crucial for preventing premature convergence

in multimodal optimization [27], [73]. Many kinds of optimization algorithms are proposed

to improve the diversity of the population. Some of them are inspired by the social behavior

of swarms, herds in nature. In addition, the hunting and search behaviors of predator are

implemented by more and more researchers and proved to be an effective method. However,

few of SI techniques focus on individual competition and independent self awareness. We

note that the individual competition is more likely to reduce the rapid social collaboration

process and increase the ability of being out of the local optimum. This motivated our at-

tempt to propose a new population-based algorithm with an individual competition strategy

to avoid premature convergence for multimodal optimization problems.
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Hybrid Algorithms for Specific Problem

The use of hybrid algorithms to deal with specific real-world problems is a fact that proves

that hybridization is a powerful tool far beyond the discrete algorithm. For instance, in the

field of clustering, Fuzzy c-means (FCM) is one of the most popular algorithms. The objec-

tive function of the FCM is the multimodal function which means that it may contain many

local minima. Consequently, while minimizing the objective function, there is possibility

of getting stuck at local minima or saddle points. To increase the probability of locating

the global optimum, some researchers adopt the stochastic methods such as evolutionary or

swarm-based methods to increase the global convergence ability of fuzzy clustering. In this

thesis, we propose a hybrid fuzzy clustering algorithm combination of our new population-

based algorithm to provide the excellent optimal solution and avoid to be trapped in the local

minima simultaneously.

Differential Evolution Strategy for LSGO Problems

Recently, LSGO has become a well-recognized field of research and various meta-heuristic

algorithms such as Simulated Annealing (SA) [8] and variant population-based algorithms,

such as, Evolutionary Algorithms (EAs) [3], Estimation of Distribution Algorithms (EDAs)

[52], [65], Particle Swarm Optimization (PSO) [42] have been applied to solve them. How-

ever, generally speaking, the performance of these algorithms deteriorates when tackling the

high dimensional problems [89]. Several particular mechanisms have been proposed to han-

dle LSGO problems. Basically, two main categories of approaches can be found, namely,

Cooperative Coevolution (CC) algorithms with problem decomposition strategy [76], and

non-decomposition based methods [62]. The results of these methods show an efficient per-

formance on scalable LSGO benchmark functions (up to 1000D), however, its performance

influenced by their control parameters. The best values for the control parameters remain

problem dependent, and need to be tuned for each problem. It is motivating to consider these
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reasons and difficulties to propose new approaches for tackling LSGO problems. In this the-

sis, the mutation and crossover operators of Differential Evolution (DE) are employed for the

modified Bare Bones Particle Swarm Optimization (BBPSO) algorithm, which increases the

swarm diversity and enhances the search performance as the dimensionality of problem in-

creases. In addition, one key advantage of our proposed algorithm is that there is no need to

specify any control parameter for each problem that is often required in traditional stochastic

algorithms.

Dynamic Heterogeneity to Complex Real-World Problems

In population-based algorithms, finding the global optimal solution of a problem is based

on two cornerstones, namely exploration: global search, exploring all over the search space

to find promising regions and exploitation: local search, exploiting the identified promising

regions to tune the search for the global optimum. It is worth noting that, emphasizing on

exploration will lead to waste of time searching over inferior regions of the search space

and slow down the convergence rate. On the other hand, emphasizing on exploitation will

cause loss of diversity early in the search process, thereby possibly getting stuck into a local

optimum. Therefore, in the population-based evolutionary algorithms, it is important to

obtain the balance between exploration and exploitation of the search space [23], [17].

Most population-based algorithms and their modifications make use of homogeneous

swarms where all of the individuals follow exactly the same behavior. However, modelled

with populations of heterogeneous individuals, the optimization algorithm has the ability to

maintain an appropriate balance between exploration and exploitation throughout the search

process. Recently, heterogeneous systems have drawn the attention of researchers working

in different areas of swarm intelligence because designing heterogeneous models more ac-

curately and approximately resembles real circumstances. To the best of our knowledge,

the Static Heterogeneous Particle Swarm Optimization (SHPSO) has been studied by some
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researchers, while the Dynamic Heterogeneous Particle Swarm Optimization (DHPSO) is

seldom systematically investigated based on real problems. In this thesis, we propose two

different DHPSO models and extend the analysis of DHPSO models to study their scalability

to different dimensional optimization problems.

1.3 Overview of the Thesis

1.3.1 Evaluation Method

All experiments are implemented on a PC with an Intel Core i7 860, 2.8 GHz CPU and Mi-

crosoft Windows 7 Professional SP1 64-bit operating system, and all algorithms are written

in the Matlab language. Each test algorithm was run on an array of generic benchmark prob-

lems. All algorithms were randomly initialized in an area equal to one quarter of the feasible

search space in every dimension that was guaranteed not to contain the optimal solution.

Benchmark Problems

For any new optimization, it is essential to validate its performance and compare with other

existing algorithms over a good set of test functions. Benchmark problems is a set of test

functions which can be used to test the effectiveness of global optimization algorithms. There

have been many tests or benchmark functions reported in the literature [38]. In this thesis,

we carefully chose some benchmark problems for their variety, for instance, some functions

are simple unimodal problems, some are highly complex multimodal problems with many

local minima, and the others are multimodal problems with a few local minima. All these

benchmark problems are collected from the website of the Virtual Library of Simulation

Experiments [Surjanovic and Bingham].
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Statistical Analysis

For each algorithm, the statistical results including the best global optimum, the worst opti-

mum solution, the average of best global value of each benchmark function and running time

with the same fixed times iteration after a number of independent trials. Having gathered

some empirical data, differences in performance between several versions of algorithms can

become notable. In this thesis, we partly adopt the practice of performing 𝑡-tests on pairs

of groups of data; these tests give a 𝑝−value which is compared to a constant called 𝛼 to

determine whether a difference is significant or not.

1.3.2 Organization of the Thesis

The main structure of the thesis is thus twofold. On the first hand, five variants of homo-

geneous PSO have been developed, each of them implementing the biological metaphor

in their own particular way. This provides each of these approaches with different search

characteristics, which make them more suitable for different types of problems. On the sec-

ond hand, two dynamic Heterogeneous PSO variants were proposed for complex real-world

problems. In Chapter 3, a variant of PSO algorithm employed an individual competition

strategy, namely FPO, is proposed for multimodal problems. Then in Chapter 4, this vari-

ant combination of Fuzzy c-means algorithm, named as FPO-FCM, is proposed to provide

the excellent data clustering solution. To enhance the global exploration of the FPO al-

gorithm for high multimodality problem, a paralleled virtual team approach is introduced

in FPO. Thus, an improved Dynamic FPO algorithm (DFPO) is presented in Chapter 5.

Meanwhile, the DFPO with dynamic team size selection strategy, named as DFPO-r, is also

provided in Chapter 5. Finally, to handle the large scale global optimization problem, the

fifth variant of BBPSO algorithm incorporation of Differential Evolution (DE) approach,

namely BBPSO-DE, is developed in Chapter 6. Finally, a comparative analysis has been

performed to some homogeneous PSO algorithms and static heterogeneous PSO algorithms,
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we prefer to propose two dynamic Heterogeneous PSOS variants (DHPSO-d and DHPSO-p)

in Chapter 7 for complex real-world problems.

In summary, the thesis is organized as follows.

Chpater 1 presents the background and the motivation of our research, summarizes the

solutions of our research and provides an overview of the thesis.

Chpater 2 introduces the standard particle swarm optimization algorithm and several

variants of PSO.

Chpater 3 proposes a variant of PSO algorithm employed an individual competition

strategy, namely FPO, for multimodal problems.

Chpater 4 proposes a hybrid fuzzy clustering algorithm (FPO-FCM) which combination

of FPO and FCM for data clustering.

Chpater 5 presents DFPO and DFPO-r algorithms to enhance the global exploration of

FPO for multimodal problem.

Chpater 6 develops a variant of BBPSO algorithm with Differential Evolution (DE)

approach, namely BBPSO-DE, for large scale global optimization problem.

Chpater 7 proposes two dynamic Heterogeneous PSO variants, DHPSO-d and DHPSO-

p for complex real-world problems.

Chpater 8 gives a conclusion on the current research work presented in this thesis and

summarizes the future research trends we are focusing on.
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Chapter 2

Standard Particle Swarm Optimization

(SPSO)

Recently, many nature-inspired optimization algorithms have been developed successfully

for solving a wide range of optimization problems. For instance, Evolutionary Algorithms

(EAs), Simulated Annealing, Differential Evolution (DE), Ant Colony Optimization (ACO),

Estimation of Distribution Algorithms (EDA) and Particle Swarm Optimization (PSO) are

just some representative examples among many others. These meta-heuristic algorithms do

not rely on gradient information, and are less likely to be stuck on local optima because of

their use of population-based candidate solutions, thereby offering significant advantages

over traditional single-point and derivative-dependent methods. Among these population-

based algorithms, Particle Swarm Optimization (PSO) is a member of the wide category of

Swarm Intelligence methods for solving optimization problems.

2.1 Basic Concept of SPSO

Particle Swarm Optimization (PSO) was introduced by Russell C. Eberhart and James Kennedy

in 1995. The original PSO algorithm [42] was inspired by the social behaviour of biological
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organisms, birds flocking while searching for a food source in a given area. There is a general

belief, and numerous instances coming from nature enforce the view, that social sharing of

information among the individuals of a population, may provide an evolutionary advantage.

This was the core idea behind the development of PSO [20].

In SPSO, each individual is named as a particle which, in fact, represents a potential

solution to a problem. Particles move through the search space being combined of an at-

traction to the best solution that they individually have found, and an attraction to the best

solution that any particle in their neighborhood has found. Generally, a neighborhood is

defined for each individual as the subset of particles which it is able to communicate with.

These neighborhoods can involve two or more particles which are predetermined to act to-

gether, or subsets of the search space that particles happen into during testing. The use of

neighborhoods often helps the algorithm to avoid getting stuck in local minima. When the

neighborhood is expanded into include all members of the population, so all particles are

influenced by the best solution found by any member of the swarm, which has been known

as a global neighborhood, or 𝑔𝑏𝑒𝑠𝑡 model. The 𝑙𝑏𝑒𝑠𝑡 model, often referred to as a local

topology, constitutes perhaps the most significant variation to the original PSO algorithm,

and was proposed in one of the very first PSO publications [21]. Much of the PSO litera-

ture uses the local topology to describe not just a single swarm model, but applies it to any

swarm model without global communication. A number of different limited neighborhood

communication topologies have been listed in this chapter.

2.1.1 Neighborhood Communication Topology

There are four main communication topologies shown in Fig.2.1 with populations of 8 par-

ticles: star, circle, wheel and isolated.

∗ Star (𝑔𝑏𝑒𝑠𝑡): Each particle is connected to every other member of the swarm.
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∗ Circle (𝑙𝑏𝑒𝑠𝑡): Each individual is connected to its 𝐾 immediate neighbors only. In

a regular ring topology, 𝐾 = 2, the individual is affected by only its immediately

adjacent neighbors.

∗ Wheel: One particle is connected to all others, and they are connected to only that

one.

∗ Isolated: Where individuals only compare to those within specified groups.

Fig. 2.1 A few of swarm communication topology types

The star or 𝑔𝑏𝑒𝑠𝑡 topology shown in Fig.2.1(A) links every particle with every other, so

that the social source of influence is in fact the best-performing member of the swarm.
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In the circle topology or or 𝑙𝑏𝑒𝑠𝑡 topology shown in Fig.2.1(B), which is a regular ring

lattice as studied by Watts and Strogetz [93], parts of the swarm that are distant from one

another are also independent of one another. Thus one segment of the population might

converge on a local optimum, while another segment converges on a different optimum or

keeps searching. More recent research has revealed that 𝑙𝑏𝑒𝑠𝑡 swarm return improved results

across various standard problem sets when used in conjunction with other improvements to

the algorithm [49].

The wheel topology (See figure 2.1(C)) effectively isolates particles from one another, as

all information has to be communicated through the focal particle. This focal particle com-

pares solutions of all particles in the neighborhood, and adjusts result in improvement in the

focal individual's performance. If adjustments result in improvement in the focal particle's

performance, then that improvement is communicated out to the rest of the swarm.

The isolated topology (shown in Fig.2.1(D)) creates islands, or disconnected groups of

individuals, which may collaborate among themselves to optimize the function. This would

introduce a diminishing of communication, as the isolated particles would not get the infor-

mation about the best solution found by the population; nor would the rest of the population

benefit from their improved performances.

The choice of communication topologies used has been a matter of individual artistry,

with some lore and little data to help the researcher choose a strategy. Some references show

that highly connected particle swarm might not be as effective at finding optima in a problem

space, compared to moderately connected communication topologies.

2.1.2 Definitions and Variables

Each of the particles is depicted by its position vector 𝑥 and "flying" velocity 𝑣. The par-

ticle adjusts its position according to its own flying experience and its neigborhood' flying

experience. The equations for updating the position and velocity of each particle 𝑖 are the
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following[21]:

⎧
⎪
⎨
⎪
⎩

𝑣𝑖(𝑡) = 𝜛 ∗ 𝑣𝑖(𝑡 − 1) + 𝜑1 ∗ (𝑝𝑖(𝑡 − 1) − 𝑥𝑖(𝑡 − 1)) + 𝜑2 ∗ (𝑝𝑔(𝑡 − 1) − 𝑥𝑖(𝑡 − 1))

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡)
(2.1)

where 𝑡 means the current iteration, 𝑡−1 means the previous iteration. The parameter 𝜛 is the

linear decreasing inertial weight, which decreases from 𝜛𝑚𝑎𝑥 to 𝜛𝑚𝑖𝑛 during the iterations.

The parameters 𝜑1 and 𝜑2 are acceleration coefficients. 𝑝𝑖 is the best historical position

particle 𝑖 has found in the search space and 𝑝𝑔 is the best position found by any neighbor

of the particle. The particle's new velocity is calculated according to its previous velocity

and the distances of its current position from its own best experience (position) and the

group's best experience. Maintaining its own experience is defined as the "cognition" of a

particle, which represents the private thinking of the particle itself. Taking advantage of

the group's best experience represents the social collaboration among the particles. The

fast social collaboration between particles seems to be the reason for clustering of particles

because all the particles will tend to move toward the same position, that is, the search area

is contracting through the generations. If the global optimum is out of the current search

space, then there is little chance for SPSO to find the global optimum.

Another method of balancing global and local searches known as constriction was being

explored simultaneously with the inertia weight method [16]. This method introduced a new

parameter 𝜒 , known as the constriction factor, which is derived from the existing constants

in the velocity update equation:

𝜒 = 2
∣ 2 − 𝜑 − √𝜑2 − 4𝜑 ∣

, 𝜑 = 𝑐1 + 𝑐2 (2.2)

In order to ensure convergence, the values 𝜒 ≈ 0.72984 and 𝑐1 = 𝑐2 = 2.05 are obtained.

This constriction factor is applied to the entire velocity update equation:
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𝑣𝑖(𝑡) = 𝜒 ∗ (𝑣𝑖(𝑡 − 1) + 𝑐1 ∗ 𝜖1 ∗ (𝑝𝑖(𝑡 − 1) −𝑥𝑖(𝑡 − 1)) + 𝑐2 ∗ 𝜖2 ∗ (𝑝𝑔(𝑡 − 1) −𝑥𝑖(𝑡 − 1))) (2.3)

where, 𝜖1 and 𝜖2 are independent random numbers uniquely generated at every update for

each individual dimension in the range [0,1] according to [16]. The parameter values noted

above are preferred in most cases when using constriction for SPSO due to the proof of

stability.

Similar, the position of each particle in every iteration by the following equation:

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡) (2.4)

2.2 Pseudocode of SPSO

Having presented the basic concept and definitions and variables used in SPSO, the main

function of SPSO is described as follows.

Algorithm 1 Main function of SPSO
1: Initialization: 𝑐1 = 𝑐2 = 2.05, 𝜒 = 0.7298, population 𝑛
2: Initialize each particle's position 𝑥𝑖: 𝑥𝑖 = 𝑟𝑎𝑛𝑑() ∈ (𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥), 𝑖 ∈ [1..𝑛]
3: Initialize personal best position 𝑝𝑖: 𝑝𝑖 = 𝑥𝑖, 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖) = 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)
4: Find the best position 𝑝𝑔 from all of neighbors: 𝑝𝑔 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖))
5: Initialization: 𝑣𝑖 = 0.5 ∗ 𝑟𝑎𝑛𝑑(); 𝑟𝑎𝑛𝑑() ∈ (𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥)
6: Repeat
7: for all particles 𝑖 ∈ [1..𝑛] do
8: Generate: 𝜓1 = 𝑟𝑎𝑛𝑑() ∈ [0, 1]; 𝜓2 = 𝑟𝑎𝑛𝑑() ∈ [0, 1]
9: Update particle 𝑥𝑖 with equation (2.3) and (2.4).

10: Calculate fitness value of each updated particle 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥∗
𝑖 )

11: if 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥∗
𝑖 ) < 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖) then

12: 𝑝𝑖 = 𝑥∗
𝑖 , 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖) = 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥∗

𝑖 )
13: end if
14: end for
15: Find the new 𝑝∗

𝑔: 𝑝∗
𝑔 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖))

16: Until maximum iterations are attained
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In Algorithm 1, for each iteration, the number of Fitness Evaluations (FEs) is 𝑛 ∗ 𝐷,

where 𝑛 is the population size and 𝐷 is the dimension of the problem. Apart from the FEs,

which is problem dependent [39], [57], the main computational cost in SPSO is to find the

global best optimum 𝑝𝑔 from all of the 𝑝𝑖, which is an inevitable operation in most swarm

or population based evolutionary algorithms [40], [85]. Consequently, the computational

complexity of SPSO is 𝑂(𝑛𝐷𝑇 ) (𝑇 is the maximum iteration number of SPSO).

2.3 Variants of Particle Swarm Optimization

The original PSO has undergone a number of changes since it was first proposed. In the

SPSO, the behavior of particle swarm depends on at least three factors:

∗ population topology: Which defines the neighborhood relations among particles.

∗ model of influence: Which defines the mechanism to select, from each particle's neigh-

bors, the set of individuals that act as informers.

∗ update rule: That is used to compute the next position of particle using information

from its informers.

Different settings for the population topology, the model of influence or the update rule

give rise to different PSO algorithms. In the following subsections, we briefly describe some

of the most important developments. For a more detailed description of many of the existing

particle swarm optimization variants, see ([47], [25], [15] and [75]).

2.3.1 Fully Informed Particle Swarm (FIPS)

The most salient example of model of influence is Mendes' fully-informed model, in which

a particle uses information from all its neighbors, rather than just the best one. In this new
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version, the performance of the Fully Informed Particle Swarm algorithm (FIPS) is concep-

tually more concise and promises to perform more effectively than the traditional particle

swarm algorithm.

When constriction coefficient 𝜒 is implemented as in SPSO, a condensed form of the

constricted SPSO can be implemented as follows:

⎧
⎪
⎨
⎪
⎩

𝑣𝑡+1 = 𝜒 ∗ (𝑣𝑡 + 𝜑 ∗ (𝑝𝑚 − 𝑥𝑡))

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1

(2.5)

which was then expanded to partition the acceleration weight 𝜑 between the particle's own

previous success 𝑝𝑖 and the neighborhood's 𝑝𝑔, such that 𝜑 = 𝜑1 + 𝜑2. Note that 𝑝𝑚 in this

deterministic model is calculated as 𝑝𝑚 = (𝜑1 ∗𝑝𝑖 +𝜑2 ∗𝑝𝑔)/(𝜑1 +𝜑2). The search of particle

converges on a point 𝑝𝑚 in the search space. An alternate form of calculating 𝑝𝑚 proposed

in FIPS is:

𝜑𝑘 = 𝑈[0, 𝜑𝑚𝑎𝑥
∣ 𝑁 ∣], ∀𝑘 ∈ 𝑁 (2.6)

𝑝𝑚 = Σ𝑘∈𝑁𝑊 (𝑘)𝜑𝑘 ⋅ 𝑝𝑘
Σ𝑘∈𝑁𝑊 (𝑘)𝜑𝑘

(2.7)

where 𝑈[𝑚𝑖𝑛, 𝑚𝑎𝑥] is a function that returns a vector whose positions are randomly gener-

ated following the uniform distribution between 𝑚𝑖𝑛 and 𝑚𝑎𝑥, 𝑁 is the set of neighbors of

the particle and 𝜑𝑘 are parameters called acceleration coefficients.

In equation (2.7), 𝑝𝑘 is the best position found by individual 𝑘. The function 𝑊 may

describe any aspect of the particle that is hypothesized to be relevant [63]. For instance, we

use the fitness of the best position found by the particle, and the distance from that particle to

the current individual, or have return a constant value. We note that the individual does not

influence itself in this version. Other models of influence, such as choosing informer from
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the neighbors at random [45] or with a a probability proportional to their "attractiveness"

have also been proposed in [63].

2.3.2 Bare Bones Particle Swarms Optimization (BBPSO)

The Bare Bones Particle Swarms Optimization (BBPSO) [45] is a version of the particle

swarm optimization algorithm in which the velocity and position update rules are substituted

by a procedure that samples a parametric probability density function. References [43], [47]

and [16] suggest that a particle's trajectory can be described as a cyclic path centred around

a randomly weighted mean of the individual's 𝑝𝑖 and the best neighbor's previous best points

𝑝𝑔 on each dimension. In the bare-bones particle swarm optimization algorithm, a particle's

position update rule as follows:

𝑥𝑖 = 𝑁(
𝑝𝑖 + 𝑝𝑔

2 , ∣ 𝑝𝑖 − 𝑝𝑔 ∣) (2.8)

where 𝑁(𝜇, 𝜎) represents a number drawn from a normal distribution with mean 𝜇 ((𝑝𝑖 +

𝑝𝑔)/2) and standard deviation 𝜎 (∣ 𝑝𝑖 − 𝑝𝑔 ∣). Note that the barebones PSO facilitates initial

exploration, due to large deviations (initially, personal best positions will be far from the in-

former's best position). As the number of iterations increases, the deviation approaches zero,

focussing on exploitation of the average of the personal best and the informer's best posi-

tions. Thus, Kennedy modified the barebones equation to improve its exploration abilities.

The new update rule is:

𝑥𝑖 =
⎧
⎪
⎨
⎪
⎩

𝑁(𝜇, 𝜎) if 𝑈(0, 1) < 0.5

𝑝𝑖 otherwise
(2.9)

where 𝑈(0, 1) is a function that generates uniformly distributed random numbers be-

tween zero and one. Based on the equation (2.9), there is a 50% chance that the particle 𝑥𝑖
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Fig. 2.2 Histogram of points sampled by BBPSO

changes to the corresponding personal best position. This version of BBPSO biases towards

exploiting personal best positions, referred to as BBExp [45].

Figure 2.2 shows a histogram of points that were randomly sampled from a normal dis-

tribution of BBPSO. Where 𝑝𝑖 and 𝑝𝑔 were held constant at 1.0 and −1.0 respectively. The

Fig.2.2 is a rough bell curve centred midway between the two previous best points and ex-

tending symmetrically beyond them. Figure 2.3 shows the positions of 200 particles on one

iteration that were randomly sampled by BBPSO in the solution space of a two-Dimensional

Ackley function. The versions of BBPSO differed in how 𝑔 was defined: 𝑔𝑏𝑒𝑠𝑡, neighbor-

hood best, or random neighbor. The performance of the random-neighbor version is inter-

esting. Based on the experimental results in [45], the best-performing algorithm was the

modified barebones version where 𝑔 was a randomly selected neighbor.
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Fig. 2.3 Positions of particles sampled by BBPSO on Ackley function

2.3.3 Binary Particle Swarm Optimization (BBPSO)

Most particle swarm optimization algorithms are designed to search in continuous domains.

However, there are a number of variants that operate in discrete spaces. The first variant

proposed for discrete domains was the binary particle swarm optimization algorithm [46].

In the binary version, trajectories are changes in the probability that a coordinate will take

on a zero or one value. It means that a particle moves in a state space restricted to 0 and 1 on

each dimension 𝑑, where each 𝑣𝑖𝑑 represents the probability of bit 𝑥𝑖𝑑 taking the value 1. In

other words, if 𝑣𝑖𝑑 = 0.20, then there is a 20% chance that 𝑥𝑖𝑑 will be the value 1, and an 80%

chance it will be the value 0. In sum, the particle swarm formula remains unchanged, except

that now 𝑝𝑖 and 𝑥𝑖 are integers in 0, 1 and 𝑣𝑖, since it is a probability, must be constrained to

the interval [0.0, 1.0]. A logistic transformation 𝑆(𝑣𝑖𝑑) can be used to accomplish this last

modification. In [51], the sigmoid function used in the binary version is:

𝑆(𝑣𝑖𝑑) = 1
1 + 𝑒−𝑣𝑖𝑑

(2.10)
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Fig. 2.4 The standard logistic sigmoid curve

Also the equation (2.10) is used to update the velocity vector of the particle. And the

new position of the particle is obtained using the equation below [46]:

𝑥𝑖𝑑 =
⎧
⎪
⎨
⎪
⎩

1 if 𝑟𝑎𝑛𝑑() < 𝑆(𝑣𝑖𝑑)

0 otherwise
(2.11)

where 𝑟𝑎𝑛𝑑() is a quasirandom number selected from a uniform distribution in [0.0, 1.0].

In the present discrete version, it appears that with 𝑣𝑖𝑑 functioning as a probability thresh-

old, changes in 𝑣𝑖𝑑 might represent a change in first-order position itself. As 𝑆(𝑣𝑖𝑑) ap-

proaches zero, for instance, the position of the particle fixes more probably on the value 0,

with less chance of change. Trajectory in the current model is probabilistic, and velocity

on a single dimension is the probability that a bit will change. Thus even if 𝑣𝑖𝑑 should re-

main fixed, the position of the particle on that dimension remains dynamic as it flips polarity

with probability following from the value of 𝑣𝑖𝑑 . According to [46] and [51], the binary

PSO performs especially well on number of test problems. It also appears that the binary

particle swarm is extremely flexible and robust. The binary PSO can be used in variety of

applications, especially when the values of the search space are discrete like decision mak-
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ing, solving lot sizing problem [88], the travelling salesman problem [107], scheduling and

routing [71], [72].

2.4 Strength and Weakness

2.4.1 Strength

PSO is a population based and intelligent method, which is inspired by the emergent motion

of a flock of birds searching for food. In PSO, a population of potential solutions is evolved

through successive iterations. Compared to other optimization strategies, it can be easily

implemented and it is computationally inexpensive, since its memory and CPU speed re-

quirements are low [20]. Moreover, it does not require gradient information of the objective

function under consideration, but only its values, and it uses only primitive mathematical

operators. PSO has been proved to be an efficient method for many global optimization

problems and in some cases it does not suffer the difficulties encountered by other EC tech-

niques [21]. Since PSO algorithm has a number of desirable properties, including simplicity

of implementation, scalability in dimension, and good empirical performance, it has been

applied to solve many real-world problems, such as capacitor placement problem [69], short

term load forecasting [90], soft sensor [91], the voltage stability of the electric power distri-

bution systems [66], [24], the orbits of discrete chaotic dynamical systems towards desired

target region [58], and the permutation flow-shop sequencing problem [88].

2.4.2 Weakness

Perhaps the most common problem encountered by many Global Optimization (GO) meth-

ods, either deterministic or stochastic, when coping with the GO problem is the problem

of local minima. Especially in multimodal functions, the existence of many local minima

makes it quite difficult for most techniques to detect the global minimum. PSO, despite
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being an efficient method, also suffers from this problem. In order to avoid being stuck in

local optima in the convergence process, some improved PSO have been proposed, such as

crossover [11], orthogonal learning strategy [104], chaos [1], and elitist learning strategy

[103].

Among population-based algorithms, PSO also has difficulties in keeping balance be-

tween exploration and exploitation when solving complex multimodal problems. For in-

stance, all particles share its swarm's best experience (the global best) that can lead the par-

ticles to cluster around the global best. In case, if the global best is located near a local

minimum, escaping from local optimum becomes difficult and PSO suffers diversity loss

near the local minimum [79]. In order to address the exploration and exploitation trade-off

problem, some other improved PSO have been proposed. Liang proposed comprehensive

learning particle swarm Optimization (CLPSO) in which each particle learns from other

particles' best experiences for different dimensions via a comprehensive learning strategy

[56]. Efficient population utilization strategy for particle swarm optimization (EPUS-PSO)

was presented in [36]. In which population size is varied by a population manager according

to the status of the solution search. Meanwhile, heterogeneous particle swarm optimization

was proposed in [18], [26]. In heterogeneous PSO (HPSO) [26], the particles in heteroge-

neous swarms were allowed to follow different velocity and position updating rules from

a behavior pool, thereby having the ability to explore and exploit throughout the problem

search space.
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Chapter 3

Fitness Predator Optimization for

Multimodal Problems

A major problem with most of swarm intelligent algorithms in multimodal optimization is

Premature Convergence (PC), which results in significant performance loss and sub-optimal

solutions. To avoid premature convergence by maintaining diversity in the population, many

kinds of optimization algorithms are proposed. However, to the best of our knowledge, few

of the swarm intelligent techniques focus on the individual competition. The development

of individual competition plays an important role of the diversity conservation in the popu-

lation because it could increase individual independent consciousness and reduce the rapid

social collaboration process. In this chapter, a new algorithm, Fitness Predator Optimization

(FPO), is proposed based on the conceptions of predators to avoid premature convergence

for multimodal optimization problems.

3.1 Overview and Preliminaries

In contrast to the unimodal functions, multimodal functions have many local optima with

the number increasing exponentially with dimension. This makes them fairly difficult to
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convergence to the global minimum. It is suitable for benchmarking the global search abil-

ity and the local optima avoidance of an algorithm. In order to solve the multimodal, no-

linear, discontinuous and non-differentiable optimization problems, researchers have devel-

oped population-based algorithms such as Particle Swarm Optimization (PSO), [21], Ant

Colony Optimization (ACO) [19], Artificial Bee Colony (ABC) [41] and so on. To the Par-

ticle Swarm Optimization (PSO), all particles share its global best experience that can lead

the particles to cluster around the global best. In case, if the global best is located near a

local minimum, escaping from local optimum becomes difficult. Diversity declines rapidly

in the later iteration period, leaving the PSO algorithm with great difficulties of escaping

local optima. Consequently, the clustering particles with fitness stagnation further exacer-

bates the premature convergence situation. An accepted hypothesis is that maintenance of

high diversity is crucial for preventing premature convergence in multimodal optimization.

3.1.1 Predator-Prey Optimization (PPO)

Many kinds of optimization algorithms are proposed to improve the diversity of the pop-

ulation. Some of them are inspired by the social behavior of swarms, herds in nature. In

addition, the hunting and search behaviors of predator are implemented by more and more

researchers and proved to be an effective method. For example, the basic idea of Artificial

Fish-Swarm Algorithm (AFSA) [53] is to imitate fish behavior such as preying, swarm-

ing, following with local search of individual fish for reaching the global optimum. The

Grey Wolf Optimization (GWO) [64] algorithm mimics the leadership hierarchy and hunt-

ing mechanism of grey wolves in nature. Other related swarm intelligent algorithms, such as

Predator-Prey Optimization (PPO) [83] in 2006, Dolphin Partner Optimization (DPO) [80]

in 2009, Bat-inspired Algorithm (BA) [102] in 2010, Krill Herd (KH) [28] in 2012 are also

proposed to simulate group hunting behaviors.
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The most closely associated algorithm with our proposed method is the Predator-Prey

Optimization (PPO) [83]. It is a form of particle swarm optimization where new particles

called predators are introduced. The predator's objective is to pursue the best individual in

the swarm. The influence of the predator on any individual in the swarm is controlled by a

"fear" probability 𝑃𝑓 , which is the probability of a particle changing its velocity due to the

presence of the predator. That is, if all of the particles tend to move toward the best global

particle, a predator particle nearby will disturb these particles' flying velocities to expend the

search space. In PPO, the predator update equations are [83]:

⎧
⎪
⎨
⎪
⎩

𝑣𝑝(𝑡) = 𝜑4 ∗ (𝑥𝑔(𝑡 − 1) − 𝑥𝑝(𝑡 − 1))

𝑥𝑝(𝑡) = 𝑥𝑝(𝑡 − 1) + 𝑣𝑝(𝑡)
(3.1)

The 𝜑4 is a positive constant and 𝑥𝑔 is the present position of the best particle in the swarm.

