法政大学学術機関リポジトリ HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-01

ノイズシェーピング構成とミスマッチシェー パーを用いたバックグラウンドキャリブレー ション型パイプライン ADC

黄, 弋 / KOU, Yoku

(出版者 / Publisher) 法政大学大学院理工学・工学研究科

(雑誌名 / Journal or Publication Title) 法政大学大学院紀要.理工学・工学研究科編 / 法政大学大学院紀要.理工学・工 学研究科編

(巻 / Volume) 57 (開始ページ / Start Page) 1 (終了ページ / End Page) 5 (発行年 / Year) 2016-03-24 (URL) https://doi.org/10.15002/00013030

ノイズシェーピング構成とミスマッチシェーパーを用いた バックグラウンドキャリブレーション型パイプライン ADC

A PIPELINED ADC USING BACKGROUND CALIBRATION WIHT MISMATCH SHAPER AND NOISE SHAPING ARCHITECTURE

黄弋 Yoku KOU 指導教員 安田 彰

法政大学大学院理工学研究科電気電子工学専攻修士課程

We propose a background calibration technique for a pipeline ADC, which uses an error feedback to realize a band-pass noise shaping and a correlation operation to detect mismatches with a noise shaping dynamic element matching method to realize a high pass mismatch shaping. The detection accuracy and speed can be improved. At the same time, it is possible to realize a noise shaping type pipelined ADC. When the proposed method is applied to a 12-bit pipelined ADC, the simulation results show improvements of 38dB in the SNDR.

Key Words : pipelined Analog to Digital Converter, capacitor mismatch, background digital calibration, Noise Shaping Dynamic Element Matching

1. はじめに

科学技術の著しい発展や半導体素子の微細化に伴い,ア ナログディジタル変換器に対しては"変換精度"と"変換速 度"の向上が求められている.パイプライン型 ADC は,こ の両面を満足する高速,高精度な ADC として,広く認知さ れている.しかしながら,パイプライン型 ADC の内部マル チプライ DAC (MDAC)を構成するキャパシタの製造上のば らつきにより,容量値にミスマッチが生じる.キャパシタ は複数用いられるため,容量値のミスマッチに起因する変 換精度の劣化は,避けられない問題である.高精度変換を 実現するためには,キャリブレーション技術やトリミング 技術が必要である[1].

キャリブレーション手法として入力信号にランダムデ ィザを加え,相関演算によりミスマッチを検出し,校正す る手法は良く使われている.しかし,ディザは入力信号に 直接に加えたため,入力信号振幅が減少してしまう.また, 検出するまでの収束時間が長いという欠点がある[2].

本論文では、ノイスシェーピング・ダイナミック・エレ メントマッチング法 (NSDEM) を用いた DAC で、ミスマッ チによる誤差成分にハイパス (HP) ミスマッチシェーピン グをかける.一方、パイプライン ADC の終段ステージにエ ラーフィードバック経路[3]を追加することで量子化雑音 にバンドパス (BP) ノイズシェーピングをかけ、高精度か つ高速にミスマッチによる誤差検出を行いながら、変換が 可能なバックグラウンドキャリブレーション手法を提案 する.

2. パイプライン ADC の構成と誤差

(1) 一般的なパイプライン ADC の構成

図1は一般的なパイプラインADCのモデルである.パイ プラインADCは内部ADC,サブトラクタ,係数アンプで構 成されるステージを直列に接続することで構成される.各 ステージのbit数の合計が全体のbit数となる.サンプル された入力信号は内部ADCにより量子化され,ディジタル 信号として出力される.続いて内部DACによりアナログ信 号に変換されたディジタル信号と入力信号との差分を

図1 一般的なパイプライン ADC の構成

サブトラクタでとり、係数アンプを介して次のステージ へと残差を出力する.残差に対し、次のステージのbit構 成に応じて同様の変換が行なわれ、更に次のステージへと 残差を出力する.また、前ステージでは次にサンプルされ た入力信号の変換を同様の手順で実行する.最終的な ADC 全体としてのディジタル出力は、全ステージのディジタル 出力によって生成される.このようにパイプライン ADC は 各ステージが異なった入力信号を処理する直列動作を行 うことにより、各ステージの変換速度を上げ全体の変換速 度の高速化が可能となる.

