法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-01-03

ヨルダン・ヴァレー断層帯の最新変位痕跡

MAHMOUD, Al-Qaryouti / 東郷, 正美 / 長谷川, 均 / 石山, 達也 / 後藤, 智哉 / 牛木, 久雄 / マホムッド, アル カァリ オティ / TOGO, Masami / HASEGAWA, Hitoshi / ISHIYAMA, Tatsuya / GOTO, Tomoya / USHIKI, Hisao

(出版者 / Publisher) 法政大学多摩研究報告編集委員会

(雑誌名 / Journal or Publication Title) 法政大学多摩研究報告 / 法政大学多摩研究報告

(巻 / Volume) 31 (開始ページ / Start Page) 1 (終了ページ / End Page) 10 (発行年 / Year) 2016-05-30 (URL)

https://doi.org/10.15002/00013341

ヨルダン・ヴァレー断層帯の最新変位痕跡

東郷正美¹⁾・長谷川 均²⁾・石山達也³⁾・ 後藤智哉⁴⁾・牛木久雄・Mahmoud Al-Qaryouti⁵⁾

Latest displacement traces of the Jordan Valley fault near Zarqa River, Jordan

Masami TOGO¹⁾, Hitoshi HASEGAWA²⁾, Tatsuya ISHIYAMA³⁾, Tomoya GOTO⁴⁾, Hisao USHIKI, and Mahmoud Al-Qaryouti⁵⁾

1. まえがき

ヨルダン・ヴァレー断層帯(JVF:Garfunkel, et al., 1981)は、アラビア・プレートの西縁を画する死海ト ランスフォーム断層(DST)の動きを反映した巨大な 活断層系の一部である(東郷,2012)。ガリラヤ湖東 縁から南下して死海西縁に達する本断層帯は、100km 以上の長さをもち、第四紀後期においてもその活動 は活発で、間違いなく左横ずれ変位を累積させてい る(東郷ほか,2011ab,2014ab;東郷,2012)。歴史的 な大地震・749年パレスティナ大地震の震源として注 目されている存在でもある(Marco et al.,2003)。

2008 年以来、ヨルダン天然資源庁 NRA(現在のエ ネルギー・天然資源省 MEMR) で入手した古い空中 写真(1950 年代英空軍撮影)(長谷川ほか,2014;長 谷川,2015)を活用しつつ、JVF の活断層としての実 態、その活動特性の解明を目指して調査研究に取り 組んできた(東郷,2012,2015:東郷ほか,2008,2010, 2011ab,2014ab,2016)。本稿では、この過程で本断層 帯の最新活動痕跡のひとつとみなせる貴重な変位地 形を見いだしたので、その実態を記載し、かつ、こ れもって JVF 最新活動像の分析を試みたい。

2. 新たに見いだした微小断層変位地形

本稿で注目する変位地形は、ヨルダン・ヴァレー の南半中部、Zarqa川の支流Wadi Al Gham がその下 流部で、南流してきた流路の向きを東方へと転ずる ところの右岸谷壁斜面上に存在する。これを対岸上 部から見下ろしたものが写真1である。写真中央を 斜めに横切る白い直線状物f-f'は、踏み分け小径 であるが、南北に一直線状をなして走るこの小径を 境にして谷壁斜面やその開析谷地形が連続を断たれ、 一様に左横ずれしている様子をこれで容易に見定め ることができよう。

写真2は、少し低い位置から見た谷地形Aの拡大 写真である。これを見ると、深いガリを伴って上方に むかう谷Aが、小径の手前で幅広い谷地形を保った まま途絶え、裁頭谷となっていることが分かる。そ の左岸にあってこれに合流する小谷aも小径に当たっ たところで途絶えている(写真1)。小径より上流側 でこれらと流域を同じくする区域の地形に注目する

¹⁾ 法政大学 Hosei Univ.

²⁾ 国士舘大学 Kokushikan Univ.

³⁾ 東京大学地震研究所 ERI, Tokyo Univ.