The rule of predator influence on the velocity of prey is:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑣𝑖𝑗(𝑡) = 𝜛 ∗ 𝑣𝑖𝑗(𝑡 − 1) + 𝜑1𝑖𝑗 ∗ (𝑝𝑖𝑗 − 𝑥𝑖𝑗(𝑡 − 1))

+𝜑2𝑖𝑗 ∗ (𝑝𝑔𝑗 − 𝑥𝑖𝑗(𝑡 − 1)) + 𝜑3𝑖𝑗 ∗ 𝑎𝑒−𝑏𝑑

𝑥𝑖𝑗(𝑡) = 𝑥𝑖𝑗(𝑡 − 1) + 𝑣𝑖𝑗(𝑡)

(3.2)

The parameter 𝜛 is the linear decreasing weight, which decreases from 𝜛𝑚𝑎𝑥 to 𝜛𝑚𝑖𝑛 during

the iterations. 𝑣𝑖𝑗 represents a particle 𝑖's velocity in the dimension 𝑗. 𝜑1𝑖𝑗 , 𝜑2𝑖𝑗 and 𝜑3𝑖𝑗 are

positive constants. 𝑍(𝑥) is an exponential decreasing distance function defined as:

𝑍(𝑥) = 𝑎𝑒−𝑏𝑥 (3.3)

𝑎 represents the maximum amplitude of the predator effect over a prey and 𝑏 permits to

control the distance at which the effect is still significant. The experimental results show
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that the PPO has a better performance than the PSO in the multimodal functions, but only

by a very small margin. In addition, the parameters of the PPO were empirically defined,

which greatly influence the robust performance of the algorithm.

3.1.2 Solutions

Few of optimization algorithms focus on individual competition and independent self aware-

ness. The individual competition is more likely to reduce the rapid social collaboration

process and increase the ability of being out of the local optimum. This motivated our at-

tempt to present a new swarm intelligence algorithm, called Fitness Predator Optimization

(FPO). First of all, the individual competition is introduced in the FPO to maintain the diver-

sity of the population. Secondly, according to the survival skills of predators, four kinds of

searching rules are defined in the FPO. The most important principle is that only the compet-

itive, powerful positions selected as elites could achieve the limited opportunity to update.

The characteristic of the elite induces the communication among of the population, mak-

ing clustering of all the positions difficult. Meanwhile, the defined individual competition

strategy forces each elite try every means to aggressively occupy another elite's position,

which greatly stimulates the competition among the elite team, and strengthening the ability

of the elite to find the best global optimal solution. Eight well-known benchmark functions

are used to test the performance of FPO. These experimental results demonstrate the effec-

tiveness of the proposed FPO algorithm. The rest of this chapter is organized as follows. In

Section 3.2, basic concepts and the pseudocode of FPO is given, and a method for the param-

eters selection is presented to reinforce the convergent performance. Experiment results are

given in Section 3.3 to verify the efficiency of the FPO. Finally, some concluding remarks

are provided in Section 3.4.
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3.2 Proposal of Fitness Predator Optimization (FPO)

3.2.1 Basic Concept of FPO

The survival of the fittest is what Charles Darwin has called "natural selection", or the preser-

vation of favored races in the struggle for life. Pressure from Natural selection forces the

animals to develop highly optimized organs and skills to take advantage in the fight for food,

territory and mates. Some of the organs and skills can be further refined as optimization

algorithms, which are effective methods for inspiration to develop intelligent systems and

provide solutions to complicated problems. From the ecological viewpoint, the survival

abilities of predators can be summarized as four aspects [84]:

• Its power of locomotion

• Its power of perception

• Its power of survival

• Its aggressiveness and persistence

According to these survival skills of predators, four kinds of searching rules are defined in

the FPO.

• The better locomotion it has, the more possibility to move on next favorable locomo-

tion.

• The power of perception to find the best way to improve its position.

• The limited opportunities for positions, who access the most opportunities will be the

ultimate survivor.

• The territory intrusion is to take advantage of a companion's position information.
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All of the individuals in the FPO are defined as predators, the predator's purpose is to

find the global optimum (seen as prey) in the search space. Each individual is depicted only

by its position vector 𝑥, which determines the trajectory of the particle. Then an individual is

named as a "position" which comprises the population in FPO. If the position 𝑖 has a higher

value of fitness function, then 𝑖 has more power of locomotion. If the position 𝑖 does not

know what is the next best place, a sensible way is to dynamically adjust it according to its

own experience and its companions' experience. The definition of updated position is:

𝑛𝑒𝑤𝑥𝑖𝑗 = 𝑥𝑖𝑗 + (𝑟𝑎𝑛𝑑() − 0.5) ∗ 𝑐 ∗ 𝑤 ∗ (𝑥𝑘𝑗 − 𝑥𝑖𝑗) (3.4)

To the position 𝑖, 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑑) is a vector with 𝑑 dimensions. 𝑘 (𝑘 ≠ 𝑖) is a com-

panion of position 𝑖 randomly chosen from the population. 𝑛𝑒𝑤𝑥𝑖𝑗 is the updated position on

𝑗𝑡ℎ dimension. 𝑐 is a positive constant, 𝑤 is defined as inertia weight, first proposed by Y.Shi

and Eberhart [78] for PSO. A position with a better value of fitness function having a prior

possibility to update is called elite. It's worth noting that the elite is not the group's best one,

many positions could be the elites when they receive an update in the previous iteration.

It drastically reduced the possibility of all the particles moving toward the same position.

For all positions, there are only limited opportunities to update their place. For example, 𝜌

number of chances are released in each iteration, only the competitive position could get the

chance to update by (3.4). The remaining of positions keep the previous positions until they

get a chance to update. In the later stage of optimization, according to decreasing search

space, elites will try every means to aggressively occupy companion's territory until final

survival determines the best global optimal solution.

To summarize, in order to avoid premature convergence some new advantages are pre-

sented in FPO. First of all, all of the particles in the FPO are predators, the characteristic of

the predator is more inclined to competition instead of social collaboration. This competition

personality induces the communication among of the population, making clustering of all
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the positions difficult. Secondly, there are a number of positions composed of an elite team.

It also reduces the possibility of all the particles moving toward the same position. Finally,

only a limited number of chances are released in each iteration, which greatly stimulates the

competition among the elite team, strengthening the ability of the elite to find the best global

optimal solution.

3.2.2 Pseudocode of FPO

Having presented four basic principles, the main function of FPO is described as follows.

Algorithm 2 Main function of FPO
1: Initialize population 𝑝𝑜𝑝𝑠𝑖𝑧𝑒: 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 = 𝑛
2: Initialize chances 𝜌: 𝜌 = 0.5 ∗ 𝑛
3: Initialize 𝑥𝑖: 𝑥𝑖 = 𝑟𝑎𝑛𝑑() ∈ (𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥)
4: Repeat
5: 𝑠 = 0
6: while 𝑠 < 𝜌 do
7: for 𝑖 ∈ [1..𝑛] do
8: Calculate 𝑃𝑖 by equations (3.5), (3.6)
9: if 𝑟𝑎𝑛𝑑() < 𝑃𝑖 then

10: Put 𝑥𝑖 into an elite team
11: Update 𝑥𝑖 with territory intrusion
12: For each position use the elitism strategy
13: 𝑠 = 𝑠 + 1
14: if 𝑠 == 𝜌 then break
15: end if
16: end if
17: end for
18: end while
19: For the population use the elitism strategy
20: Until maximum iterations are attained

In algorithm 2, 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 denotes the population of particles, the amount of chances 𝜌

equals to half of the 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 on each iteration. The fitness function is defined as:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝑒𝑥𝑝(−𝛽𝑓(𝑥𝑖)) (3.5)
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The possibility of position 𝑖, 𝑃𝑖 is defined as:

𝑃𝑖 = 𝑟𝑎𝑛𝑑() ∗ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)
𝑛

∑
𝑖=1

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)
(3.6)

Where, 𝑥𝑖 denotes its current position, 𝑓(𝑥𝑖) denotes the value of function in the current

position. 𝛽 is the adjustment factor. If the value of 𝛽 decreases, the selection possibility of

the higher value of fitness function will be increased. In our experiments, 𝛽 is set to 2 for all

of the test benchmark functions. In (3.6), 𝑟𝑎𝑛𝑑() is a quasirandom number selected from a

uniform distribution in [0.0, 1.0]. It is important to add a random factor in this equation. By

this way, position 𝑖 with a less than ideal place still has an opportunity to move to a better

one in the preliminary search stage.

The territory intrusion function is shown in Algorithm 3.

Algorithm 3 Territory intrusion function
1: 𝑘 = 𝑐𝑒𝑖𝑙(𝑟𝑎𝑛𝑑() ∗ 𝑝𝑜𝑝𝑠𝑖𝑧𝑒)
2: 𝑗 = 𝑐𝑒𝑖𝑙(𝑟𝑎𝑛𝑑() ∗ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)
3: while 𝑘 == 𝑖 do
4: 𝑘 = 𝑐𝑒𝑖𝑙(𝑟𝑎𝑛𝑑() ∗ 𝑝𝑜𝑝𝑠𝑖𝑧𝑒)
5: end while
6: 𝜃 = 𝑟𝑎𝑛𝑑() − 0.5
7: 𝑛𝑒𝑤𝑥𝑖𝑗 = 𝑥𝑖𝑗 + 𝜃 ∗ 𝑐 ∗ 𝑤 ∗ (𝑥𝑘𝑗 − 𝑥𝑖𝑗)

Generally, 𝑐 ∈ [0, 2] and 𝑤 is linear regulated in the process of convergence. 𝑘, (𝑘 ≠ 𝑖)

is a companion of position 𝑖.

The elitism strategy of FPO is to reserve the best optimal position as shown in (3.7).

𝑓 ∗
𝑙+1 =

⎧
⎪
⎨
⎪
⎩

𝑓(𝑋) if 𝑓(𝑋) < 𝑓 ∗
𝑙

𝑓 ∗
𝑙 otherwise

(3.7)
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3.2 Proposal of Fitness Predator Optimization (FPO)

The 𝑓 ∗
𝑙 is the best optimal position fitness value after 𝑙 times comparison with other

positions, 𝑋 is the new position which will be compared with 𝑓 ∗
𝑙 in the (𝑙 + 1)𝑡ℎ time.

Algorithm 4 The elitism strategy function
𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑖𝑛 = 𝑚𝑖𝑛(𝑓(𝑥𝑖))
𝑛𝑒𝑤𝑥𝑖𝑗 = 𝑥𝑖𝑗 + 𝜃 ∗ 𝑐 ∗ 𝑤 ∗ (𝑥𝑘𝑗 − 𝑥𝑖𝑗)
𝑡𝑚𝑝 = 𝑚𝑖𝑛(𝑓(𝑛𝑒𝑤𝑥𝑖𝑗))
if 𝑡𝑚𝑝 < 𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑖𝑛 then

𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑖𝑛 = 𝑡𝑚𝑝
end if

3.2.3 A Method for Parameter Control

Yuhui Shi and Russell Eberhart [78] point out that it is a good idea for an optimization search

algorithm to possess more exploitation ability at the beginning in order to find a good seed

then have more exploration ability to narrow the search of the local area around the seed later.

In order to increase the opportunity of exploitation of good candidate regions for positions,

an inertia weight 𝜛 is proposed in FPO. Accordingly, we defined the inertia weight 𝜛 as a

decreasing function of time instead of a fixed constant [78].

𝜛(𝑡) = 𝑚 − (𝑚 − 𝑛) ∗ 𝑡
𝑡𝑚𝑎𝑥

(3.8)

where, 𝑡 is the current iteration, 𝑡𝑚𝑎𝑥 is the maximum number of iterations, and 𝜛 within the

range [𝑛, 𝑚]. In order to find a proper parameters setting, three widely known benchmark

functions (Rosenbrock, Rastrigin and Griewank) are used to the parameter setting experi-

ment. The FPO algorithm was run 50 times independent trials with a population size of 20

on each benchmark function. The collecting experimental results shown in the Table 3.1

are the averaged optimum solutions on 30 dimensions of each benchmark function with the

FPO algorithm in 1000 times generation (iteration). In this experiment, the parameter 𝑐 is

first fixed to 2 and the value of 𝜛 decreasing linearly within different ranges. Then 𝜛 is set
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Table 3.1 Experiment results for parameters setting in FPO

𝜛(𝑐 = 2) 1.2 → 0.6 0.9 → 0.4 0.6 → 0.2
Rosenbrock 8.50e+01 1.19e+02 6.45e+01
Rastrigin 1.99e-01 9.95e-01 1.99e+00
Griewank 7.42e-04 6.92e-06 5.08e-05
𝑐(𝜛 = 1) 2.5 2 1
Rosenbrock 1.58e+02 1.13e+02 1.05e+02
Rastrigin 7.59e-08 2.71e-07 1.83e+00
Griewank 4.48e-09 1.80e-09 7.60e-04

to 1 and 𝑐 are fixed at constants which are shown in Table 3.1. From Table 3.1, it can be

observed that the FPO generated the better performance on three functions when the value

of 𝑐 was fixed at 2 and 𝜛 was varying from 1.2 to 0.6. In the next experiment section, 𝜛 is

fixed from 1.2 to 0.4 and 𝑐 = 2 for all of test benchmark problems. However, it must be said

that the given method of parameter selection is a trial.

3.3 Experiments

In this section, we will perform a set of experiments conducted on the eight well-known

benchmark functions used as performance test problems for all of experimental optimization

algorithms. In order to verify the performance of FPO, it has been compared with a number

of the state-of-the-art algorithms. The compared algorithms include Simple Genetic Algo-

rithm(SGA) [29], Standard Particle Swarm Optimization (SPSO), Quantum-behaved PSO

(QPSO) and Predator-Prey Optimization (PPO).

3.3.1 Evaluation Method

The test environment and experimental execution parameters are shown in Table 3.2 and

Table 3.3 respectively. In order to ensure convergence, the inertia weight 𝜛 in the range

[0.4, 0.9] are preferred in most cases of the SPSO algorithm [78]. The bounds and global

minimums for all benchmark functions can be found in Table 3.4. All swarms were randomly
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Table 3.2 Evaluation test environment

OS Windows 7
Processor Intel(R) 𝐶𝑜𝑟𝑒𝑇 𝑀 i7 CPU 2.80GHz
Memory (RAM) 8.00GB
System type 64-bit operation system
Tool MATLAB 7.10.0

Table 3.3 Experimental execution parameters

Experiment Algorithm Parameters
Experiment A SPSO 𝑐1 = 𝑐2 = 2, 𝜛 ∈ [0.4, 0.9]
Population=20 PPO 𝜑1 = 𝜑2 = 2, 𝜑3 = 1, 𝜑4 = 0.1
Run Nummber=200 𝑎 ∈ [0.1𝑋𝑚𝑎𝑥, 2𝑋𝑚𝑎𝑥]

𝑏 = 10.0/𝑋𝑚𝑎𝑥, 𝑃𝑓 ∈ [0.001, 0.06]
FPO 𝐶 = 𝛽 = 2, 𝜛 ∈ [0.4, 0.9]

Experiment B SPSO 𝑐1 = 𝑐2 = 2, 𝜛 ∈ [0.4, 1.2]
Population=100 SGA 𝑐𝑟𝑜𝑠𝑠 = 0.8, 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 0.1
Run Nummber=50 QPSO 𝛽 ∈ [0.5, 1]

FPO 𝑐 = 𝛽 = 2, 𝜛 ∈ [0.4, 1.2]

initialized in an area equal to the feasible search space in every dimension. In experiment A,

four multimodal benchmark functions are used to test the performance of FPO compared with

PSO and PPO. In experiment B, four fixed-dimension multimodal optimization problems are

selected to make a comparison of the convergence rate between FPO, SGA, SPSO and QPSO

algorithms.

3.3.2 Experiment on Multimodal Problems

In experiment A, four typical multimodal benchmark functions are used to test the perfor-

mance of FPO comparing with SPSO and PPO. Each algorithm was run on an array of

common benchmarks, shown in Table 3.4, for 1000, 1500 and 2000 evaluations per func-

tion. Performance was measured as the minimum error ∣ 𝑓 (𝑥) − 𝑓 ∗(𝑥) ∣ found over the

trial, where 𝑓 ∗(𝑥) is the optimum fitness for the problem. Results were averaged over 200

independent trials, and are displayed in Table 3.5 and Table 3.6. The data of SPSO column

and the PPO column are adopted from [83]. The FPO algorithm was run 200 times with a
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Table 3.4 Bounds and global optimums of benchmark functions

Function Bound Optimum

Rosenbrock: 𝑓1(𝑥) =
𝐷
∑
𝑗=1

(100 ∗ (𝑥𝑗+1 − 𝑥2
𝑗 )2 + (𝑥𝑗 − 1)2) [−100, 100]𝐷 0

Rastrigin: 𝑓2(𝑥) =
𝐷
∑
𝑗=1

(𝑥2
𝑗 − 10 ∗ cos(2𝜋𝑥𝑗)) + 10 ∗ 𝐷 [−5.12, 5.12]𝐷 0

Griewank: 𝑓3(𝑥) = 1
4000

𝐷
∑
𝑗=1

𝑥2
𝑗 −

𝐷
∏
𝑗=1

cos(
𝑥𝑗

√𝑗
) + 1 [−5, 10]𝐷 0

Ackley: 𝑓4(𝑥) = −𝑎 ∗ exp(−0.02 ∗ (𝐷−1
𝐷−1
∑
𝑖=1

𝑥2
𝑖 )

1
2 ) [−15, 30]𝐷 0

− exp(𝐷−1
𝐷
∑
𝑗=1

cos(2𝜋𝑥𝑗)) + 𝑎 + exp, 𝑎 = 20

Michalewicz: 𝑓5(𝑥) = −
𝐷
∑
𝑗=1

𝑠𝑖𝑛(𝑥𝑗)[𝑠𝑖𝑛(
𝑗 ⋅ 𝑥2

𝑗

𝜋 )]20 [0, 𝜋]2 −1.8013

Levy: 𝑓6(𝑥) =
𝐷−1
∑
𝑗=1

(𝜛𝑗 − 1)2[1 + 10𝑠𝑖𝑛2(𝜋𝜛𝑗 + 1)] [−10, 10]30

+𝑠𝑖𝑛2(𝜋𝜛1) + (𝜛𝐷 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝜛𝐷)] 0

𝜛𝑗 = 1 +
𝑥𝑗 − 1

4
Branin: 𝑓7(𝑥) = 𝑎(𝑥2 − 𝑏𝑥2

1 + 𝑐𝑥1 − 6)2

+𝑔(1 − ℎ) cos(𝑥1) + 10, 𝑎 = 1 𝑥1 ∈ [−5, 10] 0.397887
𝑏 = 1.25𝜋−2, 𝑐 = 5𝜋−1, 𝑔 = 10, ℎ = 0.125𝜋−1 𝑥2 ∈ [0, 15]

Shekel: 𝑓8(𝑥) = −
𝑚
∑
𝑖=1

(
4

∑
𝑘=1

(𝑥𝑘 − 𝐶𝑘𝑖)2 + 𝛽𝑖)−1 [0, 10]10 −10.5364

𝑚 = 10, 𝛽 = 1
10(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)𝑇

𝐶 =
⎛
⎜
⎜
⎜
⎝

4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3

⎞
⎟
⎟
⎟
⎠

Note: D represents the dimension of benchmark function.
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Table 3.5 Experiment A: Statistical results on various dimensions of functions: 𝑓1 − 𝑓2

Fun. Dim. Iter. Algorithm Mean Std.

𝑓1 10 1000
SPSO 1.19e+02 3.40e+01
PPO 3.97e+01 1.36e+01
FPO 1.66e+01↓ 3.18e+01

𝑓1 20 1500
SPSO 1.85e+02 4.35e+01
PPO 6.75e+01 1.50e+01
FPO 2.64e+01↓ 4.57e+01

𝑓1 30 2000
SPSO 2.41e+02 5.27e+01
PPO 1.64e+02 3.77e+01
FPO 7.15e+01↓ 7.72e+01

𝑓2 10 1000
SPSO 5.27e+00 3.71e-01
PPO 2.39e-01 7.61e-02
FPO 0.00e+00↓ 0.00e+00

𝑓2 20 1500
SPSO 2.32e+01 1.01e+00
PPO 3.09e+00 3.90e-01
FPO 1.03e-13↓ 7.27e-13

𝑓2 30 2000
SPSO 4.86e+01 1.73e+00
PPO 1.07e+01 9.31e-01
FPO 3.27e-13↓ 1.31e-12

Note: The result marked with down arrow denotes that it is the best average minimum error
compared with others.

population size of 20 on each benchmark function. The statistical results including average

minimum error and standard deviation are reported in Table 3.5 and Table 3.6.

It is worth noting that function 𝑓2 (Rastrigin function) is a typical example of non-linear

multimodal function used as a performance test problem for optimization algorithms. Find-

ing the minimum of this function is a fairly difficult problem due to its large search space and

its large number of local minima. From Table 3.5, it can be seen that FPO demonstrates the

superior performance compared with SPSO and PPO. According to Table 3.5, the statistical

result of the FPO on 𝑓2 with 10 dimensions and 1000 iterations shows that FPO is able to

escape the trap of the suboptimal values and to find the global minimum at 𝑓2(𝑥∗) = 0 where

𝑥∗ = 0.

The left part of Fig.3.1 illustrates the 2-dimensional image of Rastrigin function. The

right part shows the convergence curve of FPO on Rastrigin function with 10 dimensions
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Fig. 3.1 Convergence curve of FPO on 10 dimensions of 𝑓2 with 1000 iterations

and 1000 iterations. When the iterations over to 600, the convergence curve is suspended

because the FPO has already found the global minimum 𝑥∗ = 0.

Figure 3.2 shows the trajectory of the individual in FPO on 2-dimensional Rastrigin

function. In the first iteration, all individuals are scattered in the search space. When the

iterations equals to 50, most of particles gradually gathered around the global minimum

𝑥∗ = 0. In the 120th iteration, FPO converge to the global optimum 𝑓2(𝑥∗) = 0 where

𝑥∗ = 0. Figure 3.2 not only shows that FPO has superior performance on 𝑓2 but also reveals

that FPO might has a good speed of convergence rate.

The experiment results from 𝑓1 to 𝑓4 proved that FPO could find better global values than

SPSO and PPO. The excellent global optimizing ability of FPO also reveals that it might have

a good convergence rate compared with other population-based algorithms.

3.3.3 Experiment on Fixed-dimension Problems

In experiment B, four multimodal problems are selected to make a comparison of the con-

vergence rate between FPO and GA, SPSO and QPSO. Table 3.7 and Table 3.8 shows the

statistical results including the minimum error and the average of minimum error for each
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Fig. 3.2 The trajectory of the position of FPO on 2-dimensional Rastrigin function

Table 3.6 Experiment A: Statistical results on various dimensions of functions: 𝑓3 − 𝑓4

Fun. Dim. Iter. Algorithm Mean Std.

𝑓3 10 1000
SPSO 9.82e-02 6.70e-03
PPO 6.43e-02 4.30e-03
FPO 1.20e-02↓ 1.01e-02

𝑓3 20 1500
SPSO 2.84e-02 3.90e-03
PPO 2.19e-02 3.00e-03
FPO 3.25e-15↓ 1.00e-14

𝑓3 30 2000
SPSO 1.59e-02 2.50e-03
PPO 1.33e-02 3.00e-03
FPO 6.44e-16↓ 1.80e-15

𝑓4 10 1000
SPSO 2.56e-11 6.03e-12
PPO 7.83e-08 1.24e-08
FPO 8.35e-15↓ 2.18e-15

𝑓4 20 1500
SPSO 8.20e-03 1.61e-02
PPO 1.84e-06 2.69e-07
FPO 8.99e-14↓ 7.63e-14

𝑓4 30 2000
SPSO 2.11e-01 7.03e-02
PPO 1.25e-05 1.71e-06
FPO 1.12e-12↓ 8.25e-13

Note: The result marked with down arrow denotes that it is the best average minimum error
compared with others.
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Table 3.7 Experiment B: Statistical results of fixed dimensions of functions: 𝑓5 − 𝑓6

Fun. Dim. Iter. Algorithm Best Mean

𝑓5 2 20
SGA 0.00e-00 3.40e-03
SPSO 3.00e-04 2.90e-03
QPSO 0.00e-00 3.00e-04
FPO 0.00e-00 1.00e-04↓

𝑓5 2 50
SGA 0.00e-00 2.60e-03
SPSO 0.00e-00 0.00e-00
QPSO 0.00e-00 0.00e-00
FPO 0.00e-00 0.00e-00

𝑓5 2 100
SGA 0.00e-00 2.60e-03
SPSO 0.00e-00 0.00e-00
QPSO 0.00e-00 0.00e-00
FPO 0.00e-00 0.00e-00

𝑓6 30 20
SGA 5.72e+01 8.62e+01
SPSO 4.20e+01 6.49e+01
QPSO 3.72e+00 5.77e+00
FPO 2.62e-02↓ 8.30e-02↓

𝑓6 30 50
SGA 1.44e+01 3.04e+01
SPSO 1.13e+01 2.16e+01
QPSO 6.52e-01 1.28e+00
FPO 2.50e-03↓ 6.70e-03↓

𝑓6 30 100
SGA 6.08e+00 1.63e+01
SPSO 1.35e+00 3.76e+00
QPSO 2.20e-03 1.43e-01
FPO 3.00e-04↓ 9.77e-04↓

Note: The result marked with down arrow denotes that it is the best minimum error or the best
of average minimum error compared with others.

benchmark function with 20, 50 and 100 times iteration. All algorithms were run 50 times

with a population size of 100 on each benchmark function.

3.3.4 Discussion

According to the results of experiment A, it is easy to see that FPO shows its particular

global search ability on multimodal benchmark problems compared with SPSO and PPO.

The results of experimentation on 𝑓2 (Rastrigin function) are worth noticing. This function

is a fairly difficult problem due to its large search space and its large number of local min-
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Table 3.8 Experiment B: Statistical results of fixed dimensions of functions: 𝑓7 − 𝑓8

Fun. Dim. Iter. Algorithm Best Mean

𝑓7 2 20
SGA 0.00e+00 4.19e-02
SPSO 1.00e-04 1.77e-02
QPSO 0.00e+00 0.00e+00↓
FPO 0.00e+00 5.00e-04

𝑓7 2 50
SGA 0.00e+00 3.07e-02
SPSO 0.00e+00 0.00e+00
QPSO 0.00e+00 0.00e+00
FPO 0.00e+00 0.00e+00

𝑓7 2 100
SGA 0.00e+00 2.96e-02
SPSO 0.00e+00 0.00e+00
QPSO 0.00e+00 0.00e+00
FPO 0.00e+00 0.00e+00

𝑓8 10 20
SGA 7.13e+00 8.36e+00
SPSO 1.09e+00 6.11e+00
QPSO 1.521e-01 4.51e+00↓
FPO 2.09e-02↓ 6.67e+00

𝑓8 10 50
SGA 7.01e+00 8.08e+00
SPSO 5.00e-04 3.04e+00
QPSO 0.00e+00↓ 3.55e+00
FPO 7.50e-03 2.94e+00↓

𝑓8 10 100
SGA 6.98e+00 8.07e+00
SPSO 0.00e+00↓ 2.65e+00
QPSO 0.00e+00↓ 3.36e+00
FPO 8.36e-04 1.83e+00↓

Note: The result marked with down arrow denotes that it is the best minimum error or the best
of average minimum error compared with others.
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ima. The results of the FPO in Rastrigin function with 10 dimensions and 1000 iterations

shows that the FPO is able to escape the trap of the suboptimal values and to find the global

minimum. The results of the FPO from 𝑓5 to 𝑓8 proved that FPO could find the best global

optimum within 20 iterations. According to the results of Table 3.5, Table 3.6, Table 3.7

and 3.8, the FPO has superior performance in terms of exploiting the global optimum. This

is due to the proposed four principles previously discussed. The higher convergence rate of

FPO demonstrates that it has a good balance between exploitation and exploration that re-

sults in high local optima in avoidance. This superior capability is due to the adaptive inertia

weight 𝑤 in the position updated formula of FPO. The adaptive method of parameter control

may lead to a more efficient algorithm and our future work is focusing on this problem.

3.4 Summary

In this chapter, a new algorithm, Fitness Predator Optimization (FPO), is proposed for mul-

timodal problems based on the concept of predator. Pressure from natural selection forces

the predators to develop highly optimized organs and skills to take advantage in the fight for

food, territory and mates. Some of the organs and skills can be further refined as optimiza-

tion algorithms, which are effective methods for inspiration to develop intelligent systems

and provide solutions for complicated problems. In FPO, the survival abilities of preda-

tors are refined as four kinds of researching rules, which are ideal methods for inspiration

to provide solutions to multimodal problems. In an FPO system, all of the individuals are

seen as predators. Each of the individuals is depicted only by its position. Then the indi-

vidual is named as a "position" in FPO. Only the competitive, powerful positions selected

as elites could achieve the limited opportunities to update. It is worth noting that the elite

is not the swarm's best one, many positions could be the elites when they receive an update

in the previous iteration. It drastically reduced the possibility of all the particles moving

toward the same position. This provides the FPO with individual competition characteristic,
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which is more likely to reduce the rapid social collaboration process and increase the abil-

ity of being out of the local optimum. Furthermore, only a limited number of chances are

released in each iteration, which greatly stimulates the competition among the elite team,

strengthening the ability of the elite to find the better place. Finally, in the later stage of op-

timization, according to decreasing search space, elites will try every means to aggressively

occupy the companion's territory until final survival determines the best global optimal so-

lution. Eight well-known benchmark functions are used to test the performance of FPO.

Four typical multimodal benchmark functions are used to test the global search ability of

FPO and four fixed-dimension multimodal optimization problems are selected to make a

comparison of the convergence rate between four well-known algorithms. The experimen-

tal results show that the FPO algorithm is able to provide appropriate exploitation, utilizing

local minima avoidance and exploration simultaneously.
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Chapter 4

A New Hybrid Fuzzy Clustering

Algorithm for Multivariate Data

Fuzzy c-means (FCM) is the most common fuzzy clustering model that uses an objective

function to measure the desirability of partitions. The objective function of the FCM is the

multimodal function which means that it may contain many local minima. Consequently,

while minimizing the objective function, there is the possibility of getting stuck in local

minima or saddle points. To avoid this problem, a new hybrid fuzzy clustering algorithm

incorporated the Fitness Predator Optimization (FPO) is proposed in this chapter. In addi-

tion, the performance of FCM depends on the initialization of the cluster centroids. The

number of clusters needs to be specified in advance. When the number of clusters is fixed

to 𝑘, Fuzzy c-means clustering gives a formal definition as an optimization problem: find

the 𝑘 number of cluster centroids and assign the objects to the most probability of cluster

centroid. However, the 𝑘 is hard to be clearly and easily confirmed in a practical application.

To determine the best number of classes, the mixed pseudo F statistic method is introduced

in this chapter according to the theory of difference analysis. Consequently, the FPO-FCM

algorithm with mixed pseudo F index is proposed in this chapter which automatically deter-
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mines the number of classes, provides the promising optimal solution and the local minima

avoidance for the clustering problem.

4.1 Overview and Preliminaries

The most common popular data mining techniques discussed are clustering and classifica-

tion. The clustering aims at identifying and extracting significant groups in the underlying

data, which is an unsupervised learning method. In the field of clustering, Fuzzy c-means

(FCM) is one of the most popular algorithms.

4.1.1 Fuzzy c-means Clustering Algorithm

There are three main types of fuzzy clustering − fuzzy clustering based on fuzzy relation,

fuzzy clustering based on objective function and fuzzy generalized k-nearest neighbour rule.

The fuzzy clustering based on objective function is the most popular one, because it is quite

facile, and allows the most precise formulation of the clustering criteria. The most popular

version is the Bezdek's FCM model [5],[6] with the generalized objective function.

𝐽𝑚(𝑈, 𝑉 ) =
𝑐

∑
𝑖=1

𝑛

∑
𝑘=1

(𝑢𝑖𝑘)𝑚 ∣ 𝑥𝑘 − 𝑣𝑖 ∣2 (4.1)

Where 𝑚 (𝑚 > 1) is a scalar for the weighting exponent and controls the fuzziness of the

resulting clusters. The FCM model partitions a data set 𝑋 = {𝑥1, ..., 𝑥𝑛} into 𝑐 (1 < 𝑐 < 𝑛)

number of fuzzy clusters with 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑐} cluster centroids by a partition matrix

𝑈 . The matrix 𝑈 shows the fuzzy relation from set of data objects, which is expressed as

follows:

𝑈 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑢11 ⋯ 𝑢1𝑛

⋯ 𝑢𝑖𝑗 ⋯

𝑢𝑐1 ⋯ 𝑢𝑐𝑛

⎤
⎥
⎥
⎥
⎥
⎦

(4.2)
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In which 𝑢𝑖𝑗 is the membership function of the 𝑗𝑡ℎ data object with the 𝑖𝑡ℎ cluster within

the constraints of 𝑢𝑖𝑗 ∈ [0, 1] and
𝑐

∑
𝑖=1

𝑢𝑖𝑗 = 1. Clustering partitions a data set into subsets

by finding the maximum membership grade 𝑢𝑖𝑗 of data object 𝑥𝑖 belonging to the cluster 𝑗.