(2) パイプライン ADC における誤差

図1で示したパイプラインADCを構成する内部素子は製造ばらつきによる誤差を持ってしまう. 誤差はパイプライン ADC の内部 DAC の非線形性や内部ステージのゲインエラーとして現れる. これらの誤差は変換動作時に後ステージへ伝搬し,全体出力に影響を与える. 変換精度を高めるには誤差を検出し,キャリブレーション行うことが必要となる.

一般的なパイプラインADC は図2に示すような内部DAC, 減算器,係数アンプの機能を一体とした Multiple DAC (MDAC)が用いられる.図2のMDACでは、すべてのキャパ シタの値はそれぞれ等しい.しかし実際は製造ばらつきに よりミスマッチが発生してしまう.このキャパシタミスマ ッチの影響は図3に示したステージ出力に現れる.ミスマ ッチは次のステージに伝搬し、最終的なディジタル出力に 現れる.これらのミスマッチを取り除くためにはそれぞれ のキャパシタミスマッチを検出し補正しなくてはならな い.

図2 一般的なk-bit MDACの構成

図3 MDAC の入出力

3. 従来の誤差検出法

(1) ディジタルキャリブレーション

近年,トリミング技術などのキャリブレーションと比べ て、ディジタルキャリブレーションが多く用いられてい る. ディジタルキャリブレーションは、ディジタル信号処 理(DSP)による演算を行うことで、様々な環境に適応し た、キャリブレーションを行うことが可能なためである。 ディジタルキャリブレーションは、フォアグラウンドキャ リブレーションとバックグラウンドキャリブレーション に分けられる.図4に2つのキャリブレーション方法の違 いを示す,フォアグラウンドキャリブレーションは誤差検 出モードと動作モードに分けられる. 正常動作を行う前 に, 誤差検出モードで誤差を検出し, その後動作モードに 切り替え,変換処理を行う.そのため,変換の前に,誤差 検出時間を設ける必要が有り, 立ちあがってすぐの動作に 不向きである.一方,バックグラウンドキャリブレーショ ンは,正常動作と並行して,誤差検出と補正を行う.しか し、収束時間が長い欠点がある.これは、パイプラインの 演算中に誤差検出をするため、量子化雑音が検出精度に影 響を与えるためである.

図4 ディジタルキャリブレーション

(2) ノイズシェーピングと相関演算を用いた誤差検出法

ディジタルフィルタと相関演算を組み合わせた誤差検 出法は、入力オフセットの影響を抑えた誤差検出が可能で あるが、量子化誤差の影響により、検出精度が劣化する問 題点があった.そこで、量子化ノイズにノイズシェーピン グをかけることで、検出帯域の量子化ノイズを低減し、検 出精度を向上させる手法が提案されている[4].

この手法のブロック図を図5に示す.内部 ADC にΔΣ変調 器を用いることで,任意の帯域にノイズシェーピングをか けることができる.このシステムにおいては,量子化ノイ ズにローパス特性を持たせることで高域の量子化雑音を 低減させ,高域を検出帯域としている.ランダマイザでシ ャッフリンングしたDAC 誤差とランダマイザ出力との相関 を取ることで,高域のミスマッチ量を検出し,高精度なバ ックグランド誤差検出を実現する.

しかし, ΔΣADC を用いているため回路規模の増大や,オ ーバーサンプリングにより変換速度が低下する欠点があ

図5 従来手法1

(3) エラーフィードバック構造+NSDEM

次に、パイプライン ADC のステージ1とステージ2をエ ラーフィードバック構成することで、全体出力の量子化 雑音に2次ローパス特性を与えた手法を図6に示す[5]. これらのシステムは、前段の信号をディジタルフィルタに よって処理することで、高次のノイズシェーピング特性を 得られるようしている.図7にこのシステムを用いた場合 の量子化ノイズとミスマッチ誤差の周波数特性を示す.さ らに、DAC のキャバシタミスマッチに対して、NSDEM を用 いることで、ミスマッチ誤差にハイパス特性を与える.つ まり、量子化ノイズとミスマッチに対してそれぞれ別の周 波数特性を与えることで、検出精度と検出時間の向上を行 っている.しかし、低域の量子化ノイズが多く、初段にエ ラーフィードバック構成を用いているため、変換精度の劣 化が懸念され、バックグランドキャリブレーションに用い にくい構成であった.