⁴⁾ グリーン航業(株) Green-Kogyo Ltd.

⁵⁾ ヨルダン・エネルギー天然資源省地震観測センター JSO, MEMR, Jordan

写真1 Wadi AI Gham 下流部右岸谷壁斜面上に残る断層変位地形の全景

と、ここでは、源頭谷部底に連続する主谷 A' と北隣 河谷 C' との分水界から下る谷 a' が存在するだけで他 に目立つ谷地形は認められない。これら2つは、規模・ 方向・配置形状が、小径下流側でともに裁頭谷となっ て途絶える谷 A とその支谷 a のそれに酷似している ので、それぞれの上流河谷にあたると見なせる。谷 A - A'、a - a' が、f - f' 線をもって断ち切られ、大き く左横ずれ状の食い違いを起こしたことは明らかで ある。谷 A' は、小径にそって右岸側から張り出した 低い高まり ml によって行く手を遮られ、この ml の 西側には、A' 谷底面をきって生じた東向き直線状低 崖地形 S1 が生じている (写真 2)。ml やそれと併走 する S1 は、ともに谷地形を横断する存在で、人為的 なものでなければ、断層変位地形と考える他ないで あろう。

写真3は、ほぼ正面からみた北隣りの谷C-C下 流部(写真1)の近景である。この谷も、谷A-A'と 同様にf-f'線上で大きく左ずれの食い違いを起こし、 その連続が断たれている。谷CとC'は、同じ流域に あってともに主谷と見なせる唯一の河谷地形であり、 両岸近くに顕著なガリが発達する側面も共通してい るので、本来連続する河谷として形成されたものと みて間違いない。谷C'の行く手を遮る逆向き低崖 S2 の存在は、C'がガリを伴った状態で切断されたこと を如実に物語っている。

写真3では、谷A-A'と谷C-C'の間で、両流域 の分水界にあたる稜線B-B'がそれらとほぼ同じ程 度の量をもって左横ずれしている様子も確認できよ う。

以上のように、Wadi Al Gham 下流右岸には、谷壁 斜面とその開析谷群が南北方向の一線で一様に断た れ、左横ずれ変位したことを示す微小断層変位地形 群が、新鮮な姿をもって保存されている。

3. Zarqa 川付近におけるヨルダン・ヴァレー断層帯

1) JVF の位置・形状およびその主な変位地形

空中写真判読と現地調査によって把握した JVF 断 層線を図1に示した。写真4は、その主要部の地表 表現形態を示す空中写真である。ヨルダン・ヴァレー 底の多くは、最終氷期に広がった多雨湖(リサン湖) の堆積物(リサン層)がつくる台地とそれを開析する 河谷地形からなる(東郷ほか,2009)。本地域でも同 様で、JVF は、ヨルダン川の東方で、このようなリサ ン層の堆積面(リサン面)およびその開析谷を一様 に断ち、ほぼ南北(N約4°E方向)に一直線状をな して走る断層線を形成している。断層線に沿って認 められる主な断層変位地形を、以下簡単に記載する。

写真2 A谷の左横ずれ

写真3 C谷の左横ずれ

図1 ヨルダン・ヴァレー断層帯の分布・形状 左上に死海トランスフォーム活断層系の全体像(Le Beon *et al.*,2008に基づく)に本調査研究地域の位置(黒四角部)を 示す図をを挿入.等高線はヨルダン1/25,000地形図によ

地点①付近では、リサン面上に 3km 余にわたって 南北に直線状をなして延びる東向き低崖が認められ、 その西側は半円形をなす比高 40m 余の丘(Dhahrat Al Qurayn)となっている(図1,写真4左)。テクトニッ ク・バルジと見なせるこのような高まりは、地点⑤ の Damiya 付近でも認められるが、ここでは、高まり は JVF の東側に位置し、①のものに比べて低く、扁 平である。2012 年に断層トレンチ調査を試みた地点 ②では、リサン面上の若い谷の堆積物を変位させた 断層を掘り当て、その活動が過去 5000 年ほどの間に 少なくとも 3 回あったことを示す証拠を見いだして いる(東郷ほか, 2014b)。