This model aims to minimize the following objective function with respect to each fuzzy

membership grade 𝑢𝑖𝑗 and each cluster centroid 𝑣𝑖. In most of cases, the distance between

𝑥𝑘 and 𝑣𝑖 is assigned with the Euclidean norm and the fuzzifier 𝑚 = 2. A popular method to

optimize the FCM model is Alternating Optimization (AO) through the necessary conditions

extrema of 𝐽𝑚(𝑈, 𝑉 ):

𝑢𝑖𝑘 = 1
𝑐

∑
𝑗=1

( ∣ 𝑣𝑖 − 𝑥𝑘 ∣
∣ 𝑣𝑗 − 𝑥𝑘 ∣ )

2/(𝑚−1)

(4.3)

𝑣𝑖 =

𝑛
∑
𝑘=1

𝑢𝑚
𝑖𝑘𝑥𝑘

𝑛
∑
𝑘=1

𝑢𝑚
𝑖𝑘

(4.4)

The reformulated version of 𝐽𝑚(𝑈, 𝑉 ) [32] is obtained by inserting (4.3) into (4.1).

𝐽𝑚(𝑉 , 𝑋) =
𝑐

∑
𝑖=1

𝑛

∑
𝑘=1

∣ 𝑣𝑖 − 𝑥𝑘 ∣2
𝑐

∑
𝑗=1

( ∣ 𝑣𝑖 − 𝑥𝑘 ∣
∣ 𝑣𝑗 − 𝑥𝑘 ∣ )

2𝑚/(𝑚−1)

(4.5)

In this chapter we consider a widely used FCM model with cluster center prototype. Then

FCM-AO-V is described in Algorithm 5.

Figure 4.1 shows 𝐽𝑚(𝑉 , 𝑋) in 3-dimensional graph with two clustering centroids 𝑣1 ∈

[−1, 1] and 𝑣2 ∈ [−1, 1]. The reformulated function can be visualized for the trivial data

set 𝑋 = {𝑥1, ..., 𝑥100}, 𝑥𝑖 ∈ [−5, 5] with the parameters 𝑚 = 2, 𝑐 = 2. It also shows that

the objective function 𝐽𝑚(𝑉 , 𝑋) is a non-linear multimodal function with a number of local

minima. Obviously, the alternating optimization or gradient based methods might get stuck

in these local extrema.
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Algorithm 5 FCM-AO-V
1: Initialize data: 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛}
2: Initialize the clustering centroids 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑐}
3: Initialize the maximum iterations 𝑡𝑚𝑎𝑥
4: while 𝑡 ≤ 𝑡𝑚𝑎𝑥 do
5: Generate the partition matrix 𝑢𝑖𝑗 by (4.3)
6: Generate the new clustering center 𝑣𝑖 by (4.4)
7: end while
8: Output 𝑈, 𝑉
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Fig. 4.1 Reformulated objective function 𝐽𝑚(𝑉 , 𝑋)
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In order to avoid local minima of the FCM algorithm, various computing techniques such

as artificial neural networks [70] [50], hybrid fuzzy time series approach [22], genetic algo-

rithms and PSO-based fuzzy clustering algorithms [30] have been used in FCM recently.

Some researchers adopt the stochastic methods such as evolutionary or swarm-based meth-

ods to increase the global convergence ability of fuzzy clustering. In [59], authors used a

Fuzzy c-means algorithm based on Picard iteration and PSO (PPSO-FCM) to improve the

performance of FCM. In [95], a hybrid data clustering algorithm based on PSO and KHM is

proposed, which makes full use of the merits of PSO and KHM. The QPSO algorithm pro-

posed by [86] outperforms traditional PSO in search ability as well as having less parameter

to control. Then, [92] proposed a new hybrid fuzzy clustering algorithm that incorporates

the Quantum-behaved PSO into the FCM model.

4.1.2 Fuzzy Clustering with Quantum-based PSO

In the hybrid fuzzy clustering algorithm QPSO-FCM, a particle represents a set of clustering

center. The objective function 𝐽𝑚(𝑉 , 𝑋) is defined as the particle's fitness function. The

pseudocode of QPSO-FCM can be summarized in Algorithm 6.

According to the experimental results compared with FCM, GA-FCM and PSO-FCM

[92], this hybrid fuzzy clustering (QPSO-FCM) can not guarantee to converge the global best

solution each time, but could find the nearly better solution. Similarly, a new optimization

technique named as IQPSO-FCM in [2] is a combination of FCM and improved QPSO to

drive the clustering efficiency in standard medical and non-medical data sets. However,

the diversity declines rapidly in the later iteration process, leaving the QPSO with great

difficulties of escaping local optima.

Furthermore, the number of clusters of QPSO-FCM needs to be specified in advance.

However, the number of cluster centroids is hard to be clearly confirmed in a practical appli-

cation. Some investigations have found that the Pseudo-F statistic method is a valid index
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Algorithm 6 QPSO-FCM
1: Initialize the population size 𝑀 and the parameters of QPSO: 𝛼, 𝜑, 𝜇
2: Normalize the sample data and the maximum iterative count 𝑡𝑚𝑎𝑥
3: Initialize the 𝑝𝑖 for each particle and the 𝑝𝑔 for the swarm
4: while 𝑡 ≤ 𝑡𝑚𝑎𝑥 do
5: Calculate fitness value of each particle using equation (4.5)
6: Calculate 𝑝𝑖 for each particle and 𝑝𝑔 for the swarm
7: Calculate the 𝑚𝑏𝑒𝑠𝑡 by

8: 𝑚𝑏𝑒𝑠𝑡 = 1
𝑀

𝑀
∑
𝑖=1

𝑝𝑖 = ( 1
𝑀

𝑀
∑
𝑖=1

𝑝𝑖1, ..., 1
𝑀

𝑀
∑
𝑖=1

𝑝𝑖𝑑)
9: Update the new particle using:

10: 𝑝𝑖𝑑 = 𝜑 ∗ 𝑝𝑖𝑑 + (1 − 𝜑) ∗ 𝑝𝑔𝑑

11: 𝑥𝑖𝑑 = 𝑝𝑖𝑑 ± 𝛼∗ ∣ 𝑚𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑 ∣ ∗𝑙𝑛( 1
𝜇 )

12: end while
13: Generate the partition matrix 𝑢𝑖𝑗 by equation (4.3)
14: Generate the final clusters with the partition matrix
15: output 𝑈, 𝑉 and 𝐽𝑚(𝑉 , 𝑋)

for cluster number analysis. Thus, the index of Pseudo-F can be applied to generate the

optimal number of cluster centroids.

4.1.3 Pseudo F Statistic Method

The Pseudo-F statistic method describes the ratio of between-cluster variance to within-

cluster variance [9]. between-cluster variance measures how separated clusters are from

each other. The between-cluster is calculated as:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝐵𝑐 =
𝑐

∑
𝑡=1

𝑛𝑡
∑
𝑖=1

𝑛𝑡(𝑣𝑡 − 𝑣)2

𝑣𝑡 = 1
𝑛𝑡

(𝑥𝑡
1 + 𝑥𝑡

2 + … + 𝑥𝑡
𝑛𝑡

)

𝑣 = 1
𝑛(𝑥1 + 𝑥2 + … + 𝑥𝑛)

(4.6)

Where 𝑐 is the number of clusters, 𝑛 is the number of observations, and 𝑛𝑡 is the number

of samples in the cluster 𝑡. 𝐵𝑐 is the between-cluster sum of squares, 𝑣𝑡 is the centroid of
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the cluster 𝑡, and 𝑣 is the centroid of the whole samples. The within-cluster variance just

measures how tight the clusters fit together. The within-cluster is shown as:

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑃𝑐 =
𝑐

∑
𝑡=1

𝑛𝑡
∑
𝑖=1

𝑛𝑡(𝑥𝑡
𝑖 − 𝑣𝑡)2

𝑣𝑡 = 1
𝑛𝑡

(𝑥𝑡
1 + 𝑥𝑡

2 + … + 𝑥𝑡
𝑛𝑡

)
(4.7)

Where 𝑃𝑐 is the within-cluster sum of squares. Then Pseudo-F statistic index is calculated

as:

𝑃 𝑠𝑒𝑢𝑑𝑜-𝐹 = 𝐵𝑐
𝑃𝑐

∗ 𝑛 − 𝑐
𝑐 − 1 (4.8)

If Pseudo-F is decreasing, it means either the within-cluster variance is increasing or the

between-cluster variance is decreasing (numerator). Larger number of the Pseudo-F usually

indicates a better clustering solution. For example, when Pseudo-F is used to evaluate the

number of clusters, the maximum value of Pseudo-F indicates that the current used number

of clusters may be the optimal class number. Generally, the Pseudo-F statistic method is fit

for the single dimensional data. However, to the multidimensional data, the evaluation result

is not as well as the single dimensional data. Then Mixed-F statistic method is adopted in

this chapter.

4.1.4 Solutions

In this chapter, an application of the proposed FPO is utilized in the field of fuzzy clustering.

In FCM model, the probability of finding the global optimum can be increased by FPO due

to its outstanding global searching ability. Thus a new hybrid fuzzy clustering algorithm

FPO-FCM [96] is proposed. Furthermore, a Mixed-F index is integrated into the FPO-FCM

to evaluate the effectiveness of cluster number analysis for the multidimensional data. Con-

sequently, the FPO-FCM algorithm with Mixed-F index could automatically determine the

optimal number of classes. Experimental results show that the proposed FPO-FCM with a
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Mixed-F index could satisfy the pre-selection of the number of the clusters and avoid local

minima for the clustering problems. The outline of this chapter is organized as follows. In

Section 4.2, a new hybrid fuzzy clustering algorithm based on the FPO (FPO-FCM) is pro-

posed at first. Secondly, the FPO-FCM is verified by five widely used data sets in the pattern

recognition literature. To determine the best number of clusters, FPO-FCM algorithm with

Mixed-F index is developed in Section 4.3. Finally, some concluding remarks are provided

in Section 4.4.

4.2 Fuzzy Clustering with Fitness Predator Optimization

4.2.1 Proposal of FPO-FCM Algorithm

In FPO-FCM, position 𝑥𝑖 is a vector with 𝑐 ∗ 𝑑 dimensions. It can be expressed as follows:

𝑥𝑖 = (𝑣11 ⋯ 𝑣1𝑑 ⋯ 𝑣𝑗1 ⋯ 𝑣𝑗𝑑 ⋯ 𝑣𝑐1 ⋯ 𝑣𝑐𝑑) = (𝑣1 ⋯ 𝑣𝑗 ⋯ 𝑣𝑐) (4.9)

Where 𝑐 is the number of cluster centroids. The cluster centroid 𝑣𝑗 is a vector with 𝑑

dimensions. There are 𝑃 number of particles 𝑥𝑖 (𝑖 ∈ [1..𝑃 ]) that composed a swarm. In

FPO-FCM, we need a function to evaluate the generalized solutions called fitness function.

In this chapter, equation (4.5) is used for the fitness function. The FPO-FCM algorithm can

be stated as Algorithm 7.

4.2.2 Experiments and Discussion

In this section, the performance of FPO-FCM is verified by five widely used data sets in the

pattern recognition literature.

52



4.2 Fuzzy Clustering with Fitness Predator Optimization

Algorithm 7 FPO-FCM
1: Initialize the swarm population 𝑃 , the number of clusters 𝑐
2: Normalize the data set within a range of [0.1, 0.9] on 𝑑 dimensions
3: Initialize each particle's position 𝑥𝑖: 𝑥𝑖 = 𝑟𝑎𝑛𝑑() ∈ (0.1, 0.9)
4: Get the clustering centroids 𝑉 : 𝑉 =reshape(𝑥𝑖, c, d)
5: Initialize the maximum iterative count 𝑡𝑚𝑎𝑥
6: Initialize the 𝑝𝑖 for each particle and the 𝑝𝑔 for the swarm
7: while 𝑡 ≤ 𝑡𝑚𝑎𝑥 do
8: if 𝑟𝑎𝑛𝑑() < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)

𝑛
∑
𝑖=1

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)
then

9: particle 𝑥𝑖 get a chance to update its position
10: for each particle do
11: Use the elitism strategy function
12: end for
13: end if
14: For all the population use the elitism strategy function
15: Update the 𝑝𝑖 and the 𝑝𝑔
16: end while
17: Get the final cluster centroids 𝑉 ∗: 𝑉 ∗ =reshape(𝑝𝑔, c, d )
18: Partition the data set with the final cluster centroids 𝑉 ∗

19: Output 𝑉 ∗ and the classified data set by 𝑉 ∗

Experimental Method

The FPO-FCM algorithm is compared with K-means, FCM and QPSO-FCM by five bench-

mark data sets that obtained from the UCI Machine Learning Repository. In Table 4.1, all

the data sets are multivariate data type. In particular, the Lung Cancer dataset (LC) described

3 types of pathological lung cancers. In the original data, five instances were missing some

feature values, as such only 27 vectors are collected as our experimental samples. These three

clusters are more likely to highly overlap [77], so finding the right class distribution is very

difficult. The class distribution reflects the number of cluster centroids and the number of

instances on each class. Generally, the intra-cluster distance (Intra-D) and the inter-cluster

distance (Inter-D) are used for clustering evaluation index.

𝐼𝑛𝑡𝑟𝑎-𝐷 = [
𝑐

∑
𝑖=1

∑
𝑘∈𝑐𝑖

∥ 𝑥𝑘 − 𝑣𝑖 ∥2]/𝑐 (4.10)
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Table 4.1 Description of benchmark data sets

Data Set Data Type Instances Dimension Class Distribution

Iris Multivariate 150 4 (50,50,50)

Wine Multivariate 178 13 (59,71,48)
Breast Cancer Multivariate 699 10 (458,241)Wisconsin (BCW)
Wisconsin Diagnostic Multivariate 569  32 (357,212) Breast Cancer (WDBC)
Lung Cancer (LC) Multivariate 27 56 (8,10,9)

𝐼𝑛𝑡𝑒𝑟-𝐷 = ∑
𝑖,𝑗∈𝑐𝑖

∥ 𝑣𝑖 − 𝑣𝑗 ∥ (4.11)

𝑄𝐸 =
𝑛

∑
𝑘=1

𝑐

∑
𝑖=1

(𝑢𝑖𝑘)𝑚𝑑2
𝑖𝑘(𝑥𝑘, 𝑣𝑖) (4.12)

When the value of Intra-D decreasing, it means that the data partition is more accurate.

When the value of Inter-D increasing, the data partition is more accurate as well. In this

chapter, Quantum Error (QE) which reflected the tightness of clustering is set as the objective

function 𝐽𝑚(𝑉 , 𝑋) of FCM.

In experiment A, four data sets (iris, wine, BCW and WDBC) are selected to evaluate

the performance of FPO-FCM compared with K-means, FCM and QPSO-FCM. Each hybrid

fuzzy swarm algorithm was run with 100 iterations and a population size of 30 on each data

set. The test environment and experimental execution parameters are shown in Table 4.2 and

Table 4.3 respectively.

In experiment B, a relatively high dimensionality data set, lung Cancer data, is selected

to evaluate the performance of FPO-FCM comparing with K-Means, FCM and QPSO-FCM.

The FPO-FCM and QPSO-FCM terminating condition are limited in 500 consecutive itera-
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Table 4.2 Evaluation test environment

OS Windows 7
Processor Intel(R) 𝐶𝑜𝑟𝑒𝑇 𝑀 i7 CPU 2.80GHz
Memory (RAM) 8.00GB
System type 64-bit operation system
Tool MATLAB 7.10.0

Table 4.3 Parameters Setting of experiment A

Experiment A Algorithm Parameters
Population=30 FCM m=2
Max iteration=100 QPSO-FCM m=2, 𝛼 ∈ [0.5, 1.0]
Run Number=50 FPO-FCM m=2, c=2, 𝜔 ∈ [0.2, 1.0]

tions and a population size of 30 for both of them. All the execution parameters in experiment

B are shown in Table 4.4.

Table 4.4 Parameters setting of experiment B

Experiment B Algorithm Parameters
Population=30 FCM m=2
Max iteration=500 QPSO-FCM m=2, 𝛼 ∈ [0.5, 1.0]
Run Number=30 FPO-FCM m=2, c=2, 𝜔 ∈ [0.2, 1.0]
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Experimental Results
Table 4.5 Experimental results of A

𝐷𝑎𝑡𝑎⋄ Alg. ED Intra-D Inter-D 𝑄𝐸 Acc.(%)

Iris

K-means (0,3,13) 0.4483 1.0942 1.2393* 89.33

FCM (0,7,6) 0.3742 1.0409 1.2701 91.33

QPSO-FCM (0,8,4) 0.0065 0.0112 1.1957 92.00

FPO-FCM (0,2,9) 0.0062 0.0122 1.1953 92.67

Wine

K-means (13,21,19) 0.0476 0.2383 0.1429* 70.22

FCM (13,20,23) 0.0570 0.1804 6.2100 68.54

QPSO-FCM (2,18,29) 0.0033 0.0117 5.6024 72.47

FPO-FCM (10,21,17) 0.0025 0.0150 5.5827 73.03

BCW

K-means (11,18) 275.67 0.9629 551.35* 95.85

FCM (14,4) 271.76 0.9212 258.05 97.42

QPSO-FCM (61,17) 335.87 0.2877 296.62 88.84

FPO-FCM (5,7) 266.29 1.1054 256.62 98.28

WDBC

K-means (83,0) 1.4610 0.1447 2.9219* 85.41

FCM (0,86) 1.7658 0.0897 1.9173 84.89

QPSO-FCM (0,77) 1.4462 0.1352 0.0018 86.47

FPO-FCM (87,0) 1.7720 0.1317 2.0719 84.71

⋄ Each data set is normalized within a range of [0.1, 0.9]
* Quantum Error of K-means algorithm is defined as: 𝑄𝐸 =

𝑐
∑
𝑖=1

𝑁𝑖
∑
𝑘=1

𝑑2
𝑖𝑘(𝑥𝑘, 𝑣𝑖)

* Where 𝑐 is the total number of clusters and 𝑁𝑖 is the count of data in each

cluster

Table 4.5 resumes the clustering results of FPO-FCM, K-means, FCM and part of results

of QPSO-FCM obtained from [92]. The statistical results include four kinds of clustering

evaluation indexes and the partition accuracy rate (Acc.). Error Distribution (ED) reflects
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the number of instances that were wrongly assigned to each class. Intra-D, Inter-D and QE

are used as clustering evaluation indexes for all the algorithms.

Table 4.6 resumes the lung cancer data's clustering results of K-means, FCM, QPSO-

FCM and FPO-FCM. Due to the highly overlapping character of clusters in lung cancer,

the clustering accuracy of all of the algorithms are dramatically decreased compared with

experiment A. However, the FPO-FCM has a higher clustering accuracy than the others.

The experimental results show that the proposed algorithm has a good robustness for the

high dimensional and overlapping clusters in data set.
Table 4.6 Experimental results of B

𝐷𝑎𝑡𝑎⋄ Alg. ED Intra-D Inter-D 𝑄𝐸 Acc.(%)

LC

K-means (2,7,4) 1.98e+01 3.09e+00 5.95e+01* 51.85

FCM (4,5,4) 2.36e+01 1.18e-11 1.33e+01 51.85

QPSO-FCM (3,4,6) 2.36e+01 1.59e+00 1.32e+01 51.85

FPO-FCM (4,3,2) 2.28e+01 9.59e-01 1.27e+01 66.67

⋄ The data set is normalized within [0.1, 0.9]
* Quantum Error of K-means algorithm is defined as: 𝑄𝐸 =

𝑐
∑
𝑖=1

𝑁𝑖
∑
𝑘=1

𝑑2
𝑖𝑘(𝑥𝑘, 𝑣𝑖)

* Where 𝑐 is the total number of clusters and 𝑁𝑖 is the count of data in each

cluster

Figure 4.2 shows the convergence curve of FCM with lung cancer data set. Obviously,

the FCM model is trapped into local minima and cannot improve the objective function

value after the fourth iteration. Figure 4.3 shows the convergence curves between FPO-

FCM and QPSO-FCM in lung cancer data set. Both of the algorithms constantly minimize

the objective function within 500 times of the iteration. Compared with QPSO-FCM, the

FPO-FCM has the better average global optimal solution during the iteration process.
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Discussion

According to the results of experiment A, it is easy to see that FPO-FCM shows its compet-

itive global search ability on the three benchmark data sets except WDBC. The best classi-

fication results of WDBC in experiment A is QPSO-FCM. We think that QPSO has better

global search ability for the clustering of space partition that resembles the shape of a com-

pletely round ball. Then QPSO-FCM demonstrates its superior performance to the WDBC

that with the similar space distribution. In experiment B, LC is a fairly difficult clustering

problem due to its high dimensionality and overlapping clusters. In table 4.6, the Intra-D

and Inter-D of K-means algorithm are better than the others. However, K-means does not

work well as we expected. One of reasons is that using euclidean norm as similarity cal-

culation formulation may not fit for the overlapping cluster such as lung cancer data set.

Despite the difficulty clustering problem of LC, FPO-FCM is still able to escape the trap of

the suboptimal solution and to find the global optimum.

4.3 FPO-FCM Algorithm with Mixed-F Index

4.3.1 The Mixed-F Statistic Method

To the multidimensional data, the reformulated Pseudo-F is depicted as following [94]:

𝐹 (𝑘) =

𝑐
∑
𝑖=1

𝑛𝑖(𝑣𝑖𝑘 − 𝑣𝑘)2 ⋅ (𝑛 − 𝑐)

𝑐
∑
𝑖=1

𝑛𝑗

∑
𝑗=1

(𝑥𝑖𝑗𝑘 − 𝑣𝑖𝑘)2 ⋅ (𝑐 − 1)
(4.13)

Where 𝑘 is the dimensionality of the data, 𝑛𝑖 is the number of samples in the cluster 𝑖.

𝑣𝑖𝑘 is the cluster center of 𝑘𝑡ℎ dimensional data in the cluster 𝑖. 𝑣𝑘 is the 𝑘𝑡ℎ dimensional

average cluster center data, 𝑥𝑖𝑗𝑘 is the 𝑘𝑡ℎ dimensional sample data (𝑥𝑗) in the cluster 𝑖. 𝑣𝑖𝑘 is

the 𝑘𝑡ℎ dimensional cluster center 𝑣𝑖. This 𝐹 (𝑘) statistic method follows the F-distribution
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with (𝑐 − 1, 𝑛 − 𝑐) degrees of freedom under the null hypothesis. In order to strengthen

on the impact of smaller 𝐹 (𝑘), a form of multiplicative inverse weighting is used for mixed

Pseudo-F . Then the mixed Pseudo-F is denoted as [94]:

𝑀𝑖𝑥𝑒𝑑-𝐹 =
𝑝

∑
𝑘=1

1
𝐹 (𝑘)

𝑝
∑
𝑘=1

1
𝐹 (𝑘)

⋅ 𝐹 (𝑘) = 𝑝
𝑝

∑
𝑘=1

1
𝐹 (𝑘)

(4.14)

where 𝑝 denotes the number of dimensions of the data. The 𝑀𝑖𝑥𝑒𝑑-𝐹 also follows the

F-distribution with (𝑐 − 1, 𝑛 − 𝑐) degrees of freedom.

4.3.2 The Flow Chart of FPO-FCM with Mixed-F method

Figure 4.4 illustrates the flow chart of FPO-FCM with validity index Mixed-F.

First of all, a range of cluster numbers is initialized in the first stage of FPO-FCM. The

position of particle 𝑥𝑖 represents a set of clustering centroids. The number of particles com-

posed a swarm of FPO-FCM. Limited number of chances is released in each iteration, only

the competitive particle could get the chance to update its position. When the maximum

iteration is reached, the final cluster centroids and the value of the fitness function are cal-

culated by the partition matrix 𝑈 . The value of Mixed-F is calculated based on the result of

the clustering partition. When the maximum classification number is reached, the maximum

value of Mixed-F indicates that the current used number of clusters is the optimal class num-

ber. In the next section, the performance of FPO-FCM with Mixed-F index is verified by

two non-medical data sets and three medical data sets from UCI machine learning repository

that widely used in the pattern recognition literature.
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Fig. 4.4 The flow chart of FPO-FCM with Mixed-F
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Table 4.7 Parameters setting of experiment

Algorithm Parameters
FCM 𝑚 = 2
FPO-FCM 𝑚 = 2, 𝑐 ∈ [2, 5]

𝑤 ∈ [0.2, 1.0], 𝑃 = 30, 𝑡𝑚𝑎𝑥 = 500

Table 4.8 Record of Mixed-F index of non-medical datasets

𝑁𝑜. clusters Mixed-F
Iris Wine

2 44.45 3.55 ↑
3 212.13 ↑ 3.11
4 143.40 0.52
5 72.26 0.33

4.3.3 Experiments and Discussion

Experimental Method

To test the performance of Mixed-F index, in experiment A, Iris flower data set and Wine

data set are used to compared with three well-known cluster validity indexes. In experiment

B, three medical data sets are used to evaluate the effect of the automated classification of

FPO-FCM and global optimization ability of clustering partition. All of the data sets are

shown in Table 4.1. In particular, Lung Cancer data set is a relatively high dimensionality

data than the others. The test environment and experimental execution parameters are shown

in Table 4.2 and Table 4.7 respectively.

Experiment of Non-medical Data Sets

The Iris flower data set and Wine data set are both multivariate data sets that classified 3

clusters. In this experiment, the FPO-FCM algorithm is used to choose an optimal number

of clusters for these two non-medical data sets with Mixed-F index. The range of cluster

numbers is from 2 to 5. The values of Mixed-F on different class numbers are presented in

Table 4.8 [81].
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Table 4.9 Comparison of the optimal number of clusters with four cluster indexes

m Index Iris Wine

2
𝑉𝑃 𝐸 2 2
𝑉𝑋𝐵 2 2
𝑉𝐹 𝑆 5 11
Mixed-F 3 2

Table 4.10 Record of Mixed-F index of medical datasets

𝑁𝑜. clusters Mixed-F
BCW WDBC LC

2 3.97 ↑ 2.81 ↑ 0.01
3 1.39 0.32 0.02 ↑
4 0.93 0.08 0.01
5 0.07 0.15 0

From Table 4.8, we could find that the maximum Mixed-F index is reached when the Iris

data set is classified with 3 clusters. Similarly, the maximumMixed-F index is obtained when

the Wine data set is divided into 2 clusters. To evaluate the experimental results of Mixed-F

index, three well known cluster validity indexes are compared: The Partition Entropy (PE)

index proposed by Bezdek, the 𝑉𝑋𝐵 index presented by Xie & Beni and the Fukuyama-

Sugeno (FS) index. Comparison results are provided in Table 4.9.

In Table 4.9, it is easy to find that Mixed-F has a higher accuracy compared with other

three cluster indexes.

Experiment of Medical Data Sets

In this experiment, three kinds of medical data sets are used to verify the automatically

optimal number of clusters prediction. The range of cluster numbers is from 2 to 5. The

values of Mixed-F on different class numbers are shown in Table 4.10.

From Table 4.10, we could find that the maximum Mixed-F is 3.97 when the BCW data

set is classified with 2 clusters. When the WDBC data set is divided into 2 clusters, Mixed-F

has the optimal value 2.81. For the Lung Cancer data set, when its number of clusters is 3,
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the Mixed-F has the maximum value 0.02. The optimal number of clusters for these three

medical data sets are completely satisfied with the real situation. Experimental results show

that the proposed approach could demonstrate the desirable performance of optimal number

of clusters prediction.

4.4 Summary

In this chapter, a cluster optimization methodology is proposed based on the Fitness Preda-

tor Optimization (FPO) algorithm. The proposed approach deals with the modified FPO

algorithm for fuzzy clustering optimization. In the proposed new hybrid fuzzy clustering al-

gorithm (FPO-FCM), the position of each particle represents a set of clustering centroids, a

number of particles composed of a swarm of FPO-FCM. The objective function 𝐽𝑚(𝑈, 𝑉 ) of

FCM is used for evaluating the generalized solutions. The experimentation is done with five

benchmark data sets covered examples of data from low and high dimensions. Compared

with traditional algorithms (K-means and FCM) and hybrid swarm algorithm (QPSO-FCM),

FPO-FCM has a higher robustness and better global optimization ability of clustering parti-

tion. In addition, a Mixed-F index is introduced based on the theory of difference analysis.

The proposed approach deals with the modified FPO-FCM algorithm for fuzzy clustering

optimization. The same benchmark data sets from the UCI Machine Learning Repository

are used to evaluate the introduced Mixed-F index. All of the experimental results show that

the FPO-FCM algorithm could satisfy the pre-selection of the number of clusters and avoid

the local optima for clustering problem simultaneously.
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Chapter 5

Dynamic Virtual Teams for Fitness

Predator Optimization

In chapter 3, Fitness Predator Optimization (FPO) is proposed to avoid premature conver-

gence for multimodal problems. The experimental results show that the FPO algorithm is

able to provide excellent exploitation, utilizing local minima avoidance and exploration si-

multaneously. However, the slow convergence speed in the early iterations and more elapsed

time of the whole optimization process become the bottleneck to restrict the improvement of

the FPO. This motivated our attempt to present new approaches to improve the performance

of FPO. In this chapter, two variants of FPO, namely, DFPO and DFPO-r are proposed. First

of all, a dynamic team model is utilized in FPO named DFPO to accelerate early convergence

rate. Secondly, a method of team size selection is proposed for DFPO-r to increase the pop-

ulation diversity. Ten well-known multimodal benchmark functions are used to evaluate the

solution capability of DFPO and DFPO-r. Experimental results show that both DFPO and

DFPO-r demonstrate the desirable performance. Furthermore, DFPO-r shows a more robust

performance compared with DFPO in experimental study.
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5.1 Overview and Preliminaries

Dynamic virtual team proposed by the Dolphin Partner Optimization (DPO) [80] mimics

the hunting mechanism of dolphins in nature. The performance of DPO with the virtual

team model is evaluated on several benchmark functions. Experiments show that it is able

to demonstrate the desirable global searching ability on multimodal functions. The basic

concepts of dynamic virtual team, the algorithm of a dynamic virtual team model and the

mechanism of Dolphin Partner Optimization (DPO) are primarily presented as follows.

5.1.1 Dynamic Virtual Team Model

The dynamic virtual team is first proposed by the Dolphin Partner Optimization (DPO) [80].

It mimics the hunting mechanism of dolphins in nature. During the hunting process, a dol-

phin will look for his neighbors and select some of them as his partners. All of his partners

and himself form a self-organizing team, which is defined as a dynamic virtual team. In a

swarm, each dolphin will do the same clustering behavior at the same time. Here are the

related definitions of the dynamic team.

Team: According to the nearest neighbor principle, one dolphin and some of his neigh-

bors are composed of a dynamic virtual team. It should be noted that one dolphin could

belong to multiple teams when teams are connected.

Role recognition: A dolphin evaluates himself by comparing the best fitness value with

other partners in his virtual team. Normally, the one that has the best fitness value will be

selected as the team leader. Each member of the team is recognized as either a leader or an

ordinary member.

Exchange: A dolphin provides his best experience information to the team. The team's

best experience could be concluded by the comparison of individual experience among team

members. Information expansion of individuals and teams experience is carried out by the

dolphin that belongs to multiple teams.
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Fig. 5.1 Diagram of dynamic virtual teams

Leader: The function of team leader dolphin is to analyze all communication informa-

tion and to predict the most available position for the next step.

Member: The function of the ordinary member is to follow up with the team leader.

The simple diagram of a virtual team is shown in Fig.5.1. The solid red circles are

team leader and the blank rings present ordinary team members. According to the nearest

neighbor rule, each individual dynamically select its 4 immediate neighbors as a team on

each iteration. The structure of this team is seemed as an appropriate circle topology. In

the circle topology, if two teams have the same members, they are interrelated and affect

with each other. Otherwise, they are distant from one another and also independent of one

another.

Generally, the leader marked with red color has the best fitness value among the team.

The main function of team leader is to analyse all communication information and to predict

the most available position for the further search. The star in purple is the future optimal

position that is obtained by one of team leaders from the exchanged information with inter-

related teams. The expansion of personal experience and team's experience is carried out

by some interrelated members between the teams. Another function of the ordinary team

member is to follow up with the team leader which belongs to. Having accomplished the
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description of original concepts of dynamic virtual teams, the main organization algorithm

of a dynamic virtual team model will be demonstrated in the next subsection.

5.1.2 Algorithm of Dynamic Virtual Team Model

The implementation of dynamic virtual team model is shown in Algorithm 8. Two important

key points that are marked with underline and bold type in Algorithm 8 are worthy of note.