図6 従来構成2

図7 従来手法2の周波数スペクトラム

4. 提案手法

(1) 提案手法1

図8に、本論文で提案する1番目のバックグラウンドキ ャリブレーションパイプライン ADC を示す. ここでは、4 段構成のマルチビットパイプライン ADC の構成を用いてい る.パイプライン ADC は "Stage1"から "Stage4" と "Calibration Logic"で構成される.最終段の "Stage4" にエラーフィードバック構成を用いて、1次のハイパス特 性とローパス特性を持たせている.パイプライン ADC の全 体出力に影響が少ない最終ステージをエラーフィードバ ック構成にすることで、フィードバック係数の精度による シェーピング劣化が生じず、性能への影響が少ない[6]. また、初段 "Stage1"の内部 DAC に NSDEM を用いることで、 ミスマッチに 2 次のハイパス特性を持たせている.

図8 提案手法1のバックグラウンドキャリブレーション パイプライン ADC

図9のように、量子化ノイズに1次のハイパスとローパ スの特性を持たせることで、NSDEMによりミスマッチ検出 の精度と検出時間を向上させたまま、1次ノイズシェープ 型のパイプラインADCとして変換を行うことが可能である. しかし、ハイパスとローパスの特性を同時に加えているた め、ハイパス及びローパスシェーピング特性はそれぞれ 3dB 劣化する.パイプラインの全体出力は

$$D_{out} = V_{in} + (1 - z^{-2}) \frac{Q_4}{G^3}$$
(1)

となる. "Stage1 のから "Stage3t までの量子化雑音が消 され,全体の出力は入力信号プラス1次ハイパスと1次ロ ーパス特性を与えた "Stage4t の量子化雑音になる. FIR フィルタでナイキスト周波数付近のキャパシタミスマ ッチのみを検出し,相関演算を行うことで,高精度かつ短 時間にキャパシタミスマッチの検出を実現することが可 能である.

図9 提案手法1の周波数スペクトラム

(2)提案手法2

図10に、本論文で提案する2番目のバックグラウンド キャリブレーションパイプラインADCを示す.ここでは、 4段構成のマルチビットパイプラインADCの構成を用いて いる.パイプラインADCは"Stage1"から"Stage4"と "Calibration Logic"で構成される. "Stage3"と "Stage4"にエラーフィードバック構成を用いて、さらに "Stage4"の出力にディジタルフィルタを用いることで、 2次のハイパス特性と1次ローパス特性を持たせている. また、初段"Stage1"の内部DACにNSDEMを用いることで、 ミスマッチに2次のハイパス特性を持たせている.パイプ ラインの全体出力は

$$D_{out} = V_{in} + (1 - z^{-1})(1 - z^{-2})\frac{Q_4}{G^3}$$

= $V_{in} + (1 - z^{-1})^2(1 + z^{-1})\frac{Q_4}{G^3}$ (2)

となる. "Stage1"から "Stage3" までの量子化雑音が消 され,全体の出力は入力信号プラス2次ハイパスと1次ロ ーパス特性を与えた "Stage4"の量子化雑音になる.

図10 提案手法2のバックグラウンドキャリブレーショ ンパイプライン ADC

図11のように、量子化ノイズに2次のハイパスと1ロ ーパスの特性を持たせることで、NSDEM によりミスマッチ 検出の精度と検出時間を向上させたまま,2次ノイズシェ ープ型のパイプライン ADC として変換を行うことが可能で ある.

図11 提案手法2の周波数スペクトラム

5. シミュレーション結果

図 8 と図 1 0 に示 す システムブロックを MATLAB/simulink によりシュミュレーションを行った. ま たすべてのステージは 3bit 構成とし,全