地点③付近では、短く途切れてミ型雁行する断層 に区画された溝状凹地・楕円形凹地群がつくる列が、 リサン面上 2km 余にわたって形成されている(写 真4左)。その南端部に位置する楕円形の大きな池が Kibed と呼ばれる sag pond である(Al-Taj, 2000)。中 ほどにも一回り小さい sag pond が形成されているが、 これの実測横断面図が図2である。

地点③の北延長部では、南北に長く延びる直線谷の 発達が顕著であり、このような直線谷が並ぶ線上に 位置する地点④では、これを横切って西流する Wadi Al- Russief の河谷が、大きく左横ずれしている(図1, 写真4左)。その横ずれ量は170~180mと見積もれ、 一際大きい(Ferry *et al.*, 2007)。

⑤は、Damiya 付近に発達する上記の扁平な膨隆丘 の西を断つ直線谷の1つである。その延長上に位置 する地点⑥では、Y 字状をなして西に派出する小さな 尾根が二手に分かれたところで切断されて左横ずれ している。その南側の開析谷も変位し、谷底にはご く低い逆向き低断層崖が形成されている。

ヨルダン川の最大級支流、Zarqa 川の河谷(⑦) に おいても、これを斜めに横切る一線をもって両岸谷 壁がともに食い違い、左横ずれした形跡が認められ る。しかし、その量はおおよそ 70m 程度で、大河谷 にしては意外にも小さい。

Zarqa川の北側は、開析がより進み、リサン面がほ とんど失われた地域となっている。その中で、地点⑩ 付近には、谷中分水界を介して対置する直線河谷がい くつも一列に並んで形成する線状凹地帯が約3kmに わたって存在する(写真4右)。本稿で注目したWadi Al Gham の中~上流谷もそれを構成する直線谷の1つ にあたる。これらは、JVF に関係した断層谷・断層線 谷地形と見なせるが、これを境としたリサン面の高 度不連続は明瞭でない。地点⑨が、本稿で注目する 極新期の変位地形が形成されている場所にあたる。

⑩の凹地帯は、ヨルダン川に向かって押し下る巨 大な地滑り地(⑪)にあたって途絶える。JVF上に位 置するこの地滑りは、約1000mの幅、1500m余の長 さを有し、ヨルダン・ヴァレーでは類を見ない大規 模なものである。これの北側に位置する地点⑫では、 リサン面を切る東向き低崖が認められ、その崖線の 南延長部では小谷群が小さく左横ずれしている。

る

写真4 空中写真で見る JVF の断層線

左:Zarqa 川南方地区,右:Zarqa 川河谷およびその北方地区.いずれも 1950 年代初期に英空軍によって撮影されたものの一部.右は同一撮影コース上の写真 3 枚を合成したもの.

写真5 ⑨地点に露出する断層

2) 地点⑧の断層露頭

直線谷が並んでつくる上記の線状凹地帯⑩の南端 部、地点⑧(Zarqa川本流に直接繋がる小支流の谷頭 部部)には、写真5の大地質露頭があり、ここでリ サン層を変位させた断層群を観察することができる。

写真5で明らかなように露頭面中央部で顕著な楔 状落ち込み構造が生じている。楔状落ち込み構造の 両縁を画する断層に注目すると、Z2は東西性の走向 を有する傾斜数10°の正断層であるのに対し、西側の Z1は走向がN18°Wでほぼ垂直の断層面をもち、下 方ではZ2を断っている。このことから楔状落ち込み 構造はZ1の動きが主導して生じたことがうかがえる。