One of them is to predict the next best team position by the team leader, and the other one is

to get the next position for the team's ordinary members.

Algorithm 8 Team Organization Function
1: Initialization: 𝑝𝑜𝑝𝑠𝑖𝑧𝑒, 𝑡𝑒𝑎𝑚𝑠𝑖𝑧𝑒, each dolphin 𝑥𝑖
2: for 𝑖 ∈ [1..𝑝𝑜𝑝𝑠𝑖𝑧𝑒] do
3: for 𝑔 ∈ [1..𝑝𝑜𝑝𝑠𝑖𝑧𝑒] do
4: Calculate distance between 𝑥𝑖 and 𝑥𝑔
5: 𝑑𝑖𝑠𝑀(𝑖, 𝑔) = 𝐸𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑖,𝑥𝑔)
6: end for
7: Sort 𝑑𝑖𝑠𝑀(𝑖, 𝑔) in ascending
8: 𝑇 𝑒𝑎𝑚𝑖 = 𝑠𝑜𝑟𝑡(𝑑𝑖𝑠𝑀(𝑖, 𝑔))
9: Select 𝑥𝑖's dynamic partners from 𝑇 𝑒𝑎𝑚𝑖

10: for ℎ ∈ [2..𝑡𝑒𝑎𝑚𝑠𝑖𝑧𝑒] do
11: 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠(𝑖) = ℎ
12: end for
13: Organize dynamic virtual team for 𝑥𝑖
14: 𝑥𝑡𝑒𝑎𝑚(𝑖) = 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠(𝑖)
15: end for
16: for all 𝑥𝑡𝑒𝑎𝑚(𝑖) do
17: Specify the best value of team as team leader
18: if 𝑥𝑖 is a team leader then
19: Exchange its best position within team
20: ▶Predict the next best position
21: end if
22: if 𝑥𝑖 is an ordinary member then
23: ▶ Update its next position by equation (5.1)
24: end if
25: end for
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It is an open issue as to how to predict and calculate the next team's best position and

ordinary member's position. In DPO, definitions of these two points are not fit for all of the

optimal problems. The dynamic team organization mimics the dolphin's teamwork during

the process of searching for prey, and attacking prey. It should be noted that the structure of

teamwork is a really complicated system, the proposed dynamic virtual team model is only

a simplified prototype.

In order to come out the next optimal position, a so-called "Nucleus" is presented in DPO

to predict the best position according to the information of individual experience and the

team's best experience. As an ordinary member, its next position is updated by the equation

(5.1).

𝑛𝑒𝑤𝑥𝑖 = 𝑥𝑖 + 𝑐1𝑟1(𝑇𝑏𝑒𝑠𝑡 − 𝑥𝑖)

+𝑐2𝑟2(𝑁𝑏𝑒𝑠𝑡 − 𝑥𝑖)
(5.1)

Where, 𝑇𝑏𝑒𝑠𝑡 is the best fitness solution among the team, namely the solution of the team

leader. 𝑁𝑏𝑒𝑠𝑡 is the best fitness solution coming from his neighbor teams, which could be

acquired from the neighboring team leader. Under the guidance of the team leader and the

influence of neighboring team leaders, members are pulled into the potential global optimum.

𝑐1 and 𝑐2, called cognitive factor and social factor, are positive numbers defined by their

upper limit( usually equals to 2.0). Two values 𝑟1 and 𝑟2 are random numbers generated

in the interval [0,1]. Based on the dynamic virtual team model, a mechanism of Dolphin

Partner Optimization is formulated and will be demonstrated in the next subsection.

5.1.3 Dolphin Partner Optimization

The Dolphin Partner Optimization mimics the dolphin's teamwork during the process of

searching for prey, and attacking prey. The main two types of the "Nucleus" are defined as:
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• Inner Nucleus: the nucleus is located in the inner space of team members.

• Outer Nucleus: the nucleus is located in the outer space of team members.

The calculation formula of the Inner Nucleus is stated as:

𝐼𝑛𝑁(𝑘) =

𝑛
∑
𝑖=1

𝑥𝑖𝑓
′

𝑖 (𝑥)

𝑛
∑
𝑖=1

𝑓 ′

𝑖 (𝑥)
(5.2)

Where, 𝑓
′
(𝑥) is defined as the translation function (𝑓

′
(𝑥) > 0), 𝑥𝑖 is the position of the

team member. The tentative translation function is described as two forms according with

disparate global best solutions: 𝑓 𝑚𝑎𝑥
𝑔𝑏𝑒𝑠𝑡(𝑥) and 𝑓 𝑚𝑖𝑛

𝑔𝑏𝑒𝑠𝑡(𝑥).

𝑓
′

𝐻 (𝑥) = 𝑓(𝑥) − 𝑓 𝑚𝑎𝑥
𝑔𝑏𝑒𝑠𝑡(𝑥) (5.3)

𝑓
′

𝐿(𝑥) = 1
𝑓(𝑥) − 𝑓 𝑚𝑖𝑛

𝑔𝑏𝑒𝑠𝑡(𝑥)
(5.4)

𝑓(𝑥) denotes the fitness function of the DPO. 𝑓 𝑚𝑎𝑥
𝑔𝑏𝑒𝑠𝑡(𝑥) is the global maximum solution and

𝑓 𝑚𝑖𝑛
𝑔𝑏𝑒𝑠𝑡(𝑥) is the global minimum solution of the fitness function. Correspondingly, the Inner

Nucleus formula has two particular descriptions: 𝐼𝑛𝑁𝐻 (𝑘) and 𝐼𝑛𝑁𝐿(𝑘).

The outer nucleus is evaluated by:

𝑂𝑢𝑡𝑁(𝑘) = 𝐼𝑛𝑁𝐿(𝑘) ± 𝑙𝑜𝑔( 1
𝜇 ) ∗ (𝐼𝑛𝑁𝐿(𝑘) − 𝐼𝑛𝑁𝐻 (𝑘)) (5.5)

Where 𝜇 is a random value within (0, 1). There are many other methods to estimate the

positions of inner nucleus and outer nucleus. The definitions mentioned above are provided

a tentative approach and verified by some well-known multimodal benchmark problems.

The DPO algorithm can be summarized in Algorithm 9.
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Algorithm 9 The DPO Algorithm
1: Initialization: 𝑝𝑜𝑝𝑠𝑖𝑧𝑒, 𝑡𝑒𝑎𝑚𝑠𝑖𝑧𝑒
2: Initialization: each dolphin 𝑥𝑖
3: Do
4: for all dolphin 𝑥𝑖 do
5: Find out its partners and form a virtual team
6: Find out its role in his team
7: Exchange team best position within partners
8: end for
9: for Each dolphin 𝑥𝑖 do

10: Calculate the inner nucleus and outer nucleus
11: if This dolphin 𝑥𝑘 is the leader of his team then
12: if fitness of Inner Nucleus is better then
13: 𝑥𝑘 = 𝐼𝑛𝑁(𝑘)
14: end if
15: if fitness of Outer Nucleus is better then
16: 𝑥𝑘 = 𝑂𝑢𝑡𝑁(𝑘)
17: end if
18: Follow up with the leader
19: end if
20: end for
21: Until termination criterion is met
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Experimental study shows that DPO could demonstrate the desirable exploration, local

minima avoidance and reasonable convergence rate simultaneously. However, the definitions

of "next best team position" and "ordinary member's position" can not be fit for all kinds

of optimization problems. In addition, the multivariate team size selection of DPO is not

discussed in the original reference.

5.1.4 Solutions

Experiment analysis of the dynamic virtual team model reveals that the independent indi-

vidual consciousness is weakened by the team leader. Our solution is to propose an appro-

priate wheel topology instead of the original topology structure in DPO. In this chapter, the

modified structure of the dynamic virtual team as an appropriate wheel topology is applied

to FPO named as a Dynamic Fitness Predator Optimization (DFPO) [97]. The modified

dynamic virtual team is a self-organization team that according to the nearest neighbor clus-

tering. It is able to build paralleled exchanging information system of DFPO with the aim

of accelerating the early convergence rate and improving the global searching capability for

multimodal function. In addition, a variant of DFPO, namely DFPO-r is proposed to improve

the performance of DFPO [100]. In DFPO-r, a method of team size selection is developed

to increase the population diversity. The population diversity is one of the most important

factors that determines the performance of the optimization algorithm. A higher degree of

swarm diversity is able to help DFPO-r alleviate premature convergence. In DFPO-r, two

kinds of team sizes are randomly selected from the size pool, which is designed by the real

situation. The strategy of selection is to choose the team size according to a higher degree

of population diversity. Ten well-known multimodal benchmark functions are used to eval-

uate the performance of DFPO and DFPO-r. Experimental results show that both DFPO and

DFPO-r could demonstrate the desirable performance.
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Table 5.1 Evaluation test environment

OS Windows 7
Processor Intel(R) 𝐶𝑜𝑟𝑒𝑇 𝑀 i7 CPU 2.80GHz
Memory (RAM) 8.00GB
System type 64-bit operation system
Tool MATLAB 7.10.0

5.2 Proposal of DFPO

5.2.1 Study of Dynamic Virtual Team Model

In this section, the rapid convergence qualification of virtual team model will be discussed

by the further study. First of all, the effect of various team sizes on accuracy of optimization

and running time is tested with Griewank function and Rosenbrock function. The Griewank

function is a function widely used to test the convergence of optimization functions. It has

191 minima with global minimum 𝑓(𝑥∗) = 0 at 𝑥∗ = 0. The Rosenbrock function is also a

non-convex function used as a performance test problem for optimization algorithms. The

global minimum is inside a long, narrow, parabolic shaped flat valley. To converge to the

global minimum is fairly difficult. The bounds and global minimums of these benchmark

functions as shown in Table 5.5. The evaluation test environment parameters is shown in

Table 5.1. The DPO algorithm was run 50 times with a population size of 100 on each

benchmark function. The statistical results including average optimum and elapsed time on

each run are reported in Table 5.2.

It is worth noting that the best mean optimum is indicated with bold type and the down

arrow in Table 5.2. Both of best global values for two functions are obtained when the team

size equals to 9. Thus, we have reason to hypothesize that highly team size might be as good

at finding optima in a problem searching space. Then the greater number of team size is

used to test the performance of DPO on Rosenbrock function. Table 5.3 shows the statistical

results of DPO with the range of team size 𝑇𝑠 ∈ [10, 90]. Similarly, the DPO algorithm was
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Table 5.2 The best mean optimum obtained by DPO with various team size on Griewank &
Rosenbrock functions

𝑇𝑠 Dim. Iter. Griewank Rosenbrock
Mean Time(s) Mean Time(s)

2 30 500 3.12e-02 1.86e+01 1.92e+02 1.83e+01
3 30 500 8.40e-03 1.76e+01 1.01e+02 2.15e+01
4 30 500 6.50e-03 1.75e+01 2.08e+02 1.72e+01
5 30 500 6.10e-03 1.75e+01 1.83e+02 1.71e+01
6 30 500 1.44e-02 1.75e+01 1.18e+02 1.70e+01
7 30 500 9.79e-02 1.74e+01 7.45e+01 1.72e+01
8 30 500 2.50e-03 1.73e+01 5.16e+01 1.71e+01
9 30 500 2.00e-03↓ 1.73e+01 4.80e+01↓ 1.72e+01

10 30 500 3.00e-03 1.75e+01 7.66e+01 1.70e+01

Table 5.3 The mean optimum obtained by DPO with various team size on Rosenbrock func-
tion

𝑇𝑠 Dim. Iter. Rosenbrock Time(s)
10 30 500 4.95e+01 1.72e+01
20 30 500 2.78e+01 1.75e+01
30 30 500 2.78e+01 1.76e+01
40 30 500 2.78e+01 1.78e+01
50 30 500 2.75e+01 1.99e+01
60 30 500 2.88e+01 2.16e+01
70 30 500 2.81e+01 2.03e+01
80 30 500 2.84e+01 2.25e+01
90 30 500 2.85e+01 2.29e+01
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Fig. 5.2 Mean optimum and running time of DPO with different team size on Rosenbrock
function

run 50 times with a population size of 100. An interesting finding from Table 5.2 and Table

5.3 is that the more number of the team size indicates the better optimal solution. It is also

easily to be confirmed by Fig.5.2. The blue curve of best fitness value shown in Fig.5.2 is

obviously decreased when the team size increases to 20. However, the red curve of average

running time is not increased accordingly. With the corresponding experimental analysis, we

believe that this dynamic virtual team model might represent a good fit for the FPO system,

as it combines the potential parallelism with the iterative, synchronous nature of the FPO.

5.2.2 Modified Topology of Dynamic Virtual Team Model

In this part, our main work is to modify the generic definitions of virtual team and pro-

pose a new diagram. The original function of team leader is defined to analyze all of the

communication information and to predict the most available position as a guidance for the

team members. The function of the ordinary members is defined to follow up the team

leader. However the individual independent consciousness is weakened by the team leader

because if the particle is an ordinary team member, it will follow up with the team leader and
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Fig. 5.3 The modified dynamic virtual team topology

lose its independent consciousness. In order to resolve this problem, the role recognition is

deleted from the team, which means that each individual is the leader of its own team, the

other members of the team only provide their experience as the reference information to the

leader. Similarly, the other team members would not follow up with the team leader and

keep their independent consciousness all the time.

The modified diagram of virtual team is shown in Fig.5.3. In the first iteration, each

individual is connected to its 3 immediate neighbors. The solid red circles shown in Fig 5.3

are the team leaders. The neighbors of this team denoted with black circles are not guaranteed

to connect with each other. The structure of this team is an appropriate wheel topology. The

wheel topology effectively isolates individuals from one another. In the second iteration, the

team size is increased to 5, the solid red box shown in Fig 5.3 is the new team leader. Which

is connected to its 4 new immediate neighbours shown with black square. Obviously shown

in Fig. 5.3, the team size is dynamic changed during the searching process. In addition, team

members would not follow up with the team leader and keep their independent consciousness

at all time. The function of the team leader is to provide team's best position for the team

members. Information of individual best experience and the team's best experience is spread

by weak ties of these black squared members. Each of the individuals independently depicts
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its next position only according to its own experience, the random elite's experience and the

neighboring teams' experience. The modified definition of updated position is:

𝑛𝑒𝑤𝑥𝑖𝑗 = 𝑥𝑖𝑗 + 𝜃 ∗ 𝑐 ∗ 𝑤 ∗ (𝑥𝑘𝑗 − 𝑥𝑖𝑗)

+𝜃 ∗ 𝑐 ∗ 𝑤 ∗ (𝑁𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑗)
(5.6)

Where 𝜃 = (𝑟𝑎𝑛𝑑 −0.5) is a random decimal, 𝑐 is a positive constant defined by its upper

limit ( usually equals to 2.0). 𝑤 is defined as inertia weight. 𝑁𝑏𝑒𝑠𝑡 is the best fitness solution

coming from the neighboring teams, which could be acquired from the neighboring team

leader.

5.2.3 Pseudocode of DFPO

In this part, the dynamic virtual team is implemented in FPO and the pseudocode of DFPO

is shown as below.

Algorithm 10 Main Function of DFPO
1: Initialize population: 𝑝𝑜𝑝𝑠𝑖𝑧𝑒, 𝑡𝑒𝑎𝑚𝑠𝑖𝑧𝑒
2: Initialize each position: 𝑥𝑖 = 𝑟𝑎𝑛𝑑() ∈ (𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥)
3: for each position 𝑥𝑖 do
4: Create its team by Dynamic Team Organization Function
5: end for
6: for each chance of updating do
7: if 𝑟𝑎𝑛𝑑() < 𝑟𝑎𝑛𝑑() ∗ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)

𝑛
∑
𝑖=1

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)
then

8: get a chance to update its position
9: Generate a new position 𝑥∗

𝑖𝑗 by equation (5.6)
10: For each position use the elitism strategy
11: end if
12: end for
13: For all population use the elitism strategy
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Table 5.4 Comparison of mean optimum obtained by DFPO with various team size on
Griewank & Rastrigin & Rosenbrock functions

𝑇𝑠 Dim. Griewank Time(s) Rastrigin Time(s) Rosenbrock Time(s)
10 30 2.21e-04 9.81e+00 5.34e+00 8.64e+00 2.17e+01 8.59e+00
20 30 1.28e-04 9.98e+00 4.32e+00 8.74e+00 6.40e+00 8.68e+00
30 30 9.98e-05↓ 1.07e+00 3.32e+00 8.92e+00 1.33e+00↓ 8.73e+00
40 30 2.49e-04 1.03e+01 2.19e+00↓ 8.96e+00 1.62e+00 8.88e+00
50 30 3.68e-04 9.98e+00 2.94e+00 9.13e+00 2.15e+01 9.10e+00

5.2.4 A Method of Team size Selection in DFPO

Three widely known benchmark functions (Griewank, Rastrigin and Rosebrock) are used to

the team size selection for DFPO. The population is set to 100 and the range of team size

is from 10 to 50. The maximum generation (iteration) is set as 500, 50 trial runs for each

function and the mean best fitness is recorded in Table 5.4.

From Table 5.4, it can be observed that the DFPO generated the best performance on

Griewank function when team size equates to 30. Such was the same case on Rosenbrock

function. For Rastrigin function, the best optimum is scored when the team size is 40. Since

DPO and DFPO have the same experiment environment setting (same swarm size, same team

size, same number of iteration and same dimension of Rosenbrock function), the comparison

between the mean best optimum and running time is shown in Fig. 5.4 and Fig. 5.5.

Figure 5.4 and Figure 5.5 indicate that DFPO with modified dynamic virtual team is

able to provide very competitive results on the average of best global value in each team size

selection and has faster computation time compared with DPO.

To summarize, the modified dynamic virtual team model strengthens the global optimal

solution and provides the desirable speed of convergence rate for the DFPO algorithm.

78



5.2 Proposal of DFPO

10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

Team size

M
ea

n 
be

st
 o

pt
im

um
 

 

 

Rosenbrock Function

DPO

DFPO

Fig. 5.4 The performance comparison between DPO and DFPO on Rosenbrock function
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Fig. 5.5 The running time comparison between DPO and DFPO on Rosenbrock function
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5.3 Proposal of DFPO-r

5.3.1 A Method for Dynamic Team Size Selection

As shown in Fig.5.3 that the team size could dynamically change during the search process.

In addition, the different teams could have a various number of team members in the process

of optimization. The method of team size selection is tentatively proposed by experimental

study in this chapter.

Generally, we believe that increasing the population size enables the optimization al-

gorithm to search more points and thereby obtain a better result. However, a large swarm

population is not guaranteed to get the better optimized performance. A similar discussion

could be found in [108] and [12]. Thus, the team size should be diversified for dynamic

environment and various optimization problems.

The diversity of the population is one of the most important factors that determines the

performance of the optimal algorithm. We consider that the population diversity is useful to

team size section. A diversity measure 𝑆(𝑝) introduced in [13] and [14] is adopted to indicate

the changed swarm diversity with various populations.

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑥𝑗 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖𝑗

𝑆𝑗 = 1
𝑛

𝑛
∑
𝑖=1

|𝑥𝑖𝑗 − 𝑥𝑗|

𝑆(𝑝) = 1
𝐷

𝐷
∑
𝑗=1

𝑆𝑗

(5.7)

Where 𝑆(𝑝) denotes the diversity of the swarm 𝑝, 𝑛 is the swarm size, 𝐷 is the dimension

of the function, 𝑥𝑗 represents the pivot of solutions in dimension 𝑗, and 𝑆𝑗 measures solution

diversity based on 𝐿1 norm for dimension 𝑗.

An experiment is carried out to confirm the proper population size that fits for various

dimensional function. It is shown in Fig.5.6 that the swarm population is not always 'the
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Fig. 5.6 Different population diversity in various population and dimensions on Rastrigin
function

more, the better'. When dimension reaches 500, a swarm size of 50 has higher initial popu-

lation diversity than that of 100. Similarly, the population diversity of the swarm size of 30

is better than that of 50 on 100 dimensions. Inspired by Competitive Swarm Optimization

[12] and based on this experiment, the method of team size selection is presented here.

First of all, two kinds of team size are randomly selected from the sizes pool. The sizes

pool is a boundary of team size, which could be designed according to the real situation.

Secondly, both of these team sizes are compared by their population diversities. Only the

better one is kept as the team size. Once the dynamic team size is researched, it will be

shared with different teams during the whole process of optimization.

5.3.2 Pseudocode of DFPO-r

Algorithm 11 demonstrates the main function of DFPO-r. It should be noted that DFPO-

r is a variant of DFPO. The difference between them is the method of team size selection. If

the third sentence in Algorithm 11 is deleted, it will be the main function of DFPO. Thus,
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Algorithm 11 Main Function of DFPO-r
1: Initialize population: 𝑝𝑜𝑝𝑠𝑖𝑧𝑒
2: Initialize 𝑥𝑖: 𝑥𝑖 = 𝑟𝑎𝑛𝑑() ∈ (𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥)
3: Confirm team size by population diversity
4: for Each position 𝑥𝑖 do
5: Create its team by Dynamic Team Organization Function
6: end for
7: for all particles do
8: if 𝑥𝑖 gets a chance to update its position then
9: Generate a new position 𝑥∗

𝑖 by equation (5.6)
10: if 𝑥∗

𝑖 is better than 𝑥𝑖 then
11: Record 𝑥∗

𝑖 as a new elite
12: end if
13: end if
14: end for
15: For all population use the elitism strategy

the team size of DFPO-r is dynamic confirmed under the guidance of swarm diversity while

the team size of DPFO is set to one third of the population.

5.4 Experiments

In this section, ten well-known benchmark functions are used for comparison with Con-

stricted GBest PSO[7], Constricted LBest PSO[7], DPO, FPO, DFPO and DFPO-r. The

aim of the experiments is to compare the global convergence and optimization ability of

DFPO and DFPO-r with other four swarm intelligence algorithms on various dimensions of

multmodal problems. The analysis and discussion of the experiments are also shown later.

5.4.1 Evaluation Method

The experiments include two parts. In part A, four fixed-dimension multimodal problems

are used to make a comparison of the convergence rate on Constricted GBest PSO (GBPSO),

DPO, FPO and DFPO. In part B, six flexible dimension functions are used to test the capa-
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bility of global optimal solution on Constricted LBest PSO (LBPSO), DPO, FPO, DFPO

and DFPO-r.

The experiments are implemented on a PC with an Intel Core i7 860, 2.8 GHz CPU

and Microsoft Windows 7 Professional SP1 64-bit operating system, and all algorithms are

written in Matlab language. The bounds and global minimums of ten functions are shown

in Table 5.5. The parameters setting are illustrated in Table 5.6 and Table 5.7.

5.4.2 Experimental Results

Table 5.8 shows the statistical results of optimization errors on four fixed-dimension multi-

modal functions among GBPSO, DPO, FPO and DFPO. Table 5.9, Table 5.10, Table 5.11

and Table 5.12 show the statistical results of optimization errors and average computation

time on six flexible dimensional functions. To all statistical results, the best global optimiza-

tion errors and mean of best global optimization errors are marked with bold type and down

arrow. From Table 5.8, we found that in the early 20 times of iteration process, DFPO is

able to provide very competitive results on the global optimum and the mean best optimum

on most of benchmark functions.

5.4.3 Discussion

Figure 5.7, 5.8 and 5.9 are the most important processing curves of mean optimization errors

obtained by Table 5.8. From Fig. 5.7, we found that three algorithms are able to accurately

find the global optimum after 50 iterations. GBPSO is trapped into the local solution and

could not find the accurate global optimum. In Fig.5.8, DFPO is the best ranked and DPO is

the second ranked of four algorithms. In Fig.5.9, DFPO still keeps the best global searching

capability, but DPO shows the worst performance compared with others. According to the

results of Table 5.8 and figures, DFPO could find the satisfied global optimum within 50

iterations. While, GBest PSO and DPO are trapped into local optimal solutions on Branin
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Table 5.5 Bounds and global optimums of benchmark functions

Function Bound Optimum

Michalewicz: 𝑓1(𝑥) = −
𝐷
∑
𝑗=1

𝑠𝑖𝑛(𝑥𝑗)[𝑠𝑖𝑛(
𝑖.𝑥2

𝑖
𝜋 )]20 [0, 𝜋]2 −1.8013

Branin: 𝑓2(𝑥) = 𝑎(𝑥2 − 𝑏𝑥2
1 + 𝑐𝑥1 − 6)2

+𝑔(1 − ℎ) cos(𝑥1) + 10, 𝑎 = 1 𝑥1 ∈ [−5, 10] 0.397887
𝑏 = 1.25𝜋−2, 𝑐 = 5𝜋−1, 𝑔 = 10, ℎ = 0.125𝜋−1 𝑥2 ∈ [0, 15]

Shekel: 𝑓3(𝑥) = −
𝑚
∑
𝑘=1

(
4

∑
𝑗=1

(𝑥𝑗 − 𝐶𝑗𝑘)2 + 𝛽𝑘)−1 [0, 10]4 −10.5364

𝑚 = 10, 𝛽 = 1
10(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)𝑇

𝐶 =
⎛
⎜
⎜
⎜
⎝

4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3

⎞
⎟
⎟
⎟
⎠

Shaffers N.2: 𝑓4(𝑥, 𝑦) = 0.5 + 𝑠𝑖𝑛2(𝑥2 − 𝑦2) − 0.5
(1 + 0.001 ∗ (𝑥2 + 𝑦2))2 [−100, 100]2 0

Rosenbrock: 𝑓5(𝑥) =
𝐷
∑
𝑗=1

(100 ∗ (𝑥𝑗+1 − 𝑥2
𝑗 )2 + (𝑥𝑗 − 1)2) [−5, 10]𝐷 0

Rastrigin: 𝑓6(𝑥) =
𝐷
∑
𝑗=1

(𝑥2
𝑗 − 10 ∗ cos(2𝜋𝑥𝑗)) + 10 ∗ 𝐷 [−5.12, 5.12]𝐷 0

Griewank: 𝑓7(𝑥) = 1
4000

𝐷
∑
𝑗=1

𝑥2
𝑗 −

𝐷
∏
𝑗=1

cos(
𝑥𝑗

√𝑗
) + 1 [−5, 10]𝐷 0

Ackley: 𝑓8(𝑥) = −𝑎 ∗ exp(−0.02 ∗ (𝐷−1
𝐷−1
∑
𝑗=1

𝑥2
𝑗 )

1
2 ) [−15, 30]𝐷 0

− exp(𝐷−1
𝐷
∑
𝑗=1

cos(2𝜋𝑥𝑗)) + 𝑎 + exp, 𝑎 = 20

Levy: 𝑓9(𝑥) =
𝐷−1
∑
𝑗=1

(𝜛𝑗 − 1)2[1 + 10𝑠𝑖𝑛2(𝜋𝜛𝑗 + 1)] [−10, 10]𝐷

+𝑠𝑖𝑛2(𝜋𝜛1) + (𝜛𝐷 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝜛𝐷)] 0

𝜛𝑗 = 1 +
𝑥𝑗 − 1

4
Schwefel: 𝑓10(𝑥) = 418.9829 ∗ 𝐷 −

𝐷
∑
𝑗=1

𝑥𝑗𝑠𝑖𝑛(√|𝑥𝑗|) [−500, 500]𝐷 0

Note: D represents the dimensions of benchmark function, 𝑗 ∈ [1, 𝐷].
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Table 5.6 Parameters setting on fixed-dimension multimodal functions

Experiment A Algorithm Parameters
GBPSO 𝑐1 = 𝑐2 = 2.05, 𝜒 = 0.72984

Population=100 DPO 𝑐 = 2, 𝑤 ∈ [0.4, 0.9], 𝑡𝑒𝑎𝑚𝑠𝑖𝑧𝑒 = 10
Runs=50 FPO 𝑐 = 2, 𝑤 ∈ [0.4, 0.9]

DFPO 𝑐 = 2, 𝑤 ∈ [0.4, 0.9], 𝑡𝑒𝑎𝑚𝑠𝑖𝑧𝑒 = 30

Table 5.7 Parameters setting on six flexible dimensional functions

Experiment B Algorithm Parameters

Population=50
LBPSO 𝑐1 = 𝑐2 = 2.05, 𝜒 = 0.72984

DPO 𝑐 = 2, 𝑤 ∈ [0.4, 0.9], 𝑡𝑒𝑎𝑚𝑠𝑖𝑧𝑒 = 5
FPO 𝑐 = 2, 𝑤 ∈ [0.4, 0.9]

Runs=20 DFPO 𝑐 = 2, 𝑤 ∈ [0.4, 0.9], 𝑡𝑒𝑎𝑚𝑠𝑖𝑧𝑒 = 15
DFPO-r 𝑐 = 2, 𝑤 ∈ [0.4, 0.9], 𝑡𝑒𝑎𝑚𝑠𝑖𝑧𝑒 ∈ [10, 30]

Table 5.8 Statistical results of optimization errors on fixed-dimension multimodal functions

Alg. Iter. 𝑓1 𝑓2 𝑓3 𝑓4

GBPSO 20 Best 3.00e-04 1.30e-05 1.09e+00 6.17e-06
Mean 2.90e-03 1.77e-02 6.11e+00 3.70e-03

DPO 20 Best 0.00e+00 0.00e+00↓ 5.33e-02 2.31e-06
Mean 0.00e+00 9.55e-06↓ 4.09e+00 8.00e-03

FPO 20 Best 0.00e+00 1.30e-05 2.09e-02 3.59e-06
Mean 1.00e-04 5.00e-04 6.67e+00 8.30e-03

DFPO 20 Best 0.00e+00 1.30e-05 4.00e-03↓ 1.28e-06↓
Mean 0.00e+00 1.13e-04 1.07e+00↓ 3.20e-03↓

GBPSO 50 Best 0.00e+00 1.30e-05 5.00e-04 4.04e-10
Mean 0.00e+00 1.30e-05 3.04e+00 1.09e-06↓

DPO 50 Best 0.00e+00 0.00e+00↓ 2.00e-04 7.35e-13↓
Mean 0.00e+00 0.00e+00↓ 1.41e+00 5.30e-03

FPO 50 Best 0.00e+00 1.30e-05 7.50e-03 1.78e-07
Mean 0.00e+00 1.30e-05 2.94e+00 2.98e-04

DFPO 50 Best 0.00e+00 1.30e-05 0.00e+00↓ 1.82e-08
Mean 0.00e+00 1.30e-05 1.40e-03↓ 1.17e-04

GBPSO 100 Best 0.00e+00 1.30e-05 0.00e+00 1.33e-14
Mean 0.00e+00 1.30e-05 2.65e+00 6.42e-12↓

DPO 100 Best 0.00e+00 0.00e+00↓ 0.00e+00 0.00e+00↓
Mean 0.00e+00 0.00e+00↓ 1.26e+00 4.80e-03

FPO 100 Best 0.00e+00 1.30e-05 0.00e+00 5.85e-09
Mean 0.00e+00 1.30e-05 1.83e+00 5.76e-05

DFPO 100 Best 0.00e+00 0.00e+00 0.00e+00 1.83e-09
Mean 0.00e+00 0.00e+00 1.00e-04↓ 1.36e-05
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Table 5.9 Statistical results of optimization errors on 𝑓5 − 𝑓7 after 20 trials of 103, 2 × 103

function evaluations, respectively

Alg. 10-D 𝑓5 𝑓6 𝑓7

LBPSO
Best 3.15e-02 2.00e+00 7.40e-03

Worst 4.41e+00 9.97e+00 4.43e-02
Mean 1.83e+00↓ 6.02e+00 1.64e-02

DPO
Best 2.48e-02 0.00e+00 2.46e-02

Worst 3.97e+00 2.69e+00 6.60e-01
Mean 2.97e+00 4.98e-01 2.28e-01

FPO
Best 2.20e-03 0.00e+00 1.11e-16

Worst 1.84e+01 0.00e+00 2.21e-02
Mean 2.81e+00 0.00e+00 5.90e-03
Time 4.28e+00 4.31e+00 4.61e+00

DFPO
Best 4.91e-04↓ 0.00e+00 0.00e+00

Worst 1.72e+01 0.00e+00 1.23e-02
Mean 2.14e+00 0.00e+00 1.20e-03
Time 5.26e+00 6.99e+00 5.61e+00

DFPO-r
Best 8.70e-03 0.00e+00 0.00e+00

Worst 7.04e+00 0.00e+00 1.23e-02
Mean 2.49e+00 0.00e+00↓ 2.73e-03↓

Alg. 50-D 𝑓5 𝑓6 𝑓7

LBPSO
Best 3.40e+01 1.50e+02 9.85e-12

Worst 1.36e+02 2.78e+02 7.40e-03
Mean 6.74e+01 2.29e+02 4.00e-04

DPO
Best 9.64e+01 5.12e+01 3.66e-05

Worst 2.69e+03 2.13e+02 5.81e-01
Mean 3.83e+02 1.10e+02 2.48e-02

FPO
Best 1.60e-02↓ 4.34e-09 7.57e-11

Worst 1.43e+02 5.97e+00 2.83e-09
Mean 1.70e+01 1.95e+00 7.62e-10
Time 8.67e+00 8.96e+00 9.62e+00

