法政大学学術機関リポジトリ HOSEI UNIVERSITY REPOSITORY

PDF issue: 2024-05-31

ジッタシェーピング型ΔΣDACと試作

渡邉, 裕紀 / WATANABE, Yuki

(出版者 / Publisher) 法政大学大学院理工学・工学研究科

(雑誌名 / Journal or Publication Title)

法政大学大学院紀要.理工学・工学研究科編 / 法政大学大学院紀要.理工学・工学研究科編

(巻 / Volume)
57
(開始ページ / Start Page)
1
(終了ページ / End Page)
8
(発行年 / Year)
2016-03-24
(URL)
https://doi.org/10.15002/00013083

DELTA-SIGMA DAC WITH JITTER-SHAPER AND PROTOTYPE

渡邉裕紀 Yuki WATANABE 指導教員 安田彰

法政大学大学院理工学研究科電気電子工学専攻修士課程

We present a novel delta-sigma digital-to-analog converter (DSDAC) using a jitter shaper to augment the noise caused by clock jitter. The jitter shaper is designed for a 0.18 µm CMOS and comprises switched capacitor and sample-and-hold circuits. We simulate the DSDAC in MATLAB/simulink and design and simulate the complete jitter shaper circuit in Virtuoso/spector. We predict that the jitter shaper will improve the signal-to-noise ratio (SNR). We had the A to the integrated circuit and measured the DSDAC combined with FPGA.

Key Words : D/A converter, delta-sigma modulator, jitter shaper, clock jitter, IC.

1. はじめに

半導体の発展で、機器の高性能化・小型化が進んでいる. アナログデジタル変換器 (ADC) とデジタルアナログ変換 器(DAC)はその中でも重要な回路の一つである. ADC と DACには様々な種類がある.DACには、抵抗ラダー型・抵 抗ストリング・電流出力型・容量アレイ型・パルス幅変調 型・ $\Delta \Sigma$ 型などの種類がある.その中でも、 $\Delta \Sigma$ 型の ADC・ DAC はオーバーサンプリングとノイズシェーピングを用 いて高精度変換を実現できるため、オーディオ・センサ ー・通信などの分野で使われている. ここでは Δ Σ DAC に ついて述べる. Δ Σ DAC とは, 抵抗ラダーなどの通常の DAC (内部 DAC) に $\Delta \Sigma$ 変調器等を組み合わせたものである. Δ Σ DAC の高性能化は、高精度・広帯域化(高速化)と低 消費電力の二方向へのアプローチが挙げられる. 高精度 化・広帯域化(高速化)においては,高次化,高 OSR 化, 多ビット化を主とした様々な手法が提案されている.こ れらは主に $\Delta \Sigma$ 変調器に対する手法である. $\Delta \Sigma$ 変調に より再量子化ノイズは十分に低減できるが、Δ ΣDAC のノ イズは内部 DAC にも大きく依存する. そのため内部 DAC のノイズも考慮する必要がある.その1つにクロックジ ッタによる精度劣化がある. Δ ΣDAC はアナログ信号出力 時にクロックジッタと高域の量子化ノイズとの位相変調 作用により、ホワイトノイズやスプリアストーンが発生 し、特性が悪化する.これに対する従来の対策法として、 ΔΣ 変調器の後ろにローパス型のスイッチトキャパシタ フィルタや FIR フィルタを挿入し, 高域の量子化ノイズ を低減する方法が知られている.しかし、これらフィルタ の挿入は、アナログ回路や bit 数の増加により DAC 回路

規模が増大する.

本論文ではジッタシェーピング技術を用いた DAC であ るジッタシェーパーを提案する. そして $\Delta \Sigma$ 変調器と組 み合わせた, ジッタシェーピング型 $\Delta \Sigma DAC$ を示す. ジ ッタ シェーパーの有用性を MATLAB/simulink と Virtuoso/spector によるシミュレーションで示す. また ジッタシェーパーを IC チップとして試作し, FPGA で実現 した $\Delta \Sigma$ 変調器と組み合わせて実測した結果を示す.