本露頭に露出するリサン層については、上・中・ 下部にあって白色層として目立つ3つのシルト層(h1、 h2、h3)、それらに挟まれて存する褐色泥質層(Br)、 灰色シルト互層(Gr)に分けられ、肩コロン付記号 部のものも、断層で分断されて存するが、層位・層相 の共通性により同記号ごとにその続きとして対比で きよう。楔状落ち込み部では、h1、B、h2 が2m余 と大きく陥落している。しかし、この楔状落ち込み 部の両側に位置する地層群、例えば h1 - h1"、h2 h2"、h3 - h3"に注目すると、h1"と h3"は明確に高 度を異にするが、前者は低位、後者は逆に高位にある。 その中間に位置する h2"についてはほとんど高度が 変わらない。すなわち、地層群が楔状落ち込み部を 境にして一様に上下変位した形跡はここでは見当た らない。このような上下変位をほとんど伴わない開 口性の断層活動はそれが横ずれ断層運動によるもの であることを意味している。

露頭をさらに注視すると h1 − h1"、h2 − h2"、h3 − h3"のこのような高度変化は、それらに挟まれて 存する Br − Br"と Gr − Gr"の厚さの変化に対応し たもので、Br"、Gr"は Br、Gr に比べて明らかに薄い ことに気づく。注目すべきは、楔状落ち込み部を境 として一連の地層群に認められるこの層厚不連続現 象であり、この事実は、それらが横ずれ変位した結 果であることを端的に物語っている。

以上から、本露頭に現れた断裂構造は、南北性で直 立した断層面をもつ横ずれ断層 Z1 の活動で生じたも のと思われる。断層 Z1 は上端部で、リサン層を不整 合におおう薄い斜面堆積物をも変位させており、こ れがごく近い過去に活動した経歴をもつことも明ら かである。断層 Z1 は、JVF 断層帯上にあって同じ方 向性を有し、横ずれ変位を主とする変位様式上の特 性も共通することから、JVF の活動で生じた地質構造 と考えられる。

4. ヨルダン・ヴァレー断層帯の最新活動像について

2章で取り上げた Wadi Al Gham 下流右岸谷壁斜面 上に生じた断層変位地形は、図1の地点⑧に存在し、 大局的には JVF 断層帯上に位置しているとみなせる。 さらにここで谷壁斜面およびその開析谷を変位させ た断層は、南北に直線状をなし、これを横切るもの を一様に左横ずれさせている。このように変位地形 の形成に関わった断層は、分布位置、形状、変位様 式のいずれもが、JVF のそれと一致しているので、こ れを JVF の活動に直結した事象とすることには疑問 の余地がないと思われる。

図2は、トータルステーションよる測距・測高結 果に基づいて作成した地点⑧の微小変位地形の実測 地形図である。上述した谷壁斜面とそれを開析する 2つの谷が、F - F"の1線をもって断たれ、左横ず れしている様子が改めてよく確認できよう。左横ず れして谷Cとの連続を断たれた谷С'は、下流側に右 岸谷壁 m2 がせり出したことで行く手を遮られ、閉塞 凹地化している。閉塞に関わった高まりm2は比高 数10cmにも満たず、かなり大きい集水域をもつ谷C' の流水なら、これを突破することはたやすいと思わ れるが、未だその閉塞状態は解けていない。この事 実は、この谷の横ずれ変位がごく近い過去に生じた ものであることを物語っている。谷A-А'でも横ず れ変位で同様な地形が形成されている。しかし、こ こでは、谷 A'の行く手を遮ることになった下流側の 高まりmlを横切ってガリが形成され、これが谷A' に繋がってその谷底を開析している。このようなガ リを伴って谷 A' が、その後、新たな断層変位で再度 横ずれすれば、谷 A'の排水路がまた断たれ、断層線 の下流側には新たな裁頭谷が生まれることになるが、 谷 A' のかつての下流流路にあたる裁頭谷は、ここで は谷A以外に存在しない。この事実は、谷A-A'の 左横ずれ変位が一度の断層活動で生じたものである ことを示している。