DFPO
Best 4.25e-02 8.64e-11 1.98e-14

Worst 9.84e+01 3.99e+00 5.18e-12
Mean 1.49e+01↓ 1.41e+00 3.25e-13
Time 1.12e+01 1.15e+01 1.21e+01

DFPO-r
Best 1.15e-01 2.26e-12 1.11e-16↓

Worst 7.97e+01 3.80e-09 2.03e-12
Mean 2.50e+01 2.49e-10↓ 1.13e-13↓
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Table 5.10 Statistical results of optimization errors on 𝑓8 − 𝑓10 after 20 trials of 103, 2 × 103

function evaluations, respectively

Alg. 10-D 𝑓8 𝑓9 𝑓10

LBPSO
Best 4.71e-14 0.00e+00 2.37e+02

Worst 1.01e-12 0.00e+00 9.51e+02
Mean 3.98e-13 0.00e+00 5.64e+02

DPO
Best 4.44e-15 0.00e+00 1.18e+02

Worst 8.00e-15 0.00e+00 1.19e+03
Mean 6.04e-15↓ 0.00e+00 6.60e+02

FPO
Best 2.60e-12 6.42e-17 1.27e-04

Worst 2.55e-10 3.08e-16 3.55e+02
Mean 4.09e-11 2.33e-16 2.11e+02
Time 4.64e+00 5.08e+00 4.56e+00

DFPO
Best 8.00e-15 5.16e-17 1.27e-04

Worst 2.00e-14 2.28e-16 1.27e-04
Mean 1.41e-14 1.03e-16 1.27e-04
Time 5.69e+00 5.99e+00 1.06e+01

DFPO-r
Best 4.44e-15 6.16e-17 1.27e-04

Worst 8.00e-15 1.09e-16 1.27e-04
Mean 7.64e-15 8.41e-17 1.27e-04

Alg. 50-D 𝑓8 𝑓9 𝑓10

LBPSO
Best 2.00e-04 2.56e-05 5.68e+03

Worst 1.95e+00 3.99e+01 8.71e+03
Mean 3.93e-01 1.05e+01 7.49e+03

DPO
Best 7.70e-03 1.20e-03 4.65e+03

Worst 1.06e+01 3.45e-01 1.14e+04
Mean 2.34e+00 7.08e-02 7.20e+03

FPO
Best 1.75e-05 3.21e-12 1.78e+03

Worst 1.32e-04 1.66e-09 2.49e+03
Mean 6.27e-05 1.09e-10 2.23e+03
Time 9.60e+00 1.22e+01 9.44e+00

DFPO
Best 1.74e-06 4.11e-07 1.18e+03

Worst 8.63e-06 2.27e-06 1.90e+03
Mean 4.08e-06 9.54e-07 1.61e+03
Time 1.21e+01 1.21e+01 1.19e+01

DFPO-r
Best 3.80e-08↓ 2.55e-15↓ 6.36e-04

Worst 1.59e-07 1.16e-11 3.55e+02
Mean 1.00e-07↓ 1.63e-12↓ 9.51e+01↓
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Table 5.11 Statistical results of optimization errors on 100-Dimension 𝑓5 − 𝑓7 after 20 trials
of 2 × 103 function evaluations

Alg. 100-D 𝑓5 𝑓6 𝑓7

LBPSO
Best 3.81e+02 4.97e+02 1.65e-05

Worst 9.23e+02 7.28e+02 9.00e-04
Mean 5.65e+02 6.43e+02 8.77e-05

DPO
Best 9.50e+02 2.09e+02 1.53e-02

Worst 3.34e+03 3.88e+02 9.99e-01
Mean 1.86e+03 2.88e+02 2.30e-01

FPO
Best 2.89e-01 6.13e+00 2.79e-05

Worst 1.40e+02 4.16e+01 1.30e-03
Mean 3.13e+01↓ 2.26e+01 5.42e-04
Time 8.85e+00 9.17e+00 1.02e+01

DFPO
Best 1.23e-01↓ 1.54e+01 1.60e-06

Worst 1.39e+02 2.52e+01 3.45e-04
Mean 3.50e+01 2.05e+01 7.88e-06
Time 1.22e+01 1.31e+01 1.32e+01

DFPO-r
Best 2.02e+00 3.07e-08↓ 1.70e-08↓

Worst 2.12e+02 9.04e+00 2.03e-07
Mean 7.68e+01 3.42e+00↓ 1.03e-07↓

Table 5.12 Statistical results of optimization errors on 100-Dimension 𝑓8 −𝑓10 after 20 trials
of 2 × 103 function evaluations

Alg. 100-D 𝑓8 𝑓9 𝑓10

LBPSO
Best 1.95e+00 6.41e+01 1.48e+04

Worst 6.97e+00 1.44e+02 2.17e+04
Mean 2.76e+00 9.11e+01 1.90e+04

DPO
Best 2.16e+00 1.71e+00 1.22e+04

Worst 1.34e+01 1.07e+01 2.67e+04
Mean 5.78e+00 4.01e+00 2.04e+04

FPO
Best 3.10e-03 1.06e-08↓ 4.91e+03

Worst 2.17e+00 2.29e+00 6.98e+03
Mean 9.23e-01 2.17e-01 5.87e+03
Time 1.00e+01 1.47e+01 9.77e+00

DFPO
Best 6.40e-03 1.40e-02 4.51e+03

Worst 1.25e+00 1.91e-01 6.10e+03
Mean 5.94e-01 6.15e-02 5.20e+03
Time 1.31e+01 1.32e+01 1.32e+01

DFPO-r
Best 1.01e-03↓ 5.70e-08 1.94e+03↓

Worst 4.96e-03 3.95e-06 3.46e+03
Mean 2.36e-03↓ 6.03e-07↓ 2.82e+03↓
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Fig. 5.7 Mean optimization errors of Branin function with three algorithms in 20, 50 and
100 times iteration respectively
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Fig. 5.8 Mean optimization errors of Shekel function with four algorithms in 20, 50 and 100
times iteration respectively
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Fig. 5.9 Mean optimization errors of Shaffers N.2 function with four algorithms in 20, 50
and 100 times iteration respectively

function and Shaffers N.2 function respectively. One of the possible reasons is that com-

petitions of predators in DFPO increase individual independence and reduce rapid social

collaboration on multimodal functions. These characters of DFPO are able to provide the

excellent optimal solution and utilizing local minima avoidance simultaneously.

In Table 5.13 and Table 5.14, the results of ranking are grouped by functions, dimensions,

the best global solutions and mean of optimum solutions, respectively. From the total statistic

data at the bottom of the table 5.13 and Table 5.14 which can be observed that DFPO-r is

able to provide very competitive results both on the best solution quality and on the average

of best optimum solution quality even on the flexible dimensional functions. Specifically,

as the dimensionality of the multimodal function is increased to 100, DFPO-r successfully

demonstrates the superior scalability over all the compared algorithms. It reveals that DFPO-

r has significant performance for high dimensional multimodal problem.

Figure 5.10 shows the growth rate of mean global optimum of DFPO to FPO, DFPO-r

to FPO and the growth rate of computation time of DFPO to FPO. The computation time is

only focused on DFPO and FPO because the computation time of DFPO-r is very close to
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Table 5.13 Ranking of the best solution quality obtained by Table 5.9, Table 5.10, Table 5.11
and Table 5.12 with 5 kinds of algorithms on 𝑓5 − 𝑓10

Fun. Dim. Best
PSO DPO FPO DFPO DFPO-r

𝑓5

10 5 4 2 1 3
50 4 5 1 2 3

100 4 5 2 1 3

𝑓6

10 5 2.5 2.5 2.5 2.5
50 5 4 3 2 1

100 5 4 2 3 1

𝑓7

10 4 5 3 1.5 1.5
50 3 5 4 2 1

100 3 5 4 2 1

𝑓8

10 4 1.5 5 3 1.5
50 4 5 3 2 1

100 4 5 2 3 1

𝑓9

10 1.5 1.5 5 3 4
50 4 5 2 3 1

100 5 4 1 3 2

𝑓10

10 5 4 2 2 2
50 5 4 3 2 1

100 5 4 3 2 1
Total Median 4 4 2.75 2 1.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1.5
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Increased runtime rate=[ Time(DFPO) −Time(FPO) ] / Time(FPO)

Improved mean global optimum rate1 =[ Best(DFPO) − Best(FPO) ] / Best(FPO)

Improved mean global optimum rate2 =[ Best(DFPO−r) − Best(FPO) ] / Best(FPO)

Fig. 5.10 The enhanced rate of mean global optimum and increased time rate
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Table 5.14 Ranking of the averaged best solution quality obtained by Table 5.9, Table 5.10,
Table 5.11 and Table 5.12 with 5 kinds of algorithms on 𝑓5 − 𝑓10

Fun. Dim. Mean
PSO DPO FPO DFPO DFPO-r

𝑓5

10 1 5 4 2 3
50 4 5 2 1 3

100 4 5 1 2 3

𝑓6

10 5 4 2 2 2
50 5 4 3 2 1

100 5 4 3 2 1

𝑓7

10 4 5 3 2 1
50 4 5 3 2 1

100 3 5 4 2 1

𝑓8

10 4 1 5 3 2
50 4 5 3 2 1

100 4 5 3 2 1

𝑓9

10 1.5 1.5 5 4 3
50 5 4 2 3 1

100 5 4 3 2 1

𝑓10

10 4 5 3 1.5 1.5
50 5 4 3 2 1

100 4 5 3 2 1
Total Median 4 5 3 2 1
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DFPO's. In Fig.5.10, 18 kinds of comparable items come from six multimodal functions on

10, 50 and 100 dimensions, respectively. As shown in Fig.5.10, the improved global solution

ratio of DFPO-r is better than DFPO in most cases. It reveals that the dynamic team size

selection method for DFPO-r is validity for multimodal problems.

To summarize, the excellent global optimizing abilities of DFPO and DFPO-r show that

the paralleled information-exchange system constructed by the dynamic virtual teams is able

to accelerate the early convergence rate and improve the global searching capability. It should

be noted that during the optimization process of of DFPO and DFPO-r, the computation

time of both them are slightly increased. However, the increasing space is limited within the

reasonable range.

5.5 Summary

To avoid premature problem and enhance the capability of global exploration for multi-

modal problems, a new algorithm DFPO is proposed in this chapter, to build a paralleled

information-exchange system based on dynamic virtual team. The dynamic virtual team is

a self-organization team that according to the nearest neighbour clustering. Each individ-

ual automatically is denoted as the team leader. The main function of the team leader is to

obtain the neighbour team's best experience. It is worth noting that one of team members

may belong to another group concurrently. The expansion of individual best experience and

the team best experience is carried out by this kind of multiple memberships. Consequently

an improved Dynamic Fitness Predator Optimization (DFPO) is proposed to strengthen the

global searching effectiveness. We extensively evaluated the new approach and compared

it with FPO, Dolphin Partner Optimization (DPO) and Standard Particle Swarm Optimiza-

tion (SPSO), with respect to both running time and global solution capability. Experimental

results show that the proposed DFPO could demonstrate the desirable performance for mul-

timodal problems.
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However, fixed team size is not suitable for all of the real situations. The strategy of

team size selection is also presented in this chapter based on the idea that a team size with a

higher population diversity is able to prevent solutions from clustering too tightly in the local

search space. Then DFPO with dynamic team size selection strategy is utilized in DFPO-

r. In DFPO-r, two kinds of team sizes are randomly selected from the sizes pool, which

is designed by a real situation. Comparing their population diversities, the one with higher

population diversity will be kept as the current team size. A paralleled information-exchange

system is created by these dynamic virtual teams. Which is also able to enhance the global

optimal capability and speed up convergence rate during the process of searching. To eval-

uate the performance of DFPO-r and DFPO, ten well-known benchmark functions are used

to compare with GBPSO, LBPSO, DPO and FPO. Experimental results demonstrate that

both DFPO-r and DFPO have desirable performances for multimodal functions. In addition,

DFPO-r shows better robust performance in most cases compared with DFPO.
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Chapter 6

Modified Bare Bones Particle Swarms

for Large Scale Global Optimization

In today's digital world, with ever increasing amounts of readily-available data comes the

need to solve optimization problems of unprecedented sizes. Machine learning, compressed

sensing, natural language processing, truss topology design and computational genetics are

some of many prominent application domains where it is easy to formulate optimization

problems with tens of thousands or millions of variables. To the best of the author's knowl-

edge, a number of modified Particle Swarm Optimization algorithms have been suggested to

solve this large scale global optimization. For instance, EPUS-PSO [35], a variation of the

traditional PSO algorithm, which is proposed to solve high-dimensional problems by adjust-

ing the population size to enhance the searching ability and drive particles more efficiently.

DMS-PSO [55], a dynamic multi-swarm PSO algorithm, which is proposed to dynamically

change the neighbourhood structure for a higher degree of swarm diversity. However, the

performance of these algorithms are influenced by their control parameters. The best values

for the control parameters remain problem dependent, and need to be tuned for each problem.

The Bare Bones Particle Swarms Optimization (BBPSO) is a simple and parameter-free al-

gorithm where the positions of particles are sampled from Gaussian distribution. Although
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BBPSO is extensively used in literature, it also suffers premature convergence problem. In

this chapter, a new modified Bare Bones Particle Swarms Optimization employed Differen-

tial Evolution strategy (BBPSO-DE) is proposed for large scale optimization.

6.1 Overview and Preliminaries

The bare bones Particle Swarms Optimization (BBPSO) proposed by Kennedy [45] is a sim-

ple, control parameter free algorithm. Similarly, BBPSO also faces premature convergence

problem, and can be trapped easily at local optimum when the global best position 𝑔𝑏𝑒𝑠𝑡

of the whole swarm couldn't be updated any more. BBPSO-MC-lbest is a new improved

BBPSO algorithm incorporating mutation and crossover operators of Differential Evolution,

which has achieved better performance for some application problems [106], [105].

6.1.1 BBPSO-MC-lbest Algorithm

In this part, we basically introduce the BBPSO integrated Differential Evolution strategy in

𝑙𝑏𝑒𝑠𝑡 topology, BBPSO-MC-lbest algorithm, which has achieved better performance for the

phase equilibrium, chemical equilibrium and phase stability application problems [105].

It is worth noting that the standard deviation 𝜎(|𝑝𝑖 − 𝑝𝑔|) is an important parameter for

scaling the amplitude of particles' trajectories. If the standard deviation is zero, that is the

current particle's 𝑝𝑖 position happens to be the same as that of 𝑝𝑔, then the stochastic mean 𝜇

is the value of the particle's 𝑝𝑏𝑒𝑠𝑡 position itself. In this case, the 𝑔𝑏𝑒𝑠𝑡 of the whole swarm

will not be updated. Consequently, the algorithm faces premature convergence problem, and

can be trapped easily at local optimum. It seems reasonable that the performance of BBPSO

could be improved by redefining the standard deviation between the current particle's 𝑝𝑏𝑒𝑠𝑡

and 𝑔𝑏𝑒𝑠𝑡 points. A simplified approach to get around this is to assign a small constant (such

as 0.001) for the standard deviation when it equals to zero. However, this implies that the
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extent of exploration and exploitation for 𝑔𝑏𝑒𝑠𝑡 position will be constant in the remaining

iterations. In order to have an adaptive balance between exploration and exploitation search

nature, a new BBPSO incorporating mutation and crossover operators of Differential Evolu-

tion (DE) [68] is confirmed to be a very competitive Optimization for the standard Gaussian

version. In BBPSO-MC-lbest algorithm, mutation and crossover operators of DE are em-

ployed for updating 𝑝𝑙 when the current particle's 𝑝𝑖 objective function value happens to be

the same as that of 𝑝𝑙:

𝑝𝑙 =
⎧
⎪
⎨
⎪
⎩

𝑝𝑖1
+ 0.5 ∗ (𝑝𝑖2

− 𝑝𝑖3
) if 𝑈(0, 1) < 0.5

𝑝𝑙 otherwise
(6.1)

Where 𝑖 ≠ 𝑖1 ≠ 𝑖2 ≠ 𝑖3, and 𝑝𝑖1
,𝑝𝑖2

,𝑝𝑖3
are randomly chosen from the previous best po-

sitions. 𝑈(0, 1) is a function that generates uniformly distributed random numbers between

zero and one. There is a 50% chance that the 𝑝𝑙 is updated by the mutation operator of DE,

whose information comes from the randomly chosen previous best positions other than the

current particle's previous 𝑙𝑏𝑒𝑠𝑡 position. In this case, the mutation and crossover rates of

0.5 each are implemented without any selection operation of DE. Furthermore, based on the

equation (6.1), there is also a 50% possibility that the 𝑝𝑙 keeps the previous position. If the

standard deviation 𝜎 approaches zero, that is the current particle's 𝑝𝑏𝑒𝑠𝑡 equals to the 𝑙𝑏𝑒𝑠𝑡

position, then the 𝜎 is set as a small constant (0.001) according to the publication of Zhang

et al. [106].

In short, the performance of BBPSO could be improved by updating the 𝑙𝑏𝑒𝑠𝑡 position

with mutation and crossover operators of DE and setting the standard deviation 𝜎 to a small

fixed number when the difference of 𝑝𝑏𝑒𝑠𝑡 and 𝑙𝑏𝑒𝑠𝑡 reaches zero. The main function of

BBPSO-MC-lbest can be summarized as shown in Algorithm 12. Algorithm 12 demon-

strates the main function of BBPSO-MC-lbest. The algorithm checks the objective value of

𝑝𝑖 if it is the same as that of 𝑝𝑙, the 𝑙𝑏𝑒𝑠𝑡-index particle is updated using equation (6.1). Other
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Algorithm 12 Main Function of BBPSO-MC-lbest
1: Initialize particles 𝑥𝑖: 𝑥𝑖 = 𝑟𝑎𝑛𝑑() ∈ (𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥), 𝑖 ∈ [1..𝑛]
2: Initialize personal best particles 𝑝𝑖, 𝑖 ∈ [1..𝑛]
3: Initialize local best particles 𝑝𝑙, 𝑙 ∈ [1..𝑛]
4: for each particle 𝑥𝑖 do
5: if 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖) = 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑙) then
6: Randomly set 𝑖1, 𝑖2, 𝑖3.(𝑖 ≠ 𝑖1 ≠ 𝑖2 ≠ 𝑖3)
7: if 𝑈[0, 1] < 0.5 then
8: 𝑝𝑙 = 𝑝𝑖1

+ 0.5 ∗ (𝑝𝑖2
− 𝑝𝑖3

)
9: end if

10: end if
11: 𝜇 = 𝑝𝑖 + 𝑝𝑙

2 , 𝜎 = |𝑝𝑖 − 𝑝𝑙|
12: if 𝜎 = 0 then
13: 𝜎 = 0.001
14: end if

15: 𝑥𝑖 =
{

𝑁(𝜇, 𝜎) if 𝑈(0, 1) < 0.5
𝑝𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

16: if 𝑥𝑖 < 𝑥𝑚𝑖𝑛 OR 𝑥𝑖 > 𝑥𝑚𝑎𝑥 then
17: 𝑥𝑖 = 𝑥𝑚𝑖𝑛 + 𝑈[0, 1] ∗ (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
18: end if
19: end for
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particles are updated using BBExp algorithm as shown in equation (2.9). If the position of

the particle happens to be the same as that of 𝑝𝑙, then 𝜎 is assigned a value of 0.001. The

𝑙𝑏𝑒𝑠𝑡 swarm model, often referred to as a local topology is an open issue to BBPSO-MC-

lbest algorithm. There are number of different local topologies such as ring, wheel, or won

Neumann have been mentioned by some publications [44], [16], [49]. In [106], three kinds

of local topology are tested for unimodal and multimodal functions with neighbourhood size

of 2, 4 and 6 respectively. Experimental results show that BBPSO-MC-lbest with 2 neigh-

bours perform relatively better for majority of the benchmark functions, especially for the

multimodal functions. Furthermore, as the size of neighbourhood increases from 2 to 6 for

BBPSO-MC-lbest, the mean value moves closer to that obtained by BBPSO-MC-gbest. This

implies that increased neighbourhood size results in higher extent of local exploitation than

global exploration. It is important to note that these experimental analyses are based on the

30-dimensional benchmark functions in [106]. In this chapter, six widely used benchmark

functions are extensively set to 1000 dimensions to investigate the performance of BBPSO-

MC-lbest. However, experimental results show that the performance of BBPSO-MC-lbest

with 2 neighbours has no advantages compared with BBPSO-MC-gbest. So in the next sec-

tion, a new BBPSO-DE algorithm is proposed for large scale optimization.

6.1.2 Solutions

This chapter empirically analysed the BBPSO-MC-lbest and proposed an improved BBPSO-

DE algorithm using three strategies for the Large Scale Global Optimization (LSGO) prob-

lems. First of all, the ring topologies of explorer-swarm and memory-swarm are defined

for the BBPSO-DE. Specifically, the memory-swarm using ring topology is proposed to im-

prove the swarm diversity. Each particle defined in the BBPSO-DE possesses local memory

including its personal best memory 𝑝𝑖 and its local best memory 𝑙𝑏𝑒𝑠𝑡𝑖. The particles can

explore the search space more broadly by using the local memory-swarm and form a sta-
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ble network retaining the best positions found so far, which is more likely to strengthen the

global exploration while properly maintain the local exploitation. Secondly, the mutation

and crossover operators of Differential Evolution (DE) are employed for updating the local

memory 𝑙𝑏𝑒𝑠𝑡𝑖 when the current particle's 𝑝𝑖 objective function value happens to be the same

as that of 𝑙𝑏𝑒𝑠𝑡𝑖. The global search performance can be improved by updating the 𝑙𝑏𝑒𝑠𝑡𝑖 with

the DE strategy. However, there is also a 50% possibility that the 𝑙𝑏𝑒𝑠𝑡𝑖 keeps the previous

position. It seems reasonable that the search performance of BBPSO-DE can be improved

by redefining the mean 𝜇 and the standard deviation 𝜎. Thus, the center position of all parti-

cles 𝑋 is proposed to replace the 𝑝𝑖. In this case, the new definitions of the mean 𝜇 and the

standard deviation 𝜎 maintain the swarm diversity by increasing the particles' variance. The

empirical study reveals that the proposed strategies of BBPSO-DE are capable of inducing

individual independent behaviours which are robust and effective premature in avoidance.

6.2 Proposal of BBPSO-DE for LSGO Problems

In this section, a simple yet effective BBPSO-DE algorithm [98] using the ring neighbour-

hood topology, which does not require any parameters, is proposed for large scale global

optimization.

6.2.1 Ring Topology of BBPSO-DE

Niching is an important technique for large scale multimodal optimization. Reference [54]

demonstrates that an 𝑙𝑏𝑒𝑠𝑡 PSO using a ring topology is able to induce stable niching be-

haviours. The definition originally introduced by M.Clerc [15] is that a swarm can be viewed

as a combination of explorer-swarm and memory-swarm according to their differences in

functionality. The explorer-swarm is composed of particles moving around in large step

sizes and more frequently, each particle strongly influenced by its velocity and previous po-
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Fig. 6.1 Ring topology of explorer-swarm

sition. The memory-swarm consists of personal bests of all particles. The memory-swarm

is more effective in retaining better positions found so far by the swarm as a whole. In this

part, the ring topologies of explorer-swarm and memory-swarm used by BBPSO-DE are

described respectively.

Figure 6.1 shows an example of explorer-swarm using a ring topology with a popula-

tion of four particles. Here the explorer-swarm consists of particles (𝑥𝑖) as marked from

numbers 1 to 4. Each member interacts only with its immediate left and right neighbours.

The explorer-swarm, sampled from Gaussian distribution, is more effective in exploring the

widely available search space. It is important to note that each particle defined in the BBPSO-

DE possesses local memory including its personal best memory 𝑝𝑖 and its local best memory

𝑙𝑏𝑒𝑠𝑡𝑖.

Figure 6.2 shows the memory-swarm using ring topology with a population of four per-

sonal best memory (𝑝𝑖) and four local best memory (𝑙𝑏𝑒𝑠𝑡𝑖). Each 𝑙𝑏𝑒𝑠𝑡𝑖 has three informants,

from two immediate neighbouring particles' best memory and its own best memory. It also

illustrates the relationship between 𝑝𝑖 and 𝑙𝑏𝑒𝑠𝑡𝑖. Figure 6.3 describes the detailed proce-

101



Modified Bare Bones Particle Swarms for Large Scale Global Optimization

Fig. 6.2 Ring topology of memory-swarm

dure of how to achieve the 𝑙𝑏𝑒𝑠𝑡 swarm. For instance, we suppose that 𝑝𝑏𝑒𝑠𝑡𝑛 represents the

left neighbour of 𝑝𝑏𝑒𝑠𝑡1, and 𝑝𝑏𝑒𝑠𝑡2 shows the right neighbour. The best one from the three

informants is chosen as 𝑙𝑏𝑒𝑠𝑡1. Similarly, a swarm of 𝑙𝑏𝑒𝑠𝑡𝑖 is created by chosen the best one

from the 𝐿𝑝𝑏𝑒𝑠𝑡 swarm, the 𝑝𝑏𝑒𝑠𝑡 swarm and the 𝑅𝑝𝑏𝑒𝑠𝑡 swarm.

6.2.2 Integrated BBPSO-DE with Differential Evolution

The mutation and crossover operators of DE are employed for updating 𝑙𝑏𝑒𝑠𝑡𝑖 when the

current particle's 𝑝𝑖 objective function value happens to be the same as that of 𝑙𝑏𝑒𝑠𝑡𝑖:

𝑙𝑏𝑒𝑠𝑡𝑖 =
⎧
⎪
⎨
⎪
⎩

𝑝𝑖1
+ 0.5 ∗ (𝑝𝑖2

− 𝑝𝑖3
) if 𝑈(0, 1) < 0.5

𝑙𝑏𝑒𝑠𝑡𝑖 otherwise
(6.2)

Where 𝑖 ≠ 𝑖1 ≠ 𝑖2 ≠ 𝑖3, and 𝑝𝑖1
,𝑝𝑖2

,𝑝𝑖3
are randomly chosen from the previous personal

best positions. 𝑈(0, 1) is a function that generates uniformly distributed random numbers

between zero and one. From equation 6.2, we can see that there is a 50% chance that the 𝑙𝑏𝑒𝑠𝑡𝑖
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Fig. 6.3 Group three swarms as one team swarm

is updated by the mutation operator of DE, whose information comes from the randomly

chosen previous best positions. However, there is a 50% possibility that the 𝑙𝑏𝑒𝑠𝑡𝑖 keeps the

previous position. If the standard deviation 𝜎 approaches zero, that is the current particle's

𝑝𝑏𝑒𝑠𝑡 equals to the 𝑙𝑏𝑒𝑠𝑡 position, then the global best position of the whole swarm will

not be updated. Thus, the new definitions of the mean 𝜇 and the standard deviation 𝜎 is

developed to maintain the swarm diversity by increasing the particles' variance.

6.2.3 Redefining the Sample Equations

In general, the particles can explore the search space more broadly by using individual's

local memory-swarm to form a stable network retaining the best positions found so far. In

particularly for the 𝑙𝑏𝑒𝑠𝑡𝑖 shown in Fig.6.2, which is more likely to strengthen the global

exploration capability while successfully maintain the local exploitation functionality. In

BBPSO-DE, we try to redefine the equations of mean 𝜇 and standard deviation 𝜎 with 𝑙𝑏𝑒𝑠𝑡𝑖

and 𝑋. Here is the new equations used in BBPSO-DE.
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𝜇 = 𝑙𝑏𝑒𝑠𝑡𝑖 + 𝑋
2 (6.3)

𝜎 = |𝑙𝑏𝑒𝑠𝑡𝑖 − 𝑋| (6.4)

𝑥𝑖 =
⎧
⎪
⎨
⎪
⎩

𝑁(𝜇, 𝜎) if 𝑈(0, 1) < 0.5

𝑙𝑏𝑒𝑠𝑡𝑖 otherwise
(6.5)

Where 𝑋 denotes the centroid position of all particles. The swarm's centroid position is first

used in Competitive Swarm Optimization (CSO) [12], which is a novel swarm intelligence

algorithm for large scale optimization. The motivation for us to introduce centroid position

in BBPSO-DE is to increase swarm diversity, which potentially enhances the global search

capability of BBPSO-DE.

6.2.4 Pseudocode of BBPSO-DE

BBPSO-DE is a variant of BBPSO-MC-lbest. The differences between them are the new

equations for the Gaussian distribution and ring topology of BBPSO-DE. The main function

of BBPSO-DE is demonstrated in Algorithm 13. In algorithm 13, all the different lines

with BBPSO-MC-lbest are marked with underline. As shown in lines 13, 15 and 20, a new

method is proposed to calculate the Gaussian distribution. We consider that this method is

useful to improve the search performance of BBPSO-DE.

In order to investigate the performance of BBPSO-DE, we present here a compared al-

gorithm named Modified Competitive Particle Swarm Optimization (MCPSO). Which can

be seemed as a variant of PSO used for large scale optimization. In MCPSO, each particle

only has one specified neighbourhood. The updated rules are borrowed from CSO [12].
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Algorithm 13 Pseudocode of BBPSO-DE
1: Initialize particles 𝑥𝑖: 𝑥𝑖 = 𝑟𝑎𝑛𝑑() ∈ (𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥), 𝑖 ∈ [1..𝑛]
2: Initialize personal best particles 𝑝𝑖, 𝑖 ∈ [1..𝑛]
3: Initialize local best particles 𝑙𝑏𝑒𝑠𝑡𝑖, 𝑖 ∈ [1..𝑛]
4: Initialize iteration counter, 𝑡 = 0, 𝑡𝑚𝑎𝑥 = 𝑀𝑎𝑥𝑖𝑡𝑒𝑟
5: while 𝑡 < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 do
6: for each particle 𝑥𝑖 do
7: if 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖) = 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑙𝑏𝑒𝑠𝑡𝑖) then
8: Randomly set 𝑖1, 𝑖2, 𝑖3.(𝑖 ≠ 𝑖1 ≠ 𝑖2 ≠ 𝑖3)
9: if 𝑈[0, 1] < 0.5 then

10: 𝑙𝑏𝑒𝑠𝑡𝑖 = 𝑝𝑖1
+ 0.5 ∗ (𝑝𝑖2

− 𝑝𝑖3
)

11: end if
12: end if
13: Get the mean value of all particles: 𝑋
14:

15: 𝜇 = 𝑙𝑏𝑒𝑠𝑡𝑖 + 𝑋
2 , 𝜎 = |𝑙𝑏𝑒𝑠𝑡𝑖 − 𝑋|

16:
17: if 𝜎 = 0 then
18: 𝜎 = 0.001
19: end if

20: 𝑥𝑖 =
{

𝑁(𝜇, 𝜎) if 𝑈(0, 1) < 0.5
𝑙𝑏𝑒𝑠𝑡𝑖 otherwise

21:
22: if 𝑥𝑖 < 𝑥𝑚𝑖𝑛 OR 𝑥𝑖 > 𝑥𝑚𝑎𝑥 then
23: 𝑥𝑖 = 𝑥𝑚𝑖𝑛 + 𝑈[0, 1] ∗ (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
24: end if
25: if 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) < 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑏𝑒𝑠𝑡𝑖) then
26: 𝑝𝑏𝑒𝑠𝑡𝑖 = 𝑥𝑖
27: end if
28: Create 𝑝𝑏𝑒𝑠𝑡's left and right neighbour swarms
29: Group three swarms as a team: 𝑙𝑏𝑒𝑠𝑡𝐺𝑟𝑝
30:
31: 𝑙𝑏𝑒𝑠𝑡𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑙𝑏𝑒𝑠𝑡𝐺𝑟𝑝𝑖))
32: end for
33: 𝑡 = 𝑡 + 1
34: end while
35: Output the global optimum of the team 𝑙𝑏𝑒𝑠𝑡𝐺𝑟𝑝
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𝑣𝑖(𝑡) = 𝑟1 ∗ 𝑣𝑖(𝑡 − 1) + 𝑟2 ∗ (𝑙𝑏𝑒𝑠𝑡𝑖(𝑡 − 1) − 𝑥𝑖(𝑡)) + 𝑟3 ∗ (𝑋(𝑡 − 1) − 𝑥𝑖(𝑡 − 1)) (6.6)

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡) (6.7)

Where 𝑡 is the current iteration (generation) number, 𝑣𝑖(𝑡) and 𝑥𝑖(𝑡) represent the velocity

and position of the particle 𝑖, respectively. 𝑟1, 𝑟2, 𝑟3 are three independent random numbers

uniquely generated at every update for each individual dimension in the range [0,1]. If each

particle 𝑥𝑖 only has one neighbourhood, then its 𝑙𝑏𝑒𝑠𝑡𝑖 can be seemed as a result of pairwise

competition. This pairwise competition mechanism has been used by some researchers and

showed promising performance on large scale problems.