2. クロックジッタと $\Delta \Sigma DAC$

(1) クロックジッタ

デジタル回路は、クロック信号によって制御される.理 想的なクロック信号は一定の周期を維持する.しかし実 際は,位相ロックループ(PLL)により生成されたクロッ ク信号の位相は、クロストークや電源ノイズによる雑音 の影響を受ける.そのため、デジタル回路の動作タイミン グは意図した一定周期とは少し異なる.このクロックジ ッタは、クロック信号の立ち上がりと立ち下がりのタイ ミングの変動によるものと考えられる.ほかに電源ノイ ズ,熱雑音、1/F(ピンク)ノイズはDACの性能を低下さ せる.本論文ではクロックジッタに着目し、ジッタ成分は 正規分布のランダム雑音であることを前提として解析す る.また、ホワイトノイズに対する考察から、周波数特性 をもつノイズへの類推も可能である.本論文では、ジッタ に起因するDAC 出力における誤差に周波数特性を与え特 性を改善する、ジッタシェーパーを提案する.

図 1 は理想クロックおよびジッタのクロックにより制 御されたサンプルホールド (S/ H) 回路の波形を示す. ク ロックジッタは、DACの出力信号振幅には影響を与えない. しかしながら出力電力の変動,ひいてはノイズの原因と なる出力信号幅を変化させる.したがって DAC のクロッ クジッタは,時間軸方向のノイズの原因となる.

(2) $\Delta \Sigma DAC$

 $\Delta \Sigma DAC は図2に示すように、主にデジタル <math>\Delta \Sigma$ 変調 器、ミスマッチシェーパー、内部 DAC から構成される. $\Delta \Sigma DAC のジッタは、DAC 構造の要素である内部 DAC のア$ $ナログ加算時に影響を与える. <math>\Delta \Sigma$ 変調器は高精度に入 力信号を量子化する必要がある.内部量子化器をマルチ ビット化した場合では、DAC の素子ばらつきが精度に影響 を及ぼす.これらの問題の解決法として、Data Weighted Averaging (DWA) や Noise Shaping Dynamic Element Matching (NSDEM) などの、ミスマッチシェーパーを用い て軽減することが一般的である.高精度の DA 変換はこれ らの方法によって可能である.

図3は、MATLAB シミュレーションに使用した三次 $\Delta \Sigma$ 変調器である.理想的な $\Delta \Sigma$ 変調器にクロックジッタ 1%を加えた出力スペクトルを図4に示す.このとき使用 したジッタモデルは図5であり、ジッタが十分に小さい とき時間軸方向のノイズを振幅方向に変換する.DAC 出力 信号(図1)のクロックの時間変化による影響は、クロッ クジッタによる振幅誤差を加算することによってモデル 化することができる.S/Hに正弦波入力をしたとき、時 間変化 δ に起因する振幅誤差は式(1)にて与えられる.

$$Ej = sin(t + \delta) - sin(t) = \delta \frac{d \sin(z)}{dt}.$$
 (1)

これはδが周期 Tよりもはるかに小さいときに近似でき

る. 図4を見ると、ジッタに起因するノイズによってフロ アが高くなり SNR が劣化することがわかる. 上記のシミ ュレーション結果に示すように、 $\Delta \Sigma DAC$ はクロックジッ タに起因する SNR劣化のためのジッタ補償を必要とする.

図5. ジッタノイズの振幅変換モデル

(3) 従来のジッタ対策

ΔΣDACはノイズシェーピングにより,量子化ノイズを 信号帯域外にシフトする.したがってノイズピークが高 く,クロックジッタの影響を受けやすい.帯域内ノイズを 最小限に抑えるために,従来の補償技術はSCフィルタや アナログ FIR フィルタを使用する方法がある.例えば図 6に示すローパス型アナログ FIR フィルタを用いて,帯 域外ノイズを減衰させ,クロックジッタに起因するSNRの 劣化を低減する.しかしこのようなフィルタは多数のタ ップを持ち,効果を高めると回路規模が増加する.

図6.アナログ FIR フィルタ

- 3. ジッタシェーパー
- (1) 基本アイディア

図7にジッタシェーパーの基本アイデア図を示す. SC- $\Delta \Sigma$ DAC の出力は1ビット SC-DAC 出力すべての合計である. 加算機能はSC-積分回路内に実装されている. DAC の出力はジッタによりサンプリングタイミングの変動を受けたS / H回路に影響される. この問題に対処するために, DAC の出力は積分器の加算ノードにフィードバックされる.