谷A-A'、谷C-C'に加え、その中間に位置する 両者の分水界B-B'も同様に左横ずれしており、そ れらの食い違い量はよく似ていて、それらに少なく とも倍・半分の差はない。このことは、それぞれが被っ た断層変位の回数が等しく、1回であることを示して いる。谷A-A'、谷C-C'、分水界B-B'それぞれ の左横ずれ量を、図2を用いて計測すると、(1)谷A -A'右岸縁:約13-14m、(1)同左岸縁:10m前後、 (1)谷a-a':13-14m、(2)谷C-C'の右岸縁:約 10mとなる。現地で巻き尺を用いた計測の結果は、(1): 11.6m、(1):9m、(1):13.2m、(2):10.7mであった。

断層線を境とした谷 A - A'、分水界 B - B'、谷 C -C' それぞれの高度的不連続に注目すると、谷 A - A'、 谷 C - C' については、明らかに A、C が低位にある が、その高度差は 1 ~ 2m を超えることはない。分水 界 B' の末端を断つ東向き低断層崖の比高も、図 3 か ら 1m 程度と見積もれる。以上から本断層活動におい ては東側を低下させる上下変位が伴われたが、その 変位量は多くても 1m 程度と思われる。この結果は、 本地域における JVF の最新活動は、圧倒的に左横ず れ変位が卓越しものであったことを示している。そ の量は上記のように 10m を超えたと考えられる。こ れは、地点②での地形・断層トレンチ調査の結果に 基づいて試算した JVF の単位変量(6m 余;東郷ほか, 2014b)を遥かに上回るもので、特筆に値する新知見 と考える。

図2のとおり、これらの変位地形は、勾配が急で 地形の変化速度の速い谷壁斜面上に位置しながらも、 いまだ形成時の姿かたちをほぼそのまま保っている。 これは、それらの形成期が極めて新しいことを意味 している。谷C内に生じたガリの谷壁の露出するそ の谷底堆積物中より試料を採取して¹⁴C年代測定に供 したところ、2840±30 yrsBP(地球科学研究所測定コー ドNo:Beta-426038)の結果を得た。このJFVの最新 活動はここ 3000年ほどの間に発生したと考えられる。 2010年に試みたヨルダン・ヴァレー北部、Shaikh Husain地区での断層トレンチ調査の結果(東郷ほか, 2011ab)を考慮するなら、この出来事は 1650yrsBP 以 降に限定される可能性も考えられる。

図3 地点⑨に存する微小変位地形の実測等高線図

Zarqa 川の支流 Wadi Al Gham の下流右岸谷壁で見 つけたごく新しい断層変位地形は、JVF の最新活動に より生じたもので、これらは、ごく近い過去に起こっ た JVF の最新活動が、世界最大級の地表変位を伴っ た大事変であったことを物語っている。

5. あとがき

ヨルダン・ヴァレー断層帯 JVF の最新活動で生じ た地表地震断層の一部を、ヨルダン・ヴァレー南半 中部、Zarqa 川の北で新たに見いだし、これを精査す ることにより、この時ここでは 10m を超える地表変 位が生じたことを明らかにした。このような知見は、 JVFの活動像の本質を解き明かすための手がかりとし て注目に値しよう。地表地震断層が生じた時期につ いては、ここでは正確に特定するには至らなかった が、2010年にヨルダン・ヴァレー北部で実施した断 層トレンチ調査の結果を考慮して千数百年前以降の 可能性も無視できないとした。749年パレスティナ大 地震との関連性を問う向きもあるので、今後は、発 生期の特定が重要な課題の1つとなる。横ずれ変位 量の場所的変化に関する資料を整えられるなら、そ れは活動区間の位置と長さを見定める手かがりとな る。これも今後の調査課題として重要と考えている。

本稿は、ヨルダン・ヴァレー南半北部におけるヨ ルダン・ヴァレー断層帯の性状記載を意図したもの でもあり、この主旨から言えば、ヨルダン・ヴァレー 北部を扱った東郷 (2012)、同南部を扱った東郷ほか (2014b)の続編にあたる。これらは 2009 ~ 2011 年 度科研費補助金(基礎研究 C:課題番号 21501007)に よる成果を基礎にし、その後の調査研究成果を加え てまとめたものである。本稿を取りまとめるにあた り、2015 年度科研費補助金(基礎研究 C:課題番号 15K01173)および 2015 年度私学振興財団学術研究振 興資金(国士舘大学)の一部を使用した。