6.3 Experiment

The aim of the experiment is to compare the global search ability and computation time

of BBPSO-DE with GBest PSO, LBest PSO, BBPSO-MC-lbest and MCPSO on various

dimentional benchmarks including of unimodal and multmodal problems.

6.3.1 Evaluation Method

All the experiments are implemented on a PC with an Intel Core i7 860, 2.8 GHz CPU

and Microsoft Windows 7 Professional SP1 64-bit operating system, and all algorithms are

written in Matlab language. The bounds and global minimums of six functions are shown in

Table 6.1. These benchmarks were chosen for their variety. Functions 𝑓1--𝑓3 are continuous,

convex and unimodal test problems, 𝑓4--𝑓6 are highly complex multimodal problems with

many local minima. The experimental parameters are shown in Table 6.2.
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Table 6.1 The bound and global Minimum of Benchmark Function

Function Bound Optimum

Rotated Hyper-Ellipsoid 𝑓1(𝑥) =
𝐷
∑
𝑗=1

𝑗
∑
𝑘=1

𝑥2
𝑘 [−65.536, 65.536]𝐷 0

Sphere 𝑓2(𝑥) =
𝐷
∑
𝑗=1

𝑥2
𝑖 [−100, 100]𝐷 0

Schwefel 1.2 𝑓3(𝑥) =
𝐷
∑
𝑗=1

(
𝑗

∑
𝑘=1

𝑥𝑘)2 [−100, 100]𝐷 0

Ackley 𝑓4(𝑥) = −𝑎 ∗ exp(−0.02 ∗ (𝐷−1
𝐷−1
∑
𝑗=1

𝑥2
𝑗 )

1
2 )

− exp(𝐷−1
𝐷
∑
𝑗=1

cos(2𝜋𝑥𝑗)) + 𝑎 + exp, 𝑎 = 20 [−32, 32]𝐷 0

Rastrigin 𝑓5(𝑥) =
𝐷
∑
𝑗=1

(𝑥2
𝑗 − 10 ∗ cos(2𝜋𝑥𝑗)) + 10 ∗ 𝐷 [−5.12, 5.12]𝐷 0

Griewank 𝑓6(𝑥) = 1
4000

𝐷
∑
𝑖=1

𝑥2
𝑗 −

𝐷
∏
𝑗=1

cos(
𝑥𝑗

√𝑗
) + 1 [−600, 600]𝐷 0

Note: D represents the dimensions of benchmark function, 𝑗 ∈ [1, 𝐷].

Table 6.2 Experimental parameters setting of algorithms

Experiment Algorithm Parameters
GBest PSO 𝑐1 = 𝑐2 = 2.05, 𝜒 = 0.72984

Poulation=200 LBest PSO 𝑐1 = 𝑐2 = 2.05, 𝜒 = 0.72984
MCPSO 𝑟𝑎𝑛𝑑(𝑟1, 𝑟2, 𝑟3) ∈ [0, 1]

Run Number=30 BBPSO-MC-lbest None
BBPSO-DE None
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Fig. 6.4 Convergence graphs of 𝑓1 & 𝑓2 on 1000 dimensions

6.3.2 Experimental Results and Discussion

Experimental results including the best optimum error and the mean optimum error over 30

independent trials are displayed in Table 6.3 and Table 6.4. To all the algorithms, the marked

result with bold type and down arrow denotes that this algorithm is able to provide the best

competitive global optimum compared with others.

The statistical results in Table 6.3 and Table 6.4 show that BBPSO-DE has significantly

performance on 300-D, 500-D and 1000-D functions. While, the standard PSO including

LBest PSO and GBest PSO have better performance than BBPSO-DE on 30-D and 50-D

functions. It reveals that PSO has high search efficiency on relatively low-dimensional prob-

lems. However, its performance deteriorates rapidly as the dimensionality of the problem

increases. Different with LBest PSO and GBest PSO, BBPSO-DE has shown very good

scalability to the search dimension, especially in the high dimensional cases.

In most of cases, BBPSO-MC-lbest shows better performance than LBest PSO and GBest

PSO. It seems that DE strategy is able to improve the performance of BBPSO-MC-lbest as the

dimensionality of the problem increases. However, the outstanding performance of BBPSO-

DE on 500-D and 1000-D test functions should be attributed to the redefined the equations of
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Table 6.3 Statistical results of optimization errors on unimodal functions after 30 trials

Dim. Iter. Algorithm Best Mean Std. Time(s)

𝑓1 30 400
LBest PSO 1.04e+01 1.70e+01 5.98e+00 3.00e+01
Gbest PSO 4.69e-09↓ 1.86e+04 1.63e+04 1.35e+01

BBPSO-MC-lbest 5.23e+01 6.41e+01 1.61e+01 3.84e+01
BBPSO-DE 1.93e+00 3.43e+00↓ 2.17e+00 2.80e+01

𝑓1 300 400
LBest PSO 1.29e+07 1.37e+07 9.53e+05 1.62e+03
Gbest PSO 1.30e+07 1.71e+07 3.66e+06 5.64e+02

BBPSO-MC-lbest 1.02e+07 1.09e+07 9.40e+05 1.69e+03
BBPSO-DE 1.76e+05↓ 2.14e+05↓ 3.38e+04 1.03e+03

𝑓1 1000 400
LBest PSO 3.07e+08 3.23e+08 1.92e+07 2.34e+04
Gbest PSO 3.61e+08 3.93e+08 4.62e+07 7.83e+03

BBPSO-MC-lbest 2.05e+08 2.14e+08 7.62e+06 2.41e+04
MCPSO 6.68e+06 8.13e+06 1.67e+06 4.03e+02

BBPSO-DE 5.57e+06↓ 5.86e+06↓ 2.61e+05 1.08e+04

𝑓2 30 400
LBest PSO 9.03e-01 2.66e+00 1.04e+00 3.06e+01
Gbest PSO 2.97e-09↓ 2.36e-08↓ 2.43e-08 1.97e+01

BBPSO-MC-lbest 4.22e-05 8.23e-05 3.83e-05 1.48e+02
BBPSO-DE 9.19e-02 1.57e+00 1.64e+00 3.40e+01

𝑓2 300 1000
LBest PSO 4.60e+04 5.50e+04 5.47e+03 4.76e+02
Gbest PSO 1.31e+05 1.75e+05 3.09e+04 3.13e+02

BBPSO-MC-lbest 1.02e+05 1.07e+05 3.00e+03 1.12e+03
BBPSO-DE 1.22e+03↓ 1.62e+03↓ 3.37e+02 1.10e+03

𝑓2 1000 1000
LBest PSO 9.51e+05 1.00e+06 3.61e+04 1.82e+03
Gbest PSO 1.33e+06 1.52e+06 9.96e+04 1.18e+03

BBPSO-MC-lbest 8.11e+05 8.38e+05 1.84e+04 3.67e+03
MCPSO 2.40e+04 2.91e+04 3.96e+03 1.66e+02

BBPSO-DE 1.09e+04↓ 1.44e+04↓ 4.32e+03 3.65e+03

𝑓3 30 400
LBest PSO 6.52e+02 2.83e+03 1.93e+03 7.89e+01
Gbest PSO 1.70e-01↓ 3.17e+03 2.77e+03 3.31e+01

BBPSO-MC-lbest 3.98e+03 5.39e+03 8.42e+02 1.00e+02
BBPSO-DE 2.63e+01 4.98e+01↓ 2.19e+01 6.54e+01

𝑓3 300 1000
LBest PSO 1.13e+06 1.32e+06 9.60e+04 3.70e+03
Gbest PSO 8.72e+05 1.06e+06 1.53e+05 1.26e+03

BBPSO-MC-lbest 1.07e+06 1.18e+06 9.20e+04 3.84e+03
BBPSO-DE 9.81e+03↓ 1.21e+04↓ 2.05e+03 4.46e+03

𝑓3 1000 1000
LBest PSO 1.08e+07 1.29e+07 1.14e+06 2.34e+04
Gbest PSO 3.61e+08 3.93e+08 4.62e+07 5.90e+04

BBPSO-MC-lbest 1.10e+07 1.28e+07 1.29e+06 5.85e+04
MCPSO 1.94e+05↓ 2.54e+05↓ 4.59e+04 3.38e+03

BBPSO-DE 5.54e+05 8.66e+05 2741e+05 6.72e+04
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Table 6.4 Statistical results of optimization errors on multimodal functions after 30 trials

Dim. Iter. Algorithm Best Mean Std. Time(s)

𝑓4 50 1000
LBest PSO 1.19e-01 5.68e-01↓ 4.66e-01 6.17e+01
Gbest PSO 6.81e-08↓ 2.21e+00 3.63e+00 2.96e+01

BBPSO-MC-lbest 3.56e-01 1.01e+00 4.04e-01 9.46e+01
BBPSO-DE 6.07e-02 1.32e+00 7.82e-01 9.76e+01

𝑓4 500 2000
LBest PSO 1.97e+01 2.00e+01 1.02e-01 7.83e+02
Gbest PSO 1.93e+01 1.95e+01 1.11e-01 3.89e+02

BBPSO-MC-lbest 1.60e+01 1.65e+01 2.38e-01 1.39e+03
BBPSO-DE 4.17e+00↓ 5.03e+00↓ 6.88e-01 1.34e+03

𝑓4 1000 2000
LBest PSO 2.00e+01 2.02e+01 1.09e-01 1.86e+03
Gbest PSO 1.97e+01 1.98e+01 5.30e-02 1.04e+03

BBPSO-MC-lbest 1.77e+01 1.81e+01 1.30e-01 3.32e+03
MCPSO 7.04e+00 7.30e+00 1.82e-01 1.57e+03

BBPSO-DE 5.13e+00↓ 6.03e+00↓ 5.98e-01 2.97e+03

𝑓5 50 1000
LBest PSO 1.45e+02 1.98e+02 2.62e+01 5.54e+01
Gbest PSO 1.23e+02 2.07e+02 4.80e+01 2.36e+01

BBPSO-MC-lbest 4.94e+01 6.71e+01 9.55e+00 9.03e+01
BBPSO-DE 4.53e-02↓ 1.41e+00↓ 1.36e+00 8.54e+01

𝑓5 500 2000
LBest PSO 4.73e+03 5.18e+03 2.29e+02 6.97e+02
Gbest PSO 4.02e+03 4.26e+03 1.75e+02 3.65e+02

BBPSO-MC-lbest 2.78e+03 2.98e+03 8.00e+01 1.28e+03
BBPSO-DE 5.73e+02↓ 7.17e+02↓ 1.25e+02 1.19e+03

𝑓5 1000 2000
LBest PSO 1.13e+04 1.20e+04 3.34e+02 1.57e+03
Gbest PSO 9.65e+03 1.02e+04 3.50e+02 8.75e+02

BBPSO-MC-lbest 7.89e+03 8.20e+03 1.39e+02 2.77e+03
MCPSO 6.89e+03 7.34e+03 3.37e+02 1.48e+03

BBPSO-DE 2.28e+03↓ 2.71e+03↓ 4.30e+02 2.62e+03

𝑓6 50 1000
LBest PSO 4.28e-02 8.42e-02↓ 2.18e-02 7.10e+01
Gbest PSO 1.22e-15↓ 6.02e+00 2.29e+01 3.23e+01

BBPSO-MC-lbest 7.23e-01 9.06e-01 7.98e-02 1.07e+02
BBPSO-DE 2.69e-01 8.32e-01 1.98e-01 1.07e+02

𝑓6 500 2000
LBest PSO 5.29e+02 5.99e+02 4.31e+01 9.48e+02
Gbest PSO 2.30e+03 3.31e+03 3.74e+02 4.40e+02

BBPSO-MC-lbest 1.44e+03 1.59e+03 6.65e+01 1.55e+03
BBPSO-DE 2.44e+01↓ 4.86e+01↓ 2.26e+01 1.52e+03

𝑓6 1000 2000
LBest PSO 4.34e+03 4.75e+03 2.12e+02 2.24e+03
Gbest PSO 9.31e+03 1.06e+04 7.33e+02 1.10e+03

BBPSO-MC-lbest 5.54e+03 5.90e+03 1.72e+02 3.46e+03
MCPSO 1.91e+02 2.30e+02 1.79e+01 1.79e+03

BBPSO-DE 9.38e+01↓ 1.38e+02↓ 6.53e+01 3.41e+03
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6.3 Experiment
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Fig. 6.5 Convergence graphs of 𝑓3 & 𝑓4 on 1000 dimensions

0 500 1000 1500 2000

10

3

10

4

10

5

Iterations

M
e
a
n
 
B
e
s
t
 
F
i
t
n
e
s
s
 
V
a
l
u
e
s

Rastrigin function

 

 

MCPSO

BBPSO-DE

LBestPSO

BBPSO-MC-lbest

GBestPSO

0 500 1000 1500 2000

10

2

10

3

10

4

10

5

Griewank function

Iterations

M
e
a
n
 
B
e
s
t
 
F
i
t
n
e
s
s
 
V
a
l
u
e
s

 

 

MCPSO

BBPSO-DE

LBestPSO

BBPSO-MC-lbest

GBestPSO

Fig. 6.6 Convergence graphs of 𝑓5 & 𝑓6 on 1000 dimensions
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Fig. 6.7 Comparison of mean best optimum errors on various dimensions
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Fig. 6.8 Comparison of computation time on various dimensions

112



6.4 Summary

mean 𝜇, standard deviation 𝜎 and ring topology. The new standard deviation 𝜎(|𝑙𝑏𝑒𝑠𝑡𝑖 − 𝑋)

maintains the swarm diversity by increasing the particle' variance. The ring topology of

𝑚𝑒𝑚𝑜𝑟𝑦 − 𝑠𝑤𝑎𝑟𝑚 is more likely to strengthen the global exploration capability of BBPSO-

DE and successfully maintain the local exploration ability. Figure 6.4, Fig.6.5 and Fig.6.6

show that both MCPSO and BBPSO-DE have the significant scalability on six test functions

when the dimensionality of benchmark function up to 1000. In addition, BBPSO-DE has

better performance than MCPSO on most of test functions except Schwefel 1.2 function.

In order to get an overall picture of the scalability of BBPSO-DE, the mean optimum

errors obtained by four algorithms on two selected benchmarks on various dimensions are

plotted in Fig.6.7. From figure 6.7, it can be noticed that BBPSO-DE shown very good

scalability to the search dimension, that is, the performance does not deteriorate seriously as

the dimension increases. However, the computation time of BBPSO-DE and BBPSO-MC-

lbest shown in Fig.6.8 are greatly increased with high dimensionality. One of reasons is that

using a normal distribution for scaling the amplitude of particles' trajectories is high time

consumption to BBPSO.

To summarize, experiment results show that the performance of BBPSO-DE doesn't de-

teriorate seriously as the dimension increases. According to the experimental analysis, DE

strategy is able to eliminate the stagnation of swarm and maintain the diversity of swarm

as the dimensionality of problem increases. Furthermore, the outstanding performance of

BBPSO-DE should be attributed to the redefined equations of 𝜇 and 𝜎 and the local memory-

swarm topology. In conclusion, BBPSO-DE is a very competitive algorithm for solving both

unimodal and multimodal large scale problems without any control parameters.

6.4 Summary

In this chapter, a new BBPSO-DE algorithm is proposed to resolve large scale problems.

This algorithm is based on the modified BBPSO algorithm and employed Differential Evo-
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lution strategy. In BBPSO-DE, several strategies are integrated to alleviate premature con-

vergence. These manipulations are mainly including using ring neighbourhood topology,

introducing particle's local best memory (𝑙𝑏𝑒𝑠𝑡𝑖) and centroid position of all particles (𝑋) to

scale the standard deviation (𝜎). When a particle's local best memory is equal to its personal

best position, mutation and crossover operators of DE strategy is adopted. The motivation

of using the ring neighbourhood topology is that it is more likely to strengthen the swarm's

global exploration capability while successfully maintains the local exploitation function-

ality. In BBPSO-DE, we try to redefine the equations of mean (𝜇) and standard deviation

(𝜎) with 𝑙𝑏𝑒𝑠𝑡𝑖 and 𝑋 instead of 𝑝𝑖 and 𝑝𝑔. Empirical results demonstrate that the redefined

equations are contributions to the outstanding performance of BBPSO-DE for large scale

problems. Furthermore, the mutation and crossover operators of DE are employed for up-

dating the local best memory (𝑙𝑏𝑒𝑠𝑡𝑖), which increases the swarm diversity and enhances the

search performance of BBPSO-DE as the dimensionality of problem increases. In addition,

one key advantage of the proposed BBPSO-DE is that there is no need to specify any control

parameters that are often required in traditional stochastic algorithms.

However, the study of BBPSO-DE has some limitations to be improved in our future

research. Firstly, a Gaussian distribution used for BBPSO-DE is time-consumption and the

computation time of BBPSO-DE is greatly increased with the increasing dimensionality.

Secondly, the comparison against other state-of-the-art algorithms for LSGO should be fur-

ther explored. In the end, the statistical results of mean optimization errors and standard

deviation can be misleading when reporting the results for experiment, the Mann Whitney

U test and a modified Bonferroni procedure will be used for our further evaluation analysis.

114



Chapter 7

Dynamic Heterogeneous Particle Swarm

Optimization

The standard PSO and most of its modifications make use of homogeneous swarms where

all of the particles follow exactly the same behavior. Models that consider populations of

homogeneous individuals are attractive because of their conceptual simplicity. However,

heterogeneity is ubiquitous in nature [31]. Modelled with populations of heterogeneous in-

dividuals, the optimization algorithm therefore has the ability to maintain an appropriate

balance between exploration and exploitation throughout the search process. Recently, the

Static Heterogeneous Particle Swarm Optimization (SHPSO) has been studied by more and

more researchers. In SHPSO, the different search behaviours assigned to particles do not

change during the search process. As a consequence of this, the inappropriate population

size of exploratory particles could leave the SHPSO algorithm with great difficulties of es-

caping local optima. This motivated our attempt to improve the performance of SHPSO by

introducing the dynamic heterogeneity. The self-adaptive heterogeneity is able to alter its

heterogeneous structure according to some events caused by the behaviour of the swarm.

According to the different types of heterogeneity, we propose two kinds of Dynamic Hetero-

geneous Particle Swarm Optimization (DHPSO) models, namely, DHPSO-d and DHPSO-p.
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7.1 Overview and Preliminaries

7.1.1 Concept of the Heterogeneous PSO

Particle Swarm Optimization (PSO) [21] is a stochastic, population-based optimization method,

which has been successfully applied to a number of applications. In the vast majority of PSO

models, it is assumed that the swarm is composed of homogeneous individuals. Models that

consider populations of homogeneous individuals are attractive because of their conceptual

simplicity. However, heterogeneity is ubiquitous in nature. Recently, heterogeneous systems

have drawn the attention of researchers working in different areas of swarm intelligence be-

cause designing heterogeneous models more accurately and approximately resembles real

circumstances.

In general, a particle swarm is heterogeneous if it has at least a pair of particles that

differ in any of the four aspects: the neighbourhood size, the model of influence, the update

rules and their parametrization [18]. In this chapter, we only empirically study two types of

heterogeneity, update-rule heterogeneity and model-of-influence heterogeneity. If different

particles use different rules for updating their position in the search space, then the swarm

exhibits update-rule heterogeneity. When particles in a swarm use different mechanisms for

choosing their informers, we say that the swarm exhibits model-of-influence heterogeneity.

It was shown in [26], [61] that the Heterogeneous PSO (HPSO) model produced significantly

better solutions than a selection of homogeneous PSO models.

7.1.2 The Static Heterogeneous PSO Model: HGLPSO

If the heterogeneity type assigned to particles during initialization do not change during

the search process, we qualify the resulting heterogeneity as static, otherwise it is said to be

dynamic. An example of a static heterogeneity structure is the HGLPSO algorithm, in which
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Fig. 7.1 Two typical topologies of SPSO

some of the particles are informed by the 𝑙𝑏𝑒𝑠𝑡 model, while the others are fully-informed

(𝑔𝑏𝑒𝑠𝑡 model).

Two kinds of topologies with a population of four particles are shown in Fig.7.1. Figure

7.1(a) shows the full connections with four particles in 𝑔𝑏𝑒𝑠𝑡 topology. In Fig.7.1(b), the

𝑙𝑏𝑒𝑠𝑡 ring topology connects each particle to only two other particles in the swarm. More re-

cent research has revealed that 𝑙𝑏𝑒𝑠𝑡 topology return improved results across many standard

problem sets when used in conjunction with other improvements to the algorithm [49]. Many

investigations within the particle swarm paradigm [43], [47] have found that the 𝑔𝑏𝑒𝑠𝑡 type

converges quickly on problem solutions but has a weakness for becoming trapped in the lo-

cal optima, while 𝑙𝑏𝑒𝑠𝑡 populations are able to escape from local optima, as subpopulations

explore different regions. In [44], [48] Kennedy theorized that heterogeneous population

structures, with some subsets of the population tightly connected and others relatively iso-

lated, could provide the benefits of both 𝑙𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 sociometries. Following this line

of thought, an example of a swarm with heterogeneity, HGLPSO algorithm is proposed in

this chapter as a comparative algorithm. HGLPSO is a type of static heterogeneous struc-

ture combined with the GBest PSO model and the LBest PSO model, in which some of the

particles are informed by the best particle in the sub-swarm, while the others are informed
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by the best particle of their local neighbours. Using a heterogeneous swarm thus reduces the

risk of using a homogeneous swarm of the wrong type for the problem at hand. However, it

hardly outperforms the best performing homogeneous swarm.

7.1.3 Solutions

In population-based algorithms, finding the optimal solution of a problem is based on the

right balance between exploration and exploitation of the search space. The premise of the

SHPSO model is that a better balance of exploration and exploitation can be achieved by

having particles that follow different search behaviours, which should result in more accurate

solutions. However, empirical study shows that the nature of different search behaviours

between particles is not the only factor that determines the performance of SHPSO [18].

The relative composition of the swarm plays a major role in this respect. In SHPSO, the

proportions of particles of different kinds are assigned during initialization, moreover, these

assignments do not change during the optimization process. As a consequence of this, the

inappropriate composition of the swarm will lead the particles near the local minimum to be

trapped in the local optima. In this case, escaping from the local optima becomes difficult

and SHPSO suffers from the premature convergence problem.

This motivated our attempt to improve the performance of SHPSO by introducing adap-

tive particle swarms as a response to some events caused by the behaviour of the swarm, thus

"guiding" an appropriate balance between exploration and exploitation in the search space.

The dynamic self-adaptive heterogeneity is able to automatically alter its heterogeneity type

by the triggering configuration. The proposed triggering configuration keeps track of the

frequency of the unchanged best position of the entire swarm (𝑝𝑔) for a number of iterations.

This information is then used to select a new heterogeneous structure when 𝑝𝑔 is considered

stagnant. According to different types of heterogeneity, we propose two different DHPSO

models, namely, DHPSO-d and DHPSO-p [99]. In DHPSO-d, three different update rules
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7.2 Proposal of Dynamic HPSO (DHPSO)

are defined for different particles by the trigger event. Particles dynamically use different

rules to update their positions when the global best position is considered stagnant and the

triggering event is confirmed. In DHPSO-p, a global 𝑔𝑏𝑒𝑠𝑡 model and a pairwise connection

model are proposed to provide the particles different mechanism choosing their informers

when the swarm being trapped in the local optimal solution. In order to investigate the

scalability of DHPSO-d and DHPSO-p, a series of experiments with four state-of-the-art al-

gorithms are performed on ten well-known optimization problems. The scalability analysis

of DHPSO-d and DHPSO-p reveals that the dynamic self-adaptive heterogeneous structure

is able to address the exploration-exploitation trade-off problem in PSO, and provide the

promising optimal solution of a problem simultaneously.

7.2 Proposal of Dynamic HPSO (DHPSO)

7.2.1 Proposal of DHPSO-d

Conceptually, we say that DHPSO-d exhibits dynamic update-rule heterogeneity. In DHPSO-

d (−𝑟 represents rule), different particles dynamically use different rules for updating their

positions by the triggering configuration in the search space. There are three rules (rule 𝐴,

rule 𝐵 and rule 𝐶) used in DHPSO-d. To rule 𝐴, the velocity and position of each particle

are updated by the following equations [7]:

𝑣𝑖 = 𝜒 ∗ (𝑣𝑖 + 𝑐1𝜖1 ∗ (𝑝𝑖 − 𝑥𝑖) + 𝑐2𝜖2 ∗ (𝑝𝑔 − 𝑥𝑖)) (7.1)

𝑥∗
𝑖 = 𝑥𝑖 + 𝑣𝑖 (7.2)

In Eq.(7.1), 𝜒 is a constriction factor, 𝜖1 and 𝜖2 are independent random numbers uniquely

generated at every update for each individual dimension in the range [0, 1] according to

references [7], [78]. In order to ensure convergence, the values 𝜒 ≈ 0.72984 and 𝑐1 = 𝑐2 =

119



Dynamic Heterogeneous Particle Swarm Optimization

Fig. 7.2 Dynamic process of heterogeneity configuration in DHPSO-d

2.05 are preferred in most cases. 𝑝𝑖 is the best position of the particle 𝑖, 𝑥𝑖 is the current

position of the particle 𝑖 and 𝑝𝑔 is the best position of the entire swarm. To rule 𝐵, 𝑝𝑔 can

be reset by:

𝑝𝑔 = 1
𝑛

𝑛

∑
𝑖=1

𝑝𝑖 (7.3)

To rule 𝐶 , all particles in swarm update their positions by the following equations:

𝑣𝑖 = 𝜓1 ∗ 𝑣𝑖 + 𝜓2 ∗ (𝑝𝑖 − 𝑥𝑖) (7.4)

𝑥∗
𝑖 = 𝑥𝑖 + 𝑣𝑖 (7.5)

In Eq.(7.4) 𝜓1 and 𝜓2 are random numbers uniquely generated at every update for each

individual dimension in the range [0, 1].

Figure 7.2 demonstrates the dynamic process of heterogeneity configuration in DHPSO-

d during the optimization process. Where 𝑡 is the iteration number of the swarm 𝐸. During

each iteration, swam 𝐸 is a homogeneous swarm that all particles use rule 𝐴 for updating

their positions in the search space. When the 𝑝𝑔 does not improve for a specified number

of iterations (𝜀1), triggering event 𝑎 is confirmed (𝑓𝑙𝑎𝑔 ≥ 𝜀1), then 𝑝𝑔 is reset by rule 𝐵

and all particles in swarm 𝐸 update their positions by rule 𝐶 . After that, all particles will
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be following up with rule 𝐴 to the next iteration. To swarm 𝐸, the 𝑝𝑔 is shared among all

particles and three rules are used for the particles by the triggering configuration, the specific

update-rule heterogeneity is defined as model Υ in this chapter. The pseudocode of model

Υ used in DHPSO-d can be summarized in Algorithm 14.

Algorithm 14 Main function of model Υ used in DHPSO-d
1: Initialization: 𝑐1 = 𝑐2 = 2.05, 𝜒 = 0.7298, 𝜖1 = 𝜆1, population 𝑛
2: Initialize each particle's position 𝑥𝑖: 𝑥𝑖 = 𝑟𝑎𝑛𝑑() ∈ (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥); 𝑖 ∈ [1..𝑛]
3: Calculate fitness value of each particle 𝑓(𝑥𝑖)
4: Initialize personal best position 𝑝𝑖: 𝑝𝑖 = 𝑥𝑖, 𝑓(𝑝𝑖) = 𝑓(𝑥𝑖)
5: Find the swarm's best position 𝑝𝑔
6: Initialization: 𝑣𝑖 = 0.5 ∗ 𝑟𝑎𝑛𝑑(); 𝑟𝑎𝑛𝑑() ∈ (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) , 𝑓𝑙𝑎𝑔 = 0, 𝑡𝑟𝑎𝑝 = 0
7: Repeat
8: for all particles do
9: Generate: 𝜓1 = 𝑟𝑎𝑛𝑑() ∈ [0, 1], 𝜓2 = 𝑟𝑎𝑛𝑑() ∈ [0, 1]

10: Update particle 𝑥𝑖 with rule A
11: Calculate fitness value of each updated particle 𝑓(𝑥∗

𝑖 )
12: if 𝑓(𝑥∗

𝑖 ) < 𝑓(𝑝𝑖) then
13: 𝑝𝑖 = 𝑥∗

𝑖 , 𝑓(𝑝𝑖) = 𝑓(𝑥∗
𝑖 )

14: end if
15: end for
16: Find the new swarm's best position 𝑝∗

𝑔
17: if 𝑓(𝑝∗

𝑔) < 𝑓(𝑝𝑔) then
18: 𝑝𝑔 = 𝑝∗

𝑔, 𝑓𝑙𝑎𝑔 = 0
19: else
20: Count the number of unchanged 𝑝𝑔: 𝑓𝑙𝑎𝑔 = 𝑓𝑙𝑎𝑔 + 1
21: end if
22: if 𝑓𝑙𝑎𝑔 ≥ 𝜀1 then
23: Reset 𝑝𝑔 with rule B
24: Re-initialize each 𝑝𝑖: 𝑝𝑖 = 𝑟𝑎𝑛𝑑() ∈ (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)
25: Update each particle 𝑥𝑖 with rule C, 𝑓𝑙𝑎𝑔 = 0
26: Count the number of 𝑝𝑔 trapped in the local optima: trap=trap+1
27: end if
28: Until maximum iterations are attained

From Algorithm 14, we can see that DHPSO-d maintains the algorithmic simplicity of

GBestPSO. For each iteration, the number of Fitness Evaluations (FEs) is 𝑛 ∗ 𝐷 shown in

line 10. Where 𝑛 is the population size and 𝐷 is the dimension of the problem. Apart from

the FEs, which is problem dependent [39], [57], the main computational cost in DHPSO-d
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Fig. 7.3 Two kinds of topologies in DHPSO-p

is to find the global best optimum 𝑝𝑔 from all of the 𝑝𝑖, which is an inevitable operation in

most swarm or population based evolutionary algorithms [40], [85]. Consequently, at each

iteration, the computational complexity of DHPSO-d is 𝑂(𝑛𝐷). In addition, we note that 𝜀1

is problem dependent and the method of 𝜀1 selection (𝜀1 = 𝜆1) is a trial.

7.2.2 Proposal of DHPSO-p

Conceptually, we say that DHPSO-p is a model-of-influence heterogeneity. In this chapter,

DHPSO-p is a dynamic heterogeneous structure combined with the 𝑔𝑏𝑒𝑠𝑡 topology and the

pairwise connection topology (−𝑚 means model). Figure 7.3(a) shows full connections with

four particles in the 𝑔𝑏𝑒𝑠𝑡 topology, which is the topology type used in model Υ. To model

Υ, all particles share the global best experience 𝑝𝑔 that can lead the particles to cluster around

the global best. If 𝑝𝑔 is located near a local optima, escaping from local solution becomes

difficult. In this situation, the dynamic update-rule strategy will be performed in model Υ. If

the state of 𝑝𝑔 trapped in the local optimum couldn't be eliminated only by model Υ, then a

new model Ω will be enabled. In Fig.7.3(b), each particle only has one specified neighbour-

hood, which is the topology type used in model Ω. This pairwise connection mechanism are

borrowed from Competitive Swarm Optimization (CSO) [12], a novel swarm intelligence al-

gorithm for large scale optimization. In model Ω, neither the personal best position of each
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particle nor the global best position is involved in updating the particles. Instead, all particles

are divided into two teams: an elite team and a loser team. The loser team will update their

positions by learning from the elite team, while the elite team is directly passed to the swarm

of the next iteration. The motivation for us to introduce pairwise competition mechanism in

model Ω is to increase swarm diversity and avoid the particles trapped in the local optimum

region, which potentially enhances the global exploration capability of DHPSO-p.

Algorithm 15 Main function of DHPSO-p
1: Initialize parameters: 𝑐1 = 𝑐2 = 2.05, 𝜒 = 0.7298
2: Initialize parameters: 𝜖1 = 𝜆1, 𝜖2 = 𝜆2, 𝑓𝑙𝑎𝑔 = 0, 𝑡𝑟𝑎𝑝 = 0
3: Initialize population 𝑛 and particles 𝑥𝑖: 𝑥𝑖 = 𝑟𝑎𝑛𝑑() ∈ (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥); 𝑖 ∈ [1..𝑛]
4: Repeat
5: for all particles do
6: Use model Υ
7: end for
8: if 𝑡𝑟𝑎𝑝 ≥ 𝜀2 then
9: Switch to Model Ω

10: Break
11: end if
12: Until maximum iterations are attained

Without loss of generality, the population of DHPSO-p is denoted as an even number 𝑛.