システムを簡単に考えるために,提案するジッタシェ ーパー回路の基本ブロックを図8に示す.ジッタシェー パーはループフィルタとS/H回路で構成され,その構造 は $\Delta \Sigma$ 変調器と同様である. *H*(*z*)はループフィルタの 伝達関数である. 出力 *Y*(*z*)は式(2)より与えられる.

$$Y(z) = STF(z)X(z) + NTF(z)E_i(z),$$
(2)

STF および *NTF* はそれぞれ,信号及び雑音伝達関数であ り,*Ej*(*z*)はS / H回路によって生じるジッタ起因のノ イズ (以降,ジッタノイズ)である.また *STF* と *NTF* は次 のように導出される.

$$Y(z) = \frac{H(z)}{1+H(z)}X(z) + \frac{1}{1+H(z)}E_j(z),$$
(3)

$$\therefore STF(z) = \frac{H(z)}{1+H(z)},$$
(4)

$$NTF(z) = \frac{1}{1+H(z)}.$$
 (5)

これらの伝達関数は,ループフィルタに依存する.図9に より詳細なジッタシェーパーのモデルを示している.ス イッチトキャパシタとクロックについては後ほど説明す る.連続時間積分器はループフィルタに使用され,S/H は単純なサンプラーである.ジッタシェーパーのように 連続系と離散系が混在するシステムは簡単のために s-z 変換を利用して考える.係数 c = 1 / Tのとき,ループ フィルタ伝達関数は

$$H = \frac{c}{s} = \frac{1}{sT} = \frac{(1+z^{-1})}{2(1-z^{-1})},$$
(6)

である. ここで Tはサンプリング時間である. c = 1 / Tはスケーリング係数であり,連続時間 $\Delta \Sigma$ の動作クロッ クレートに依存する[1]. 信号と雑音伝達関数は,それぞ れ,

$$STF = \frac{1+z^{-1}}{3-z^{-1}},\tag{7}$$

$$NTF = \frac{2(1-z^{-1})}{3-z^{-1}},$$
(8)

となる.

図10は*T* = 1のときの*STFとNTF*の周波数応答を示 している.*NTF*は高周波で増加し,低周波で減少する.こ の特性から,ジッタノイズをシェーピングできることを 意味する.ジッタシェーピングによって*SNR*を改善する ことができる.

図10. STFと NTFの周波数特性

(2) ジッタシェーパー構成

図9に示されているジッタシェーパーの構造より,SC-DACはSCと積分器から成る.ジッタシェーパー回路とSC-DACは、ジッタのある同一のクロック信号を使用する.演 算増幅器(OPAMP)の十分なセトリング時間を確保するた めに,SCとS/Hに用いるクロックの間に遅延回路を使用 する.ジッタシェーパーは、入力信号側からのノイズはシ ェーピングすることができないために、DAC回路は離散時 間(DT)システムであるSC積分回路を使用する.ジッタ による電荷の誤差は、DT積分器のほうが連続時間(CT) の積分器よりもジッタに影響されない.S/HがDT積分 器の出力をサンプルした場合,SCでのジッタはDACには ほとんど影響ない.

ジッタシェーパーに用いるアナログ回路を図11に示 す.S/Hは不完全DT積分器を使用している.入力パスは スイッチトキャパシタ回路によって構成され,フィード バック経路は抵抗によって構成される.フィードバック 抵抗によりクロックジッタによって引き起こされるサン プリングタイミングの変化を積分器に伝えることができ, 積分器はその時間方向の変動を振幅方向に変換すること で,ジッタノイズを補正する.

4. システムシミュレーション

MATLAB/ Simulink を使用して,提案したジッタシェー パーと $\Delta \Sigma$ DAC のシミュレーションを行う.印加するク ロックジッタは,図5に示した振幅変換モデルを使用す る. このときのジッタはクロック周期に対して十分に小 さいランダム信号であるとする. シミュレーション条件 を表1に示す. Fs はサンプリング周波数であるで,オー バーサンプリングレート (OSR) は,ナイキストの定理よ りも高速でサンプリングするレートである. ジッタシェ ーパー有無でシミュレートした ΔΣDAC の出力スペクト ルを図12に示す. このときのクロックジッタはクロッ ク周期の1%のランダムジッタである. ジッタシェーパー によって SNR は 47dB 改善した.