文 献

- 東郷正美,2012,ヨルダン渓谷北端部の変動地形と活 断層.法政大学多摩研究報告,27,1-8.
- 東郷正美,2015,ヨルダンの火山と地震.地図中心, 518,10-13.
- 東郷正美・長谷川 均・後藤智哉,2008,死海地溝東 縁の地質構造.法政大学多摩研究報告,23,i-ii.
- 東郷正美・長谷川 均・後藤智哉, 2009, 最終氷期の 死海"Lake Lisan".法政大学多摩研究報告, 24, i-ii.
- 東郷正美・長谷川 均・後藤智哉, 2010, 死海トラン スフォーム断層によって変位した考古遺跡 "Qasr Tilah"の年代. 法政大学多摩研究報告, **25**, i-iv.
- 東郷正美・長谷川 均・Tawfiq Al-Yazjeen・Mahmoud Al-Qaryouti・石山達也・岡田真介・竹内えり・牛 木久雄・今泉俊文、2011a、死海トランスフォーム

断層に沿うヨルダン・ヴァレー断層帯の活動履歴. 日本地理学会発表要旨集,**79**,316.

- 東郷正美・長谷川 均・Tawfiq Al-Yazjeen・Mahmoud Al-Qaryouti・石山達也・岡田真介・竹内えり・牛 木久雄・今泉俊文, 2011b, ヨルダン・ヴァレーに おける死海トランスフォーム断層の最近の活動. 日本地理学会発表要旨集, **80**, 103.
- 東郷正美・長谷川 均・石山達也,2014a,ジェリコ断 層に関する覚書.法政大学多摩研究報告,29,51-62.
- 東郷正美・長谷川 均・後藤智哉・石山達也・牛木久雄・ Tawfiq Al-Yazjeen · Mahmoud Al-Qaryouti · Khalid Momani, 2014b, ヨルダン、Karamah 地区における ヨルダン・ヴァレー断層帯の最近の活動. 日本 地理学会発表要旨集, **85**, 219.
- 東郷正美・長谷川 均・後藤智哉・石山達也・今泉俊文・ 松本 健,2016,デカポリス"ガダラ"は、本当 に749年パレスティナ大地震で壊滅したか.文化 遺産研究,9,39-50.
- 長谷川 均,2015,ヨルダン渓谷を撮影した1950年代 初期の空中写真.地図中心,518,24-27.
- 長谷川 均・後藤智哉・東郷正美・Mahmoud Al-Qaryouti・竹内えり・牛木久雄, 2014, ヨルダンで 撮影した 1950 年代初頭の空中写真―その概要と 保存修復―.文化遺産研究, 7, 131-141.
- Al-Taj, M.M.I, 2000, Active faulting along the Jordan Valley segment of the Jordan—Dead Sea transform.
 Ph.D thesis, University of Jordan.
- Ferry, M., M. Meghraoui, N. Abou Karaki, M. Al-Taj, H. Amoush, S. Al-Dhaisat, M. Barjous, 2007, A 48-kyrlong slip rate history for the Jordan Valley segment of the Dead Sea Fault. *Earth Planet. Sci. Lett.*, 260, 394-406.
- Garfunkel, Z., I. Zak, R. Freund, 1981, Active faulting in the Dead Sea rift. Tectonophysics, 80, 1-26.
- Le Beon, M., Y. Klinger, A. Q. Amrat, A. Agnon, L. Dorbath, G. Baer, J. C. Ruegg, O. Charade, O. Mayyas, 2008, Slip rate and locking depth from GPS profiles across the southern Dead Sea Transform. *J.Geophysical Research*, **113**, B11403,doi:10.1029/20 07JB005280.

Marco, S., M. Hartal, N. Hazan, L. Lev, and M. Stein, 2003, Archaeology, history, and geology of the A.

D.749 earthquake, Dead Sea transform. *Geology*, **31**, 665-668.