In DHPSO-p, the process of heterogeneity configuration are including of the state of model Υ

and a new state of model Ω triggered by the triggering configuration. To model Υ, when 𝑝𝑔 is

considered stagnant and the number of stagnation reaches a specified threshold 𝜀1, it means

that 𝑝𝑔 is trapped in the local optima, the dynamic update-rule strategy will be performed in

model Υ. However, if the number of traps is more than a threshold 𝜀2, the trapped 𝑝𝑔 can be

addressed by assigning a new model Ω. The main function of DHPSO-p is summarized in

Algorithm 15. It should be noted that once the DHPSO-p switches to model Ω, it never be

back to model Υ.

Algorithm 16 demonstrates the fundamental functions of model Ω, which can be seemed

as a variant of CSO. Different with the simple serial pairwise competition mechanism in

CSO, a paralleled competitive approach is introduced to Model Ω with the aim of decreasing
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Algorithm 16 Sub-function of DHPSO-p in model Ω
1: Initialize each particle's position 𝑥𝑖: 𝑥𝑖 = 𝑟𝑎𝑛𝑑() ∈ (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥); 𝑖 ∈ [1..𝑛]
2: Calculate the fitness value of each particle 𝑓(𝑥𝑖)
3: Initialize personal best position 𝑝𝑖: 𝑝𝑖 = 𝑥𝑖, 𝑓(𝑝𝑖) = 𝑓(𝑥𝑖)
4: Find the swarm's best position 𝑝𝑔
5: Repeat
6: Create sequence {𝑆(𝑖)}; 𝑖 ∈ [1..𝑛] by the ascending order of 𝑓(𝑥𝑖)
7: Put 𝑆(1) into the elite team 𝑇 𝑒
8: Put 𝑆(𝑛) into the loser team 𝑇 𝑙
9: Randomly select (𝑛/2 − 1) positions from {𝑆(𝑖)}; 𝑖 ∈ [2..𝑛 − 2]

10: Their next neighbouring positions 𝑆(𝑖 + 1) are put into the loser team
11: The rest of particles in sequence are assigned to the elite team
12: The elite team will be unchanged and passed to the next iteration
13: for all particles do
14: Generate: 𝜓1 = 𝑟𝑎𝑛𝑑() ∈ [0, 1], 𝜓2 = 𝑟𝑎𝑛𝑑() ∈ [0, 1]
15: Update the loser with rule D
16: Calculate fitness value of each updated particle 𝑓(𝑥∗

𝑖 )
17: if 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥∗

𝑖 ) < 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖) then
18: 𝑝𝑖 = 𝑥∗

𝑖 , 𝑓(𝑝𝑖) = 𝑓(𝑥∗
𝑖 )

19: end if
20: end for
21: Update the global best position: 𝑝𝑔 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓(𝑝𝑖))
22: Until maximum iterations are attained
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the operation complexity and maintaining the swarm diversity simultaneously. First of all,

all particles are stored in a sorted sequence 𝑆 = {𝑥1, ...,𝑥𝑖, ...,𝑥𝑛}, ({𝑆(𝑖)}; 𝑖 ∈ [1..𝑛])

according the ascending order of 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖). Secondly, the first particle in {𝑆(𝑖)}, namely

𝑆(1), is definitely denoted as an elite and assigned to the elite team 𝑇 𝑒, ({𝑇 𝑒(𝑘)}, 𝑘 ∈

[1..𝑛/2]), at the same time, 𝑆(𝑛) is put into the loser team 𝑇 𝑙, ({𝑇 𝑙(𝑙)}, 𝑙 ∈ [1, 𝑛/2]). Then,

randomly select (𝑛/2 − 1) positions from {𝑆(𝑖)} in a specified range 𝑖 ∈ [2..𝑛 − 2]. Their

next neighbouring positions 𝑆(𝑖 + 1) are assigned to the loser team. The rest of particles

in {𝑆(𝑖)} will be put into the elite team. All particles in the elite team will be passed to

the next iteration, while the loser, will update its position by learning from the randomly

selected elite with rule 𝐷. At each iteration, only half of the particles will be updated, after

that, the historical best position of each particle and the global best position of the swarm are

recorded. However, it should be pointed out that neither 𝑝𝑖 nor 𝑝𝑔 is involved in the search

process of Model Ω.

From Algorithm 16, we find that model Ω maintains the algorithmic simplicity of model

Υ. The main FEs is to calculate the updated loser particle 𝑥∗
𝑖 , which are shown in line 15

marked with underline. For each iteration, the number of FEs is 0.5 ∗ 𝑛 ∗ 𝐷, where 𝑛 is the

swarm size and 𝐷 is the dimensionality of the problem. Apart from the FEs, the main com-

putational cost in model Ω is to create a sequence 𝑆 of all particles by the ascending order of

𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) and update the positions of loser particles by learning from the elite team. Then,

at each iteration, the computational complexity of model Ω is 𝑂(𝑛𝐷). Combination of model

Υ and model Ω shown in Algorithm 15, at each iteration, the computational complexity of

DHPSO-p is 𝑂(𝑛𝐷).

To rule 𝐷, all loser particles update their positions by the following equations:

⎧
⎪
⎨
⎪
⎩

𝑣𝑙𝑜𝑠𝑒𝑟 = 𝜓1 ∗ 𝑣𝑙𝑜𝑠𝑒𝑟 + 𝜓2 ∗ (𝑥𝑒𝑙𝑖𝑡𝑒 − 𝑥𝑙𝑜𝑠𝑒𝑟)

𝑥∗
𝑙𝑜𝑠𝑒𝑟 = 𝑥𝑙𝑜𝑠𝑒𝑟 + 𝑣𝑙𝑜𝑠𝑒𝑟

(7.6)
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Table 7.1 Evaluation test environment

OS Windows 7 Professional SP1
Processor Intel(R) 𝐶𝑜𝑟𝑒𝑇 𝑀 i7 860@2.80GHz
Memory (RAM) 8.00GB
System type 64-bit operation system
Tool MATLAB R2013b

Where, 𝑥𝑒𝑙𝑖𝑡𝑒 is the position of elite particle, 𝑥𝑙𝑜𝑠𝑒𝑟 is the position of loser particle and 𝑥∗
𝑙𝑜𝑠𝑒𝑟

is the new updated position of loser. 𝜓1 and 𝜓2 are random numbers uniquely generated at

every update for each individual dimension in the range [0, 1].

7.3 Experiments

7.3.1 Evaluation Method

The experiments are implemented on a PC with Windows operating system, and all algo-

rithms are written in Matlab language. The detail information of the test environment is

demonstrated in Table 7.1. The bounds and global minimums of ten benchmark functions

are shown in Table 7.2. These benchmarks were chosen for their variety. Functions 𝑓1--𝑓6

are highly complex multimodal problems with many local minima, 𝑓7--𝑓10 are continuous,

convex and unimodal test problems.

The four state-of-the-art algorithms are also chosen for their variety. First of all, the pro-

posed DHPSO-d and DHPSO-p are based on GBestPSO [7]. So the GBestPSO algorithm

is used to compare the performance of our proposed algorithms. Secondly, LBestPSO [7]

and Firefly Algorithm (FA) [101] are well-known algorithms for solving the highly com-

plex multimmodal problems. The global searching capability of DHPSO-d and DHPSO-p

for multimmodal problems can be confirmed by empirical comparison with LBestPSO and

FA. The last comparative algorithm, HGLPSO, is a type of SHPSO, where particles will be
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Table 7.2 The bounds and global minimums of benchmark functions.

Equation Bounds Optimum

Rosenbrock 𝑓1(𝑥) =
𝐷
∑
𝑗=1

(100 ∗ (𝑥𝑗+1 − 𝑥2
𝑗 )2 + (𝑥𝑗 − 1)2) (−100, 100)𝐷 0, (𝑥∗ = 1.0𝐷)

Rastrigin 𝑓2(𝑥) =
𝐷
∑
𝑗=1

(𝑥2
𝑗 − 10 ∗ cos(2𝜋𝑥𝑗)) + 10 ∗ 𝐷 (−5.12, 5.12)𝐷 0, (𝑥∗ = 0.0𝐷)

Griewank 𝑓3(𝑥) = 1
4000

𝐷
∑
𝑗=1

𝑥2
𝑗 −

𝐷
∏
𝑗=1

cos(
𝑥𝑗

√𝑗
) + 1 (−5, 10)𝐷 0, (𝑥∗ = 0.0𝐷)

Ackley 𝑓4(𝑥) = −𝑎 ∗ exp(−0.02 ∗ (𝐷−1
𝐷−1
∑
𝑗=1

𝑥2
𝑗 )

1
2 ) (−32, 32)𝐷 0

− exp(𝐷−1
𝐷
∑
𝑗=1

cos(2𝜋𝑥𝑗)) + 𝑎 + exp, 𝑎 = 20 (𝑥∗ = 0.0𝐷)

Levy 𝑓5(𝑥) = 𝑠𝑖𝑛2(𝜋𝜛1) + (𝜛𝐷 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝜛𝐷)] (−10, 10)𝐷 0

+
𝐷−1
∑
𝑗=1

(𝜛𝑗 − 1)2[1 + 10𝑠𝑖𝑛2(𝜋𝜛𝑗 + 1)], 𝜛𝑗 = 1 +
𝑥𝑗 − 1

4 (𝑥∗ = 1.0𝐷)

Schwefel 𝑓6(𝑥) = 418.9829 ∗ 𝐷 −
𝐷
∑
𝑗=1

𝑥𝑗𝑠𝑖𝑛(√|𝑥𝑗|) (−500, 500)𝐷 0

(𝑥∗ = 420.9687𝐷)

Sphere 𝑓7(𝑥) =
𝐷
∑
𝑗=1

𝑥2
𝑗 (−5.12, 5.12)𝐷 0, (𝑥∗ = 0.0𝐷)

Rotated hyper-ellipsoid 𝑓8(𝑥) =
𝐷
∑
𝑗=1

𝑗
∑
𝑘=1

𝑥2
𝑘 (−65.536, 65.536)𝐷 0, (𝑥∗ = 0.0𝐷)

Sum of different powers 𝑓9(𝑥) =
𝐷
∑
𝑗=1

|𝑥𝑗|𝑗+1 (−1, 1)𝐷 0, (𝑥∗ = 0.0𝐷)

Zakharov 𝑓10(𝑥) =
𝐷
∑
𝑗=1

𝑥2
𝑗 + (

𝐷
∑
𝑗=1

0.5𝑗𝑥𝑗)2 + (
𝐷
∑
𝑗=1

0.5𝑗𝑥𝑗)4 (−1, 1)𝐷 0, (𝑥∗ = 0.0𝐷)

Table 7.3 The control parameters setting of algorithms.

Algorithm Control Parameters
GBest PSO 𝑐1 = 𝑐2 = 2.05, 𝜒 = 0.7298
LBest PSO 𝑐1 = 𝑐2 = 2.05, 𝜒 = 0.7298
FA 𝛼 = 0.25, 𝛾 = 1, 𝛽𝑚𝑖𝑛 = 0.20, 𝛽0 = 1
HGLPSO 𝑐1 = 𝑐2 = 2.05, 𝜒 = 0.7298
DHPSO-d 𝑐1 = 𝑐2 = 2.05, 𝜒 = 0.7298, 𝜆1 = 80
DHPSO-p 𝑐1 = 𝑐2 = 2.05, 𝜒 = 0.7298, 𝜆1 = 80, 𝜆2 = 2
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allocated different search behaviours by selecting different topologies from GBestPSO and

LBestPSO. The control parameters of all algorithms are shown in Table 7.3.

7.3.2 Evaluation Results

The collecting experimental results are including the best optimum solution for the test func-

tions, averaged optimum solution and running time of each algorithm after 30 times indepen-

dent trials. These experimental results are displayed in Table 7.4 and Table 7.5. We analyse

these empirical data with six steps as follows:

∗ To multimodal functions:𝑓1--𝑓6

Step 1 Pairwise comparisons between DHPSO-d and four compared algorithms by 𝑡-

test.

Step 2 Pairwise comparisons between DHPSO-p and five compared algorithms includ-

ing DHPSO-d by 𝑡-test.

∗ To unimodal functions:𝑓7--𝑓10

Step 3 Pairwise comparisons between DHPSO-d and four compared algorithms by 𝑡-

test.

Step 4 Pairwise comparisons between DHPSO-p and five compared algorithms by 𝑡-

test.

∗ To all functions:𝑓1--𝑓10

Step 5 A modified Bonferroni procedure for DHPSO-d versus HGLPSO.

Step 6 A modified Bonferroni procedure for DHPSO-p versus HGLPSO.
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Table 7.4 The statistical results of optimization errors on multimodal functions with a pop-
ulation of 100 and 200 after 30 trials of 1 × 104 function evaluations

Algorithm 50-D 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6

GBestPSO
Best 2.07e+01 1.30e+02 9.86e-03 0 4.90e+00 4.35e+03

Mean 1.16e+05 2.25e+02 7.44e-01 4.77e+00 2.65e+01 6.48e+03
Time(s) 1.59e+02 1.53e+02 3.71e+02 1.54e+02 2.33e+02 1.86e+02

LBestPSO
Best 1.41e+02 1.05e+02 0 0 0 5.74e+03

Mean 1.81e+02 1.90e+02 0 0 4.60e-01 7.00e+03
Time(s) 3.82e+02 3.97e+02 4.26e+02 3.64e+02 4.83e+02 4.77e+02

FA
Best 4.70e+01 4.97e+00 0 1.61e-06 0 7.82e+03

Mean 8.96e+02 3.90e+01 5.21e-07 4.70e-03 7.56e-06 9.07e+03
Time(s) 9.34e+03 2.88e+05 9.73e+03 9.40e+03 6.02e+04 9.41e+03

HGLPSO
Best 3.07e-04 1.61e+02 0 0 0 5.12e+03

Mean 2.76e+01 2.13e+02 2.47e-04 3.66e-01 5.73e+00 6.69e+03
Time(s) 1.99e+02 2.62e+02 2.99e+02 8.50e+01 3.41e+02 3.13e+02

DHPSO-d
Best 2.31e+01 5.37e+01 0 0 0 2.61e+03

Mean 8.86e+04 1.35e+02 1.43e-01 8.51e-01 0 3.92e+03
Time(s) 2.05e+02 1.78e+02 2.07e+02 1.90e+02 2.74e+02 1.96e+02

DHPSO-p
Best 1.05e+02 8.95e+00 0 7.38e-07 0 2.57e+03

Mean 2.01e+03 1.77e+01 4.35e-06 2.86e-01 2.44e-01 3.93e+03
Time(s) 2.50e+02 3.04e+02 3.41e+02 3.04e+02 3.71e+02 3.25e+02

Algorithm 100-D 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6

GBestPSO
Best 4.56e+01 4.30e+02 5.79e-01 3.24e+00 7.26e+01 1.15e+04

Mean 2.00e+09 5.82e+02 1.00e+00 1.38e+01 1.20e+02 1.50e+04
Time(s) 4.08e+02 4.42e+02 5.07e+02 4.71e+02 5.77e+02 4.96e+02

LBestPSO
Best 4.03e+02 4.55e+02 0 1.21e+02 3.18e+01 1.41e+04

Mean 5.63e+02 5.21e+02 0 2.41e+02 5.85e+01 1.58e+04
Time(s) 8.41e+02 9.32e+02 8.98e+02 8.79e+02 1.20e+03 1.14e+03

FA
Best 1.01e+02 4.88e+01 1.69e-07 3.20e-03 4.98e-05 2.01e+04

Mean 8.96e+02 9.05e+01 4.36e-06 1.16e-02 9.30e-05 2.16e+04
Time(s) 4.48e+04 4.23e+05 5.22e+05 6.29e+04 3.67e+05 1.39e+05

HGLPSO
Best 3.85e+01 4.46e+02 0 1.27e+00 4.32e+01 1.29e+04

Mean 1.49e+02 5.39e+02 0 2.63e+00 6.49e+01 1.53e+04
Time(s) 5.90e+02 8.22e+02 8.60e+02 8.12e+02 9.28e+02 9.57e+02

DHPSO-d
Best 7.34e+01 3.89e+02 5.09e-01 0 2.14e+01 7.74e+03

Mean 1.66e+09 4.68e+02 8.96e-01 1.20e+01 6.04e+01 1.10e+04
Time(s) 4.82e+02 4.92e+02 5.59e+02 5.29e+02 6.46e+02 5.09e+02

DHPSO-p
Best 1.71e+02 1.39e+01 0 0 0 5.27e+03

Mean 4.10e+02 2.20e+01 0 8.79e-03 1.59e-01 7.26e+03
Time(s) 5.71e+02 6.75e+02 7.25e+02 6.23e+02 8.98e+02 7.42e+02
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Table 7.5 The statistical results of optimization errors on unimodal functions with a popula-
tion of 100 and 200 after 30 trials of 1 × 104 function evaluations.

Algorithm 50-D 𝑓7 𝑓8 𝑓9 𝑓10

GBestPSO
Best 0 0 0 2.55e+01

Mean 5.24e+00 6.10e+04 0 2.40e+02
Time(s) 1.25e+02 3.46e+02 3.32e+02 1.61e+02

LBestPSO
Best 0 0 0 4.03e-05

Mean 0 0 0 8.17e-05
Mean 1.80e+02 7.98e+02 9.10e+02 3.22e+02

FA
Best 6.57e-07 4.79e-02 0 0

Mean 4.21e-06 1.15e-01 0 1.15e-06
Time(s) 9.50e+03 1.66e+04 2.73e+03 1.00e+04

HGLPSO
Best 0 0 0 1.27e+01

Mean 0 0 0 2.15e+02
Time(s) 1.50e+02 5.82e+02 6.43e+02 2.13e+02

DHPSO-d
Best 0 0 0 0

Mean 0 1.05e+04 0 1.39e+02
Time(s) 1.45e+02 4.01e+02 4.03e+02 2.23e+02

DHPSO-p
Best 0 0 0 0

Mean 1.17e-04 2.22e-01 0 2.15e-04
Time(s) 1.99e+02 4.93e+02 3.54e+02 2.00e+02

Algorithm 100-D 𝑓7 𝑓8 𝑓9 𝑓10

GBestPSO
Best 0 8.59e+04 0 4.81e+02

Mean 4.54e+01 4.77e+05 0 1.04e+03
Time(s) 3.13e+02 1.49e+03 8.81e+02 4.00e+02

LBestPSO
Best 0 0 0 1.29e+00

Mean 0 0 0 2.23e+00
Time(s) 4.72e+02 3.85e+03 2.23e+03 6.31e+02

FA
Best 3.23e-05 4.41e-01 0 4.33e-05

Mean 5.29e-05 9.77e+00 0 6.42e-04
Time(s) 3.70e+05 6.26e+04 3.37e+03 6.78e+04

HGLPSO
Best 0 0 0 2.76e+01

Mean 0 0 0 3.45e+02
Time(s) 4.22e+02 1.18e+03 2.67e+03 5.39e+02

DHPSO-d
Best 0 1.72e+04 0 2.61e+02

Mean 8.74e+00 2.03e+05 0 9.85e+02
Time(s) 3.82e+02 1.87e+03 1.08e+03 5.55e+02

DHPSO-p
Best 0 0 0 1.29e-04

Mean 0 2.20e-05 0 4.53e-04
Time(s) 4.42e+02 2.22e+03 9.42e+02 5.45e+02

130



7.3 Experiments

Table 7.6 𝑝 values of 𝑡-test between DHPSO-d and four comparative algorithms on multi-
modal functions with a significance level of 𝛼 = 0.05 after 30 trials

Dim 𝑝 value 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6

50
VS GBPSO 1.15e-01 1.13e-12 9.91e-14 1.40e-01 1.38e-01 1.88e-26
VS LBPSO 9.69e-09 2.51e-07 4.94e-04 1.40e-01 1.38e-01 1.88e-26
VS FA 1.18e-08 1.21e-04 4.94e-04 1.42e-01 6.99e-02 5.69e-05
VS HGLPSO 9.35e-09 6.07e-11 5.03e-04 4.34e-01 5.51e-04 2.98e-19

100
VS GBPSO 1.17e-02 6.37e-38 2.48e-03 9.58e-02 2.59e-10 7.16e-12
VS LBPSO 2.26e-02 3.62e-06 3.97e-24 1.52e-12 7.31e-01 8.59e-15
VS FA 2.26e-02 9.64e-32 3.97e-24 2.31e-14 1.60e-12 1.58e-06
VS HGLPSO 2.26e-02 1.68e-08 3.97e-24 2.93e-12 4.14e-01 3.32e-13

Table 7.7 Performance comparison between DHPSO-d and four comparative algorithms on
𝑓1--𝑓6 by 𝑡-test with a significance level of 𝛼 = 0.05.

Dim DHPSO-d VS 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 +/≈/−

50-D
VS GBestPSO ≈ + + ≈ ≈ + 3/3/0
VS LBestPSO − + + ≈ ≈ + 2/2/2
VS FA − − − ≈ ≈ + 1/2/3
VS HGLPSO − + − ≈ + + 3/1/2

100-D
VS GBestPSO + + + ≈ + + 5/1/0
VS LBestPSO − + − − ≈ + 2/1/3
VS FA − − − − − + 1/0/5
VS HGLPSO − + − − ≈ + 2/1/3

Analysis of Results on Multimodal Functions 𝑓1--𝑓6

Table 7.6 shows the 𝑝 values of 𝑡-test on pairs of groups of statistical results between DHPSO-

d and four comparative algorithms on six multimodal functions. These tests give a 𝑝-𝑣𝑎𝑙𝑢𝑒

which is compared to a constant called 𝛼 to determine whether a difference is significant or

not. If 𝑝 < 𝛼, then a test is reported as significant, else the test is reported as nonsignificant.

Table 7.7 shows the results of pairwise comparisons between DHPSO-d and four com-

pared algorithms obtained by the 𝑡-test results of table 7.6. In Table 7.7, the symbol (+)

represents that the performance obtained by proposed DHPSO-d is significantly superior to

the compared algorithm, the symbol (≈) represents that there is no significant difference

between DHPSO-d and the compared algorithm, and the symbol (−) represents that the
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Table 7.8 Performance comparison between DHPSO-p and five compared algorithms on
𝑓1--𝑓6 by 𝑡-test with a significance level of 𝛼 = 0.05.

Dim DHPSO-p VS 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 +/≈/−

50-D

VS GBestPSO + + + + + + 6/0/0
VS LBestPSO ≈ + ≈ − ≈ + 2/3/1
VS FA ≈ + ≈ − − + 2/2/2
VS HGLPSO ≈ + ≈ ≈ + + 3/3/0
VS DHPSO-d + + + ≈ − ≈ 3/2/1

100-D

VS GBestPSO + + + + + + 6/0/0
VS LBestPSO + + ≈ + + + 5/1/0
VS FA ≈ + + ≈ − + 3/2/1
VS HGLPSO − + ≈ + + + 4/1/1
VS DHPSO-d + + + + + + 6/0/0

performance of DHPSO-d is poorer than the compared algorithm. The symbols (+/≈/−)

presented in the last column means that DHPSO-d wins in (+) functions, ties in (≈) func-

tions and loses in (−) functions. Similarly, the symbols shown in the following tables also

have the same definitions.

From Table 7.7, it can be seen that DHPSO-d demonstrates the superior performance

compared with other algorithms except FA on test functions with dimensions of 50. How-

ever, with higher dimensions of 100, the performance of DHPSO-d is poorer than the other

compared algorithms except GBestPSO.

Similarly, according to Table 7.8, it can be observed that DHPSO-p demonstrates the

superior performance over four algorithms except FA with the dimensions of 50. There is no

significant difference between DHPSO-p and FA. It is worth noting that, with the dimensions

of 100, DHPSO-p exhibits the best scalability compared with all algorithms.

Analysis of Results on Unimodal Functions 𝑓7--𝑓10

Table 7.9 shows the 𝑝 values of 𝑡-test on pairs of groups of statistical results between DHPSO-

d and four comparative algorithms on three unimodal functions. These tests give a 𝑝-𝑣𝑎𝑙𝑢𝑒

which is compared to a constant called 𝛼 to determine whether a difference is significant or

132



7.3 Experiments

Table 7.9 𝑝 values of 𝑡-test between DHPSO-d and four comparative algorithms on unimodal
functions with a significance level of 𝛼 = 0.05 after 30 trials

Dim 𝑝 value 𝑓7 𝑓8 𝑓10

50-D
VS GBestPSO 1.17e-02 7.33e-08 1.15e-05
VS LBestPSO 2.00e-01 4.24e-04 1.70e-07
VS FA 5.50e-02 4.24e-04 1.70e-07
VS HGLPSO 2.00e-01 4.24e-04 6.81e-01

100-D
VS GBestPSO 6.63e-06 9.25e-05 5.41e-01
VS LBestPSO 2.31e-03 6.37e-09 4.49e-14
VS FA 2.31e-03 6.38e-09 4.24e-14
VS HGLPSO 2.31e-03 6.37e-09 8.95e-04

Table 7.10 Performance comparison between DHPSO-d and four comparative algorithms on
𝑓7--𝑓10 by 𝑡-test with a significance level of 𝛼 = 0.05.

Dim DHPSO-d VS 𝑓7 𝑓8 𝑓9 𝑓10 +/≈/−

50-D
VS GBestPSO + + ≈ + 3/1/0
VS LBestPSO ≈ − ≈ − 0/2/2
VS FA ≈ − ≈ − 0/2/2
VS HGLPSO ≈ − ≈ ≈ 0/3/1

100-D
VS GBestPSO + + ≈ ≈ 2/2/0
VS LBestPSO − − ≈ − 0/1/3
VS FA − − ≈ − 0/1/3
VS HGLPSO − − ≈ − 0/1/3

not. If 𝑝 < 𝛼, then a test is reported as significant. If 𝑝 > 𝛼, then the test is reported as

nonsignificant. It should be noted that all six algorithms could find the optimum solution

and have the same performance on unimodal function 𝑓9. In this case, 𝑓9 is excluded from

the 𝑡-test of table 7.9 and table 7.11.

Table 7.10 shows the significant performance comparisons between DHPSO-d and four

algorithms on four unimodal functions with the dimensions of 50 and 100 respectively.

As described comparisons in Table 7.10, DHPSO-d performs better than GBestPSO on all

unimodal functions with dimensions of 50 and 100. Compared with LBestPSO, FA and

HGLPSO, the performance of DHPSO-d is poorer than them. It reveals that DHPSO-d

could not perform the superior performance for unimodal problems.
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Table 7.11 𝑝 values of 𝑡-test between DHPSO-p and five comparative algorithms on unimodal
functions with a significance level of 𝛼 = 0.05 after 30 trials

Dim 𝑝 value 𝑓7 𝑓8 𝑓10

50-D
DHPSO-p VS GBestPSO 1.17e-02 7.33e-08 1.15e-05
DHPSO-p VS LBestPSO 2.61e-01 2.80e-01 4.32e-01
DHPSO-p VS FA 2.78e-01 6.01e-01 2.11e-01
DHPSO-p VS HGLPSO 2.61e-01 2.80e-01 2.48e-01
DHPSO-p VS DHPSO-d 2.61e-01 4.24e-04 1.70e-07

100-D
DHPSO-p VS GBestPSO 1.17e-07 4.33e-09 4.02e-17
DHPSO-p VS LBestPSO 3.24e-01 3.26e-01 7.56e-23
DHPSO-p VS FA 3.13e-03 2.78e-01 5.57e-01
DHPSO-p VS HGLPSO 3.24e-01 3.26e-01 4.28e-02
DHPSO-p VS DHPSO-d 2.31e-03 6.37e-09 4.24e-14

Table 7.12 Performance comparison between DHPSO-p and five comparative algorithms on
𝑓7--𝑓10 by 𝑡-test with a significance level of 𝛼 = 0.05.

Dim DHPSO-p VS 𝑓7 𝑓8 𝑓9 𝑓10 +/≈/−

50-D
VS GBestPSO + + ≈ + 3/1/1
VS LBestPSO ≈ − ≈ ≈ 0/3/1
VS FA ≈ ≈ ≈ ≈ 0/4/0
VS HGLPSO ≈ − ≈ + 1/2/1
VS DHPSO-d ≈ + ≈ + 2/2/0

100-D
VS GBestPSO + + ≈ + 3/1/0
VS LBestPSO ≈ ≈ ≈ + 1/3/0
VS FA + + ≈ ≈ 2/2/0
VS HGLPSO ≈ ≈ ≈ + 1/3/0
VS DHPSO-d + + ≈ + 3/1/0
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Table 7.13 A modified Bonferroni procedure for DHPSO-d VS HGLPSO.

50-D 𝑝-value Rank Rank' New 𝛼 Significant
𝑓6 2.89e-19 1 9 5.56e-03 Yes (+)
𝑓2 6.07e-11 2 8 6.25e-03 Yes (+)
𝑓1 9.35e-09 3 7 7.14e-03 Yes (−)
𝑓8 4.24e-04 4 6 8.33e-03 Yes (−)
𝑓3 5.03e-04 5 5 1.00e-02 Yes (−)
𝑓5 5.51e-04 6 4 1.25e-02 Yes (+)
𝑓7 2.00e-01 7 3 1.67e-02 No (≈)
𝑓4 4.34e-01 8 2 2.50e-02 No (≈)

𝑓10 6.81e-01 9 1 5.00e-02 No (≈)
+/≈/− 3/3/3
100-D 𝑝-value Rank Rank' New 𝛼 Significant

𝑓3 3.97e-24 1 9 5.56e-03 Yes (−)
𝑓6 3.32e-13 2 8 6.25e-03 Yes (+)
𝑓4 2.93e-12 3 7 7.14e-03 Yes (−)
𝑓8 6.37e-09 4 6 8.33e-03 Yes (−)
𝑓2 1.68e-08 5 5 1.00e-02 Yes (+)

𝑓10 8.95e-04 6 4 1.25e-02 Yes (−)
𝑓7 2.31e-03 7 3 1.67e-02 Yes (−)
𝑓1 2.26e-02 8 2 2.50e-02 Yes (−)
𝑓5 4.14e-01 9 1 5.00e-02 No (≈)

+/≈/− 2/1/6

Table 7.12 presents the comparisons of scalability of DHPSO-p and five algorithms on

four unimodal functions with dimensions of 50 and 100 respectively. In Table 7.12, only

to LBestPSO, the performance of DHPSO-p is poorer than the compared algorithm on 𝑓8

function with the dimensions of 50. Specifically, when the dimensionality of the problem

is increased to 100, DHPSO-p successfully demonstrates the superior scalability over all

compared algorithms. It reveals that DHPSO-p shows significantly superior performance

over the compared algorithms on unimodal problems.

Analysis of Results on All Functions 𝑓1--𝑓10

In this part, the scalability analysis is performed in the comparison between DHPSO models

(DHPSO-d and DHPSO-p) and SHPSO model (HGLPSO) to all test functions 𝑓1--𝑓10.
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Table 7.14 A modified Bonferroni procedure for DHPSO-p VS HGLPSO.

50-D 𝑝-value Rank Rank' New 𝛼 Significant
𝑓2 6.18e-25 1 9 5.56e-03 Yes (+)
𝑓6 2.49e-14 2 8 6.25e-03 Yes (+)
𝑓5 8.67e-04 3 7 7.14e-03 Yes (+)

𝑓10 2.48e-02 4 6 8.33e-03 No (≈)
𝑓8 2.80e-02 5 5 1.00e-02 No (≈)
𝑓1 1.05e-02 6 4 1.25e-02 No (≈)
𝑓7 2.61e-01 7 3 1.67e-02 No (≈)
𝑓3 3.34e-01 8 2 2.50e-02 No (≈)
𝑓4 7.64e-01 9 1 5.00e-02 No (≈)

+/≈/− 3/6/0
100-D 𝑝-value Rank Rank' New 𝛼 Significant

𝑓2 1.20e-34 1 9 5.56e-03 Yes (+)
𝑓6 6.38e-31 2 8 6.25e-03 Yes (+)
𝑓5 1.32e-24 3 7 7.14e-03 Yes (+)
𝑓4 5.72e-05 4 6 8.33e-03 Yes (+)
𝑓1 8.78e-05 5 5 1.00e-02 Yes (−)

𝑓10 4.28e-02 6 4 1.25e-02 No (≈)
𝑓3 1.68e-01 7 3 1.67e-02 No (≈)
𝑓7 3.24e-01 8 2 2.50e-02 No (≈)
𝑓8 6.81e-01 9 1 5.00e-02 No (≈)

+/≈/− 4/4/1

There is a problem in conducting multiple significance tests. Because they are probabilistic,

it is possible that some results are easy to chance, even random data generated from the

same distribution will differ significantly sometimes. This problem can be addressed by a

modified Bonferroni procedure which manipulates the 𝛼 value in a way that protects against

capitalization on chance [34]. It should be noted that the test function 𝑓9 is excluded from

the modified Bonferroni procedure in Table 7.13 and Table 7.14, because all six algorithms

could find the optimum solution and have the same performances on 𝑓9.