表 1							
Input	Fs	OSR	Quantized Bits	Plot			
-6 dBFs	12 MHz	256	4	62915			

次に FIR フィルタ(図13) とジッタシェーパーの性 能を比較する. FIR フィルタの伝達関数は次のようになる.

$$y(n) = F \cdot (h_0 x(n) + h_1 x(n-1) + \dots + h_{n-1} x(n-N)).$$
(9)

図13. FIR フィルタ

このタップ数と係数でフィルタの特性を設定する. 今回 は 25 タップのローパスフィルタである. ランダムクロッ クジッタは前回のシミュレーションと同じである. 図 1 4 は, $\Delta \Sigma$ 変調器にジッタシェーパーの場合と FIR フィ ルタの場合を接続した時の出力スペクトルである. SNR は それぞれ 107dB と 100dB である. 100 dB 以上の高い SNR が必要な場合, FIR フィルタを用いた従来の方法は多くの タップと面積を必要とする.

5. 回路シミュレーション

表2						
Gain	Band width	THD	Output Swing	Power		
80 dB	331	0.005%	1.44 V	4.94		
	MHz			mW		

ジッタシェーパー回路をトランジスタレベルで設計し, Virtuoso/spector を用いてシミュレーションを行う. 積 分器と S/H に使用するオペアンプを図15に示し,表2 はその性能をまとめたものである.

電源電圧 1.8 V,入力信号は $\Delta \Sigma$ 変調器によって変調 された正弦波である.実際の回路は図11に示している 全差動構造になっている.スイッチを制御するため、ノン オーバーラップクロック (図16および17)を使用する. S1とS2との重なりを防止するための遅延 t_{nov} は、インバ ータ遅延を利用する.図18はクロックジェネレーター のシミュレーション結果を示す. t_{nov1} =475ps, t_{nov2} =459ps である.

図18. ノンオーバーラップクロックシミュレーション

回路シミュレーションで使用するジッタのモデルを図 19に示す.入力されたクロックに対し,基準遅延 Tdを 行う遅延素子にランダム遅延 δ を印加することで,クロ ックジッタを生成する.このクロックジッタモデルは Verilog-A コードを用いて,回路シミュレーションに適用 する.

ΔΣ 変調信号を入力とした、ジッタシェーパー出力の スペクトルを図20に示す. Virtuoso/spector でのシミ ュレーション結果を高速フーリエ変換(FFT)にて周波数 解析をするために、MATLAB を使用している. ノイズシェ ーピング効果を確かめる際には、出力を FFT する必要が あるが、このときの FFT サンプリング周波数はジッタシ ェーピング型 $\Delta \Sigma$ DAC の動作クロック周波数よりも高く する必要がある.また、FFT 解析で折り返しノイズ防止す るために、アンチエイリアスローパスフィルタを通過し たデータを使用する.図20は入力20-kHzの正弦波信号 と 1%のクロックジッタを有する回路の出力スペクトル である.シミュレーション条件を表3に示す.CLK はジッ タシェーピング型 $\Delta \Sigma$ DAC の動作周波数である.

X.C				
Input	0.45 V			
CLK	12 MHz			
OSR	256			
FFT Sampling Rate	100 MHz			
Plot	218			
Input Frequency	20 kHz			
Supply Voltage	1.8 V			
Process	180 nm CMOS			
Jitter	1 %			

表 3

図20. 回路シミュレーションによる出力スペクトラム

図 2 1. SNR 対ジッタ

図20から20dB/ decade の1次ノイズシェーピング特 性を確認することができる.また3次高調波歪みが確認 できるが、これはオペアンプの性能によって引き起こさ れたと推測している. 図21はジッタ対 SNR をプロット したものである. ジッタシェーパーによって、1%のジッ タ時 25dB の SNR の改善が確認された.

(1)実装

ここでは先に述べたジッタシェーピング型 Δ Σ DAC の 実装について述べる.まず $\Delta \Sigma DAC$ は、 $\Delta \Sigma$ 変調器など のデジタル処理部と内部 DAC 以降のアナログ部とに分け られる.そこで内部 DAC 以前の処理は FPGA ボードを用い て行い、その出力を DAC 機能有するジッタシェーパーに 入力する.実装では素子ばらつきなども懸念されるため, NSDEM などのデジタル処理も行う必要がある. ジッタシェ ーパーの出力を LPF に通して,オシロスコープやオーデ ィオアナライザ (UPV) にて測定を行う. これらの測定環 境を図21に示す. PC から出力されたデジタル信号は, FPGA にて $\Delta \Sigma$ 処理される. その後ジッタシェーパーにて DA 変換され出力される. ジッタシェーパーはローム社 0.18 μ mCMOS にて設計を行った. そのレイアウトを図22 に示す. 図左のスイッチトキャパシタから入力され, 右出 力端子より出力する. RCLPF は測定基板上に実装している. 実際に基板にチップを実装した写真を図23・24に示 す. 表面左上のコネクタに FPGA を接続する.

図23. チップレイアウト

図24. 測定基板(表)

図25. 測定基板(裏)

(2) 測定

まずはオシロスコープにて測定した1kHz入力時の出力 波形を図25に示す.黄色と青が差動対の出力で,橙色が その差動出力である.出力信号の周波数は1kHz であり, 入力信号が再生されていることが確認できる.次に,UPV を用いて FFT 解析を行ったスペクトルを図26に示す. 信号とノイズのフロアが確認できる.オーディオにおけ るノイズの電力は無信号時のものを扱うので,無信号時 の信号帯域内ノイズ電力を測定したところ,-71dBV であ った.シミュレーションの結果から-95dB以下に抑えたい ため,これは不十分な結果である.原因としては,FPGA な どのデジタル周りのノイズが伝搬していることが考えら れる.FPGAを停止させると,ノイズ電力は10dBV 下がっ た.それでも-81dBV であり,他のノイズについても検討 する必要がある.

図25. オシロスコープ測定

図26. 測定した出力スペクトラム

7. まとめ

本論文ではジッタシェーパーを使用した Δ ΣDAC のジ ッタによるノイズを低減するための方法を提示した. MATLAB シミュレーションを利用して,その理論的な有効 性を実証し,それをトランジスタ回路におけるジッタシ ェーパー回路をシミュレーションすることによって,実 現することができることを示した.本論文の回路は,高性 能 DAC システムに適して,追加のコンポーネントを必要 とすることなく,クロックジッタによるノイズを減少さ せた.実装においては,不十分な性能となったため,改良 を施して再び実装することが望まれる.

8. 謝辞

本研究を進めるにあたりご指導ご鞭撻いただいた法政 大学理工学部電気電子工学科安田彰教授,吉野理貴先生 に深く感謝いたします.また日頃,有意義なアドバイスを 下さった安田研究室の皆様にも心から感謝しております. 本研究は東京大学大規模集積システム設計教育研究セン ター(VDEC)を通じ日本ケイデンス株式会社の協力の下で 行われたものであり,ここに深く感謝します.

参考文献

1) Schreier, R., & Temes, G.C. (YEAR). An introduction to $\Delta\Sigma$ analog / digital converters (translated from the Japanese by T. Waho & A. Yasuda), Maruzen Co., Ltd.

2) Cherry, J.A., & Snelgrove, W.M. (1999). *Clock jitter and quantizer metastability in continuous-time delta-sigma modulators*. IEEE Transactions on Circuits and Systems II, 46, 376–389.

3) Fujimori, I., Nogi, A. & Sugimoto, T. (2000). *A multibit delta–sigma audio DAC with 120-dB dynamic range*. IEEE Journal of Solid-State Circuits, 35(8), 1066–1073.

4) Kobayashi, H., Kurosawa, N., Miyauchi, I., Kawakami, S., Kogure, H., Komuro, T., Sakayori, H. (2003).*Timing error* analysis in digital-to-analog converter –

effects of sampling clock jitter and timing skew (Glitch). 10th Electronic Devices and Systems Conference 2003, pp.212-299, Brno, Czech Republic.