In Table 7.13, on the dimensions of 50, the number of (3/3/3) shown in the last col-

umn means that there is no significantly difference in performance between DHPSO-d and

HGLPSO to all test functions. On the high dimensions of 100, 2/1/6 means that the perfor-

mance of DHPSO-d is poorer than HGLPSO.
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Fig. 7.4 Computation time of different algorithms on benchmark functions with dimensions
of 50 after 30 times of trails.

In Table 7.14, on the dimensions of 50, 3/6/0 means that DHPSO-p is significantly supe-

rior on 3 test functions. On the dimensions of 100, 4/4/1 means that DHPSO-p is significantly

superior on 4 functions, while HGLPSO is only significantly superior on 1 function (𝑓1). It

is clear that in many of the test cases, DHPSO-p has better performance than the HGLPSO,

especially in the high dimensional cases.

7.3.3 Discussion

Based on the previous empirical analysis, the scalability of proposed DHPSO-d and DHPSO-

p will be examined from a practical point of view, namely, by evaluating the optimum perfor-

mance and running time on each algorithm. In general, if there is no significantly difference

in optimal solution, we will prefer the algorithm with less running time. Following this

viewpoint, an overall picture of the scalability of DHPSO-d and DHPSO-p is depicted as

follows.

▷ To the multimodal functions:𝑓1--𝑓6

From Fig.7.4 it can be observed that the computation time of DHPSO-d is less than

the most of algorithms except GBestPSO. As shown in Fig.7.4 and Fig.7.5, the computa-

tion time of DHPSO-p is less than LBestPSO and FA. To summarize, on 50 dimensional
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Fig. 7.5 Computation time of LBestPSO and FA on benchmark functions with dimensions
of 50 after 30 times of trails.

Fig. 7.6 Computation time of different algorithms on benchmark functions with dimensions
of 100 after 30 times of trails.
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functions, DHPSO-d exhibits the superior solution accuracy and faster convergence speed

over two homogeneous PSO algorithms (GBestPSO and LBestPSO) and one SHPSO al-

gorithm (HGLPSO). This implies that the method of different particles dynamically using

different rules for updating their positions is beneficial to the solution improvement during

the optimization process. However, DHPSO-d did show some deterioration in performance

for 100 dimensions on test functions, which illustrates that the stagnation of the best-so-

far solution couldn't be eliminated only by the dynamic update-rule heterogeneity. On the

other hand, we note that DHPSO-p has the best scalability over all five algorithms on multi-

modal functions, even in the high dimensional cases. It reveals that the strategy of dynamic

model-of-influence heterogeneity in DHPSO-p could successfully improve the performance

of DHPSO-d for multimodal function, especially in the high dimensional cases.

▷ To the unimodal functions:𝑓7--𝑓10

Table 7.10 reveals that DHPSO-d could not demonstrate the desirable performance for

the unimodal functions. Although dynamic update-rule heterogeneity is efficient for search-

ing the global optimum of multimodal problems, tuning the algorithm to find the optimal

solution on unimodal problem is ineffective. Different with DHPSO-d, DHPSO-p exhibits

the superior scalability over all algorithms except LBestPSO. These results point towards the

idea that mechanisms allowing the swarm or sub-swarms to choose their informers during

the optimization process could be more beneficial to address the exploration and exploita-

tion trade-off problem than designing sophisticated update rules to make particles capable

of doing both things. This means that dynamic heterogeneous structure enables us to move

design complications from the individual level to the swarm level. The results show that

DHPSO-p has the best scalability over all five algorithms as the dimensionality of unimodal

problem increased to 100.

▷ To all functions:𝑓1--𝑓10
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According to Fig.7.4 and Fig.7.6, it can be seen that the computation time of DHPSO-d

is less than HGLPSO, and there is no significantly difference in computation time between

DHPSO-p and HGLPSO. In terms of solution quality and computation time, DHPSO-d out-

performs HGLPSO on 50 dimensional functions, while HGLPSO has better scalability than

DHPSO-d on the high dimensions of 100. According to the previous analysis of DHPSO-d,

the stagnation of optimal solution can't be eliminated only by the dynamic update-rule het-

erogeneity as the dimensionality of the problem is increased to 100. Another result of the

experimental analysis of DHPSO-d is that the strategy of dynamic model-of-influence het-

erogeneity is more beneficial to solution improvement than designing sophisticated update

rules. We note that HGLPSO is a static model-of-influence heterogeneity combined with

the 𝑔𝑏𝑒𝑠𝑡 model and the 𝑙𝑏𝑒𝑠𝑡 model. In conclusion, the results presented in this study have

shown that the model-of-influence heterogeneity algorithm is more scalable to higher dimen-

sions compared to the update-rule heterogeneity algorithm. In addition, DHPSO-p has better

scalability than HGLPSO on all functions with dimensions of 50 and 100. Our results show

that the dynamic self-adaptive heterogeneity is able to address the exploration-exploitation

trade-off problem, and provide the excellent optimal solution of a problem.

7.4 Summary

In this chapter, we propose two DHPSO models, DHPSO-d with dynamic update-rule hetero-

geneity and DHPSO-p with dynamic model-of-influence heterogeneity. In DHPSO-d, par-

ticles dynamically use different rules for updating their position when the triggering events

are confirmed. In DHPSO-p, a global gbest model and a pairwise connection model are

automatically selected by the triggering configuration. The proposed triggering events are

confirmed by keeping track of the frequency of the unchanged global best position (𝑝𝑔) for

a number of iterations. This information is then used to select a new heterogeneous struc-

ture when 𝑝𝑔 is considered stagnant. In order to investigate the scalability of DHPSO-d and
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DHPSO-p, a series of experiments with four state-of-the-art algorithms are performed on

ten well-known optimization problems. One of the results of DHPSO-d analysis is that the

method of dynamic update-rule heterogeneity is beneficial to the solution improvement dur-

ing the optimization process. Another result analysis of DHPSO-d shows that the stagnation

of optimal solution can't be eliminated only by the dynamic update-rule heterogeneity as the

dimensionality of the problem increases. Moreover, empirical study of DHPSO-p shows the

adaptive model-of-influence heterogeneity algorithm is more scalable to higher dimensions

than dynamic update-rule heterogeneity algorithm. In conclusion, the dynamic self-adaptive

heterogeneous structure is able to effectively address the exploration-exploitation trade-off

problem, and provides the excellent optimal solution of a problem simultaneously.
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Chapter 8

Conclusion and Future Work

Two major problems encountered by many swarm intelligence algorithms when handling

global optimization, and especially in large scale global optimization are the premature

convergence and exploration-exploitation trade-off problems. Particle Swarm Optimization

(PSO) despite being an efficient method to solve a variety of global optimal problems, also

suffers from these major problems. To handle these challenges, several variants of PSO have

been developed in this thesis, each of which implementing the biological metaphor in their

own particular way. Basically, there are two main categories of our proposed variants, the

first consisting of five variants of homogeneous PSO which is used for multimodal optimiza-

tion and large scale optimization problems, and lastly two variants of dynamic heterogeneous

PSO which is used for complex real-world problems.

8.1 The Knowledge Gained from This Study

Particle Swarm Optimization (PSO) is a population based and intelligent method for solving

a wide range of optimization problems, which is inspired by the social behaviour of biological

organisms, like birds flocking while searching for a food source. Despite being an efficient

method, it also suffers from the premature convergence problem, especially when solving
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the multimodal problems. For instance, all particles share its swarm's best experience (the

global best) that can lead the particles to cluster around the global best. If the global best

is located near a local minimum, escaping from the local optimum becomes difficult and

the swarm suffers diversity loss near the local minimum. In order to address this problem,

several variants of PSO are proposed in this thesis.

First of all, in developed Fitness Predator Optimization (FPO), the individual compe-

tition method is proposed to increase the dispersion of particles (swarm diversity), which

greatly reduces the possibility of all of the individuals moving toward the same position.

Secondly, the elite team generated by roulette wheel selection also is an effective approach to

maintain the swarm diversity by stimulating the competition among the elite team, strength-

ening the ability of the elite to find the best global optimal solution. In addition, the elite

team proposed in FPO also provides a potential parallel computation mechanism, which is

a promising method for FPO to decrease the computation time for solving large scale opti-

mization. To enhance the global exploration capability of the FPO algorithm for the high

multimodal problem, a modified paralleled virtual team approach is developed for FPO,

namely DFPO. In DFPO, each particle is self-organized a virtual team with several near-

est neighbouring particles. The main function of this dynamic virtual team is to build a

paralleled information-exchange system. The potential global best position can be widely

spread by this paralleled information-exchange system based on these virtual teams. It is

able to strengthen the swarm's global searching effectiveness. On the other hand, the in-

dividual competition generated by the elite team is able to provide excellent exploitation

solutions and utilizing local minima avoidance. In order to prevent the particles from cluster

around the local optimum, a random team size selection strategy is defined in DFPO named

as DFPO-r, which based on the fact that a dynamic virtual team with a higher degree of pop-

ulation diversity is able to help DFPO-r alleviate the premature convergence and strengthen

on the global exploration simultaneously. Experimental results demonstrate that DFPO-r has
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a more robust performance in most cases compared with DFPO. In conclusion, the strategies

of an elite team stimulated by the individual competition, a paralleled information-exchange

system based on the dynamic virtual teams and the random virtual team size selection are

the important contributions to the improved global exploration capability and local minima

avoidance for FPO.

In the vast majority of PSO models, the swarm is composed of homogeneous individuals.

However, heterogeneity is ubiquitous in nature. Recently, the Static Heterogeneous Particle

Swarm Optimization (SHPSO) has been studied by more and more researchers. In SHPSO,

the different search behaviours assigned to particles during initialization do not change dur-

ing the search process. As a consequence of this, the inappropriate population size of ex-

ploratory particles could leave the SHPSO with great difficulties of escaping local optima.

This motivated our attempt to improve the performance of SHPSO by introducing the dy-

namic heterogeneity. In this thesis, two variants of dynamic Heterogeneous PSO, namely

DHPSO-d with differential update-rule heterogeneity and DHPSO-p with dynamic model-

of-influence heterogeneity are proposed for complex real-world problems. In DHPSO-d, par-

ticles dynamically use different rules for updating their position when the triggering events

are confirmed. The experiment of DHPSO-d illustrates that the method of different particles

dynamically using different rules for updating their positions is beneficial to the solution

improvement during the optimization process. However the stagnation of optimal solution

can't be eliminated only by the dynamic update-rule heterogeneity as the dimensionality

of the problem increases. Unlike DHPSO-d, in DHPSO-p, two proposed types of topology

models are proposed which gives the particle models different mechanisms of choosing their

informers when the swarm being trapped in the local optimal solution. Experimental results

show that the strategy of dynamic model-of-influence heterogeneity in DHPSO-p could suc-

cessfully improve the performance of DHPSO-d for multimodal function, especially in the

high dimensional cases. These results point towards the idea that mechanisms allowing the
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swarm or sub-swarms to choose their informers during the optimization process could be

more beneficial to address the exploration and exploitation trade-off problem than designing

sophisticated update rules to make particles capable of doing both things. It means that dy-

namic heterogeneous structure enables us to move design complications from the individual

level to the swarm level.

8.2 Conclusion

In this study, five variants of homogeneous PSO have been developed for multimodal opti-

mization and large scale optimization problems, and two variants of dynamic Heterogeneous

PSO for complex real-world problems. First of all, an individual competition strategy is

proposed to the new variant of PSO algorithm, namely FPO, for multimodal problems. The

development of individual competition plays an important role of the diversity conservation

in the population, which is crucial for preventing premature convergence in multimodal op-

timization. Experimental results show that FPO is able to provide excellent performance

of global exploration and local minima avoidance simultaneously. However, to the higher

dimensionality of multimodal problem, the slow convergence speed becomes the bottleneck

of FPO. Consequently, a dynamic team model is utilized in FPO named DFPO to accelerate

an early convergence rate. The main function of this team model is to build a paralleled

information-exchange system, which is able to enhance the global optimal capability and

speed up convergence rate during the process of searching. Furthermore, the strategy of

team size selection is also presented in DFPO which is based on the idea that a team size

with a higher population diversity is able to prevent solutions from clustering too tightly in

the local search space. Then DFPO with dynamic team size selection strategy is provided

as DFPO-r. The excellent global optimizing abilities of DFPO and DFPO-r show that the

paralleled exchanging information system spread by the dynamic virtual teams could help

to accelerate the early convergence rate and improve the global searching capability.
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Secondly, the combination of FPO and FCM (FPO-FCM) algorithm is proposed to avoid

the premature convergence for clustering optimization. In FPO-FCM, the position of each

particle represents a set of clustering centroids, a number of particles composed of a swarm

of FPO-FCM. The objective function of FCM is used for evaluating the generalized solu-

tions. An experiment of five benchmark data sets show that FPO-FCM has a better global

optimization ability and the local optimum avoidance for clustering optimization. The use

of hybrid algorithms to deal with specific problems proves that hybridization is a powerful

tool far beyond the individual algorithms.

To handle the large scale global optimization problem, a variant of the modified BBPSO

algorithm incorporating the Differential Evolution (DE) approach, namely BBPSO-DE is

developed to improve the swarm's global search capability as the search space's dimension-

ality increases. Three strategies are proposed for BBPSO-DE, specifically introducing ring

topology of memory-swarm, integrating differential evolution in particle's local best posi-

tion 𝑙𝑏𝑒𝑠𝑡𝑖 and introducing the centroid position of all particles to the particle's update for-

mula. The outstanding performance of BBPSO-DE should be attributed to these strategies

by means of strengthening the swarm's global exploration while successfully maintenance

of the local exploitation.

In population-based algorithms, finding the global optimal solution of a problem is based

on two cornerstones; namely exploring all over the search space to find promising regions,

and exploiting the identified promising regions to tune the search for the global optimum.

It is worth of noting that modelled with populations of heterogeneous individuals, the opti-

mization algorithm has a ability to maintain an appropriate balance between exploration and

exploitation throughout the search process. Experiment of DHPSO-r show that the method

of dynamic update-rule heterogeneity is beneficial to the solution improvement during the

optimization process. Empirical study of DHPSO-p shows the adaptive model-of-influence

heterogeneity algorithm is more scalable to the higher dimensions than dynamic update-rule
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heterogeneity algorithm. In conclusion, the dynamic self-adaptive heterogeneous structure

is able to effectively address the exploration-exploitation trade-off problem, and provides an

excellent optimal solution of a problem.

8.3 Future Work

In our previous work, the assessment done on presented variants of PSO algorithms is based

on experimental comparisons. In this case, the use of descriptive statistics, such as the sam-

ple mean,the standard deviation and the 𝑡-test, is not sufficient. To ensure fair and meaningful

comparisons of the presented algorithms, different statistical tests should be carried out to

analyze and compare the algorithms. For instance, the Mann Whitney U test and a modi-

fied Bonferroni procedure will be used for our further evaluation analysis. There are also

many commercial (e.g., SAS/STAT, XPSS) and free softwares (e.g., R, MacAnova) which

are available for conducting such an analysis.

With the low price and easy access, the Graphic Processing Unit (GPU) has gained much

popularity in general purpose computing. Accelerating swarm intelligence algorithms for

solving large scale complex problems on GPU platform has attracted the attention of many

researchers due to their applicability to many engineering and scientific problems. With im-

provements in its programmability and the emergence of more handy development toolkits,

more and more swarm intelligence algorithms are implanted in the GPU hardware to lever-

age the rapidly increasing performance of GPU. In this thesis, Gaussian distribution used

for BBPSO-DE is time-consumption and the computation time of BBPSO-DE is greatly in-

creased with the increasing dimensionality of LSGO problems. Accelerating BBPSO-DE

for solving complex large scale problems on GPU platform may lead to a more efficient al-

gorithm and our future work is focusing on this problem. Furthermore, comparison with

other state-of-the-art algorithms for LSGO problems should be further explored.
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8.3 Future Work

One of the most interesting trends in the last years is on hybrid optimization methods.

Indeed, more and more papers are published on the hybridization of Swarm Intelligence

(SI) algorithms with other techniques for optimization. Hybridization is not restricted to the

combination of different SI algorithms but includes the use of hybrid algorithms that com-

bine local search or exact algorithms. Moreover, the combination of concepts from different

metaheuristics algorithm and different research areas can lead to interesting new approaches,

such as FPO-FCM, which combines fuzzy logic and several optimization techniques. Such

hybridizations can be used to take advantage of strengths from each algorithm in order to

improve algorithms' performance for more effective and efficient problem-solving. And our

future research is to expand this approach for more fuzzy clustering optimization problems.

Besides, for some more complicated applications, for example, dynamic systems, higher

level intelligence should be integrated into the SI algorithm. Environment detection and

response mechanism are new intelligence methods. This is population-level intelligence,

in this level, we can integrate more human knowledge and intelligence to the algorithm to

accommodate complex systems.
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Appendix B

Definitions of the Benchmark Functions

Function Definitions

All of test benchmark functions are defined as following:

𝐷: number of variables

𝑗: 𝑗-th variable, 𝑗 ∈ [1..𝐷]

𝑥: the position vector, 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝐷)

𝑓 (𝑥): the objective function

Rosenbrock function

𝑓(𝑥) =
𝐷
∑
𝑗=1

(100 ∗ (𝑥𝑗+1 − 𝑥2
𝑗 )2 + (𝑥𝑗 − 1)2)

𝑥 ∈ [−100, 100]𝐷, Global optimum 𝑥∗ = (0, 0, ..., 0), 𝑓(𝑥∗) = 0

Matlab code of the Rosenbrock function

f u n c t i o n f i t n e s s =r o s e n b r o c k ( chrom )

[Row , Dim]= s i z e ( chrom ) ;

a =100;
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Definitions of the Benchmark Functions

P1=chrom ( 1 : Row , 1 : Dim −1) ;

P2=chrom ( 1 : Row , 2 : Dim ) ;

f i t n e s s = sum ( ( a * ( P2−P1 .^2 ) . ^2+(1 − P1 ) . ^ 2 ) , 2 ) ;

end

Fig. B.1 3-D map for 2-d Rosenbrock function

Rastrigin function

𝑓(𝑥) =
𝐷
∑
𝑗=1

(𝑥2
𝑗 − 10 ∗ cos(2𝜋𝑥𝑗)) + 10 ∗ 𝐷

𝑥 ∈ [−5.12, 5.12]𝐷, Global optimum 𝑥∗ = (0, 0, ..., 0), 𝑓(𝑥∗) = 0

Matlab code of the Rastrigin function

f u n c t i o n f i t n e s s = r a s t r i g i n ( chrom )

Dim=s i z e ( chrom , 2 ) ;

a =10;
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t h e t a =2* p i ;

f i t =sum ( ( chrom .^2 − a * cos ( t h e t a *chrom ) ) , 2 ) ;

f i t n e s s = f i t +a *Dim ;
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Fig. B.2 3-D map for 2-d Rastrigin function

Griewank function

𝑓(𝑥) = 1
4000

𝐷
∑
𝑗=1

𝑥2
𝑗 −

𝐷
∏
𝑗=1

cos(
𝑥𝑗

√𝑗
) + 1

𝑥 ∈ [−5, 10]𝐷, Global optimum 𝑥∗ = (0, 0, ..., 0), 𝑓(𝑥∗) = 0

Matlab code of the Griewank function

f u n c t i o n f i t n e s s =gr i ewank ( chrom )

[Row , Dim]= s i z e ( chrom ) ;

a =4000 .^ ( −1) ;

b=repmat ( 1 : Dim , Row , 1 ) ;
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Definitions of the Benchmark Functions

f i t 1 =sum ( ( a * ( chrom ) . ^ 2 ) , 2 ) ;

f i t 2 =prod ( ( cos ( chrom . / s q r t ( b ) ) ) , 2 ) ;

f i t n e s s = f i t 1 − f i t 2 +1;

end
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Fig. B.3 3-D map for 2-d Griewank function

Ackley function

𝑓(𝑥) = −𝑎 ∗ exp(−0.02 ∗ (𝐷−1
𝐷−1
∑
𝑖=1

𝑥2
𝑖 )

1
2 ) − exp(𝐷−1

𝐷
∑
𝑗=1

cos(2𝜋𝑥𝑗)) + 𝑎 + exp, 𝑎 = 20

𝑥 ∈ [−15, 30]𝐷, Global optimum 𝑥∗ = (0, 0, ..., 0), 𝑓(𝑥∗) = 0

Matlab code of the Ackley function

f u n c t i o n f i t n e s s =a c k l e y ( chrom )
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Dim= s i z e ( chrom , 2 ) ;

a =−20;

b=exp ( 1 ) ;

c = −0.2;

t h e t a =2* p i ;

f i t 1 =sum ( chrom . ^ 2 , 2 ) ;

f i t 2 =sum ( cos ( t h e t a *chrom ) , 2 ) ;

f i t n e s s =a * exp ( c * s q r t ( Dim . ^ ( − 1 ) * f i t 1 )) − exp ( Dim .^ ( − 1 )* f i t 2 )−a+b ;

end
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Fig. B.4 3-D map for 2-d Ackley function

Michalewicz function

𝑓(𝑥) = −
𝐷
∑
𝑗=1

𝑠𝑖𝑛(𝑥𝑗)[𝑠𝑖𝑛(
𝑗 ⋅ 𝑥2

𝑗

𝜋 )]20

𝑥 ∈ [0, 𝜋]2, Global optimum 𝑥∗ = (2.20, 1.57), 𝑓(𝑥∗) = −1.8013
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Definitions of the Benchmark Functions

Matlab code of the Michalewicz function

f u n c t i o n f i t n e s s = m i c h a l e w i c z ( x )

%

% Micha lewicz f u n c t i o n

% The d e f a u l t v a l u e o f n =2.

%

n = 2 ;

m = 1 0 ;

s = 0 ;

f o r i = 1 : n ;

s = s+s i n ( x ( i ) ) * ( s i n ( i *x ( i ) ^ 2 / p i ) ) ^ ( 2 *m) ;

end

f i t n e s s = −s ;
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Fig. B.5 3-D map for 2-d Michalewicz function
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Levy function

𝑓(𝑥) =
𝐷−1
∑
𝑗=1

(𝜛𝑗 − 1)2[1 + 10𝑠𝑖𝑛2(𝜋𝜛𝑗 + 1)] + 𝑠𝑖𝑛2(𝜋𝜛1) + (𝜛𝐷 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝜛𝐷)]

𝑥 ∈ [−10, 10]30, Global optimum 𝑥∗ = (1, 1, ..., 1), 𝑓(𝑥∗) = 0

Matlab code of the Levy function

f u n c t i o n f i t n e s s = l e v y ( x )

% Levy f u n c t i o n

% The d e f a u l t v a l u e o f n =2.

n = l e n g t h ( x ) ;

f o r i = 1 : n ; z ( i ) = 1+(x ( i ) − 1 ) / 4 ; end

s = s i n ( p i * z ( 1 ) ) ^ 2 ;

f o r i = 1 : n−1

s = s +( z ( i ) −1)^2*(1+10*( s i n ( p i * z ( i ) + 1 ) ) ^ 2 ) ;

end

f i t n e s s = s +( z ( n ) −1)^2*(1+( s i n (2* p i * z ( n ) ) ) ^ 2 ) ;

Branin function

𝑓(𝑥) = 𝑎(𝑥2 − 𝑏𝑥2
1 + 𝑐𝑥1 − 6)2 + 𝑔(1 − ℎ) cos(𝑥1) + 10,

𝑎 = 1, 𝑏 = 1.25𝜋−2, 𝑐 = 5𝜋−1, 𝑔 = 10, ℎ = 0.125𝜋−1, 𝑥1 ∈ [−5, 10], 𝑥2 ∈ [0, 15]

Global optimum 𝑥∗ = (−𝜋, 12.275), (𝜋, 2.275)𝑎𝑛𝑑(9.42478, 2.475), 𝑓(𝑥∗) = 0

Matlab code of the Branin function

f u n c t i o n f i t n e s s = b r a n i n ( x )

% Br an i n f u n c t i o n

% The number o f v a r i a b l e s n = 2 .

f i t n e s s = ( x ( 2 ) − ( 5 . 1 / ( 4 * p i ^ 2 ) ) * x (1)^2+5* x ( 1 ) / p i −6)^2
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Definitions of the Benchmark Functions

Fig. B.6 3-D map for 2-d Levy function

+10*(1 −1/(8* p i ) ) * cos ( x ( 1 ) ) + 1 0 ;

Shekel function

𝑓(𝑥) = −
𝑚
∑
𝑖=1

(
4

∑
𝑘=1

(𝑥𝑘 − 𝐶𝑘𝑖)2 + 𝛽𝑖)−1

𝑚 = 10, 𝛽 = 1
10(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)𝑇

𝐶 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 1 8 6 3 2 5 8 6 7

4 1 8 6 7 9 3 1 2 3

4 1 8 6 3 2 5 8 6 7

4 1 8 6 7 9 3 1 2 3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝑥 ∈ [0, 10]4, Global optimum 𝑥∗ = (4, 4, 4, 4), 𝑓(𝑥∗) = −10.5364

Matlab code of the Shekel function

f u n c t i o n f i t n e s s = s h e k e l ( x )
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Fig. B.7 3-D map for 2-d Branin function

% Sh ek e l f u n c t i o n

% The number o f v a r i a b l e s n = 4

% The p a r a m e t e r m s h o u l d be a d j u s t e d m = 5 , 7 , 1 0 .

% The d e f a u l t v a l u e o f m = 1 0 .

%

m = 1 0 ;

a = ones ( 1 0 , 4 ) ;

a ( 1 , : ) = 4 . 0 * a ( 1 , : ) ;

a ( 2 , : ) = 1 . 0 * a ( 2 , : ) ;

a ( 3 , : ) = 8 . 0 * a ( 3 , : ) ;

a ( 4 , : ) = 6 . 0 * a ( 4 , : ) ;

f o r j = 1 : 2 ;

a ( 5 , 2 * j −1) = 3 . 0 ; a ( 5 , 2 * j ) = 7 . 0 ;

a ( 6 , 2 * j −1) = 2 . 0 ; a ( 6 , 2 * j ) = 9 . 0 ;

a ( 7 , j ) = 5 . 0 ; a ( 7 , j +2) = 3 . 0 ;
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Definitions of the Benchmark Functions

a ( 8 , 2 * j −1) = 8 . 0 ; a ( 8 , 2 * j ) = 1 . 0 ;

a ( 9 , 2 * j −1) = 6 . 0 ; a ( 9 , 2 * j ) = 2 . 0 ;

a ( 1 0 , 2 * j −1)= 7 . 0 ; a ( 1 0 , 2 * j )= 3 . 6 ;

end

c ( 1 ) = 0 . 1 ; c ( 2 ) = 0 . 2 ; c ( 3 ) = 0 . 2 ; c ( 4 ) = 0 . 4 ; c ( 5 ) = 0 . 4 ;

c ( 6 ) = 0 . 6 ; c ( 7 ) = 0 . 3 ; c ( 8 ) = 0 . 7 ; c ( 9 ) = 0 . 5 ; c (10)= 0 . 5 ;

s = 0 ;

f o r j = 1 :m;

p = 0 ;

f o r i = 1 : 4

p = p+(x ( i )−a ( j , i ) ) ^ 2 ;

end

s = s +1/ ( p+c ( j ) ) ;

end

f i t n e s s = −s ;

Shaffers N.2 function

𝑓(𝑥) = 0.5 + 𝑠𝑖𝑛2(𝑥2 − 𝑦2) − 0.5
(1 + 0.001 ∗ (𝑥2 + 𝑦2))2

𝑥 ∈ [−100, 100]2, Global optimum 𝑥∗ = (0, 0), 𝑓(𝑥∗) = 0

Matlab code of the Shaffers N.2 function

f u n c t i o n f i t n e s s = s h a f f e r s ( x )

% S h a f f e r s N. 2 f u n c t i o n

% The number o f v a r i a b l e s n=2

a1= s q r t ( x (1)^2+ x ( 2 ) ^ 2 ) ;

a=s i n ( a1 ) ;

174



b =(( x (1)^2+ x ( 2 ) ^ 2 ) * 0 . 0 0 1 + 1 ) ^ 2 ;

f i t n e s s =0.5+( a ^ 2 − 0 . 5 ) / b ;

Fig. B.8 3-D map for 2-d Shaffers N.2 function

Schwefel function

𝑓(𝑥) = 418.9829 ∗ 𝐷 −
𝐷
∑
𝑗=1

𝑥𝑗𝑠𝑖𝑛(√|𝑥𝑗|)

𝑥 ∈ [−500, 500]𝐷, Global optimum 𝑥∗ = (420.9687, 420.9687, ..., 420.9687), 𝑓(𝑥∗) = 0

Matlab code of the Schwefel function

f u n c t i o n f i t n e s s =s c h w e f e l ( chrom )

[Row , Dim]= s i z e ( chrom ) ;

a =418.9829*Dim ;

b=chrom . * s i n ( s q r t ( abs ( chrom ) ) ) ;

f i t n e s s =a−sum ( b ' ) ' ;
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Definitions of the Benchmark Functions

Fig. B.9 3-D map for 2-d Schwefel function

Rotated hyper-ellipsoid function

𝑓(𝑥) =
𝐷
∑
𝑗=1

𝑗
∑
𝑘=1

𝑥2
𝑘

𝑥 ∈ [−65.536, 65.536]𝐷, Global optimum 𝑥∗ = (0, 0, ..., 0), 𝑓(𝑥∗) = 0

Matlab code of the Rotated hyper-ellipsoid function

f u n c t i o n f i t n e s s =r o t h y p e r ( chrom )

% R o t a t e d hyper − e l l i p s o i d f u n c t i o n

[Row , Dim]= s i z e ( chrom ) ;

new_chrom=z e r o s (Row , Dim ) ;

chrom=chrom . ^ 2 ;

new_chrom ( : , 1 ) = chrom ( : , 1 ) ;

f o r i =2:Dim

new_chrom ( : , i )=sum ( chrom ( : , 1 : i ) , 2 ) ;

end

176



f i t n e s s =sum ( new_chrom , 2 ) ;

end

Fig. B.10 3-D map for 2-d Rotated hyper-ellipsoid function

Sphere function

𝑓(𝑥) =
𝐷
∑
𝑗=1

𝑥2
𝑖

𝑥 ∈ [−100, 100]𝐷, Global optimum 𝑥∗ = (0, 0, ..., 0), 𝑓(𝑥∗) = 0

Matlab code of the Sphere function

f u n c t i o n f i t n e s s =Sphere ( Chrom )

Colony=Chrom . ^ 2 ;

f i t n e s s =sum ( Colony , 2 ) ;

end

Zakharov function

𝑓(𝑥) =
𝐷
∑
𝑗=1

𝑥2
𝑗 + (

𝐷
∑
𝑗=1

0.5𝑗𝑥𝑗)2 + (
𝐷
∑
𝑗=1

0.5𝑗𝑥𝑗)4
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Definitions of the Benchmark Functions

Fig. B.11 3-D map for 2-d Sphere function

𝑥 ∈ [−1, 1]𝐷, Global optimum 𝑥∗ = (0, 0, ..., 0), 𝑓(𝑥∗) = 0

Matlab code of the Zakharov function

f u n c t i o n f i t n e s s = z a k h a r o v ( xx )

d = l e n g t h ( xx ) ;

sum1 = 0 ;

sum2 = 0 ;

f o r i i = 1 : d

x i = xx ( i i ) ;

sum1 = sum1 + x i ^ 2 ;

sum2 = sum2 + 0 . 5 * i i * x i ;

end

f i t n e s s = sum1 + sum2^2 + sum2 ^ 4 ;
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Fig. B.12 3-D map for 2-d Zakharov function

Sum of different powers function

𝑓(𝑥) =
𝐷
∑
𝑗=1

|𝑥𝑗|𝑗+1

𝑥 ∈ [−1, 1]𝐷, Global optimum 𝑥∗ = (0, 0, ..., 0), 𝑓(𝑥∗) = 0

Matlab code of the Sum of different powers function

f u n c t i o n f i t n e s s = sumpow ( chrom )

% Sum of d i f f e r e n t powers f u n c t i o n

d = l e n g t h ( chrom ) ;

sum = 0 ;

f o r i i = 1 : d

x i = chrom ( i i ) ;

new = ( abs ( x i ) ) ^ ( i i +1) ;

sum = sum + new ;

end

f i t n e s s = sum ;
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Definitions of the Benchmark Functions

Fig. B.13 3-D map for 2-d Sum of different powers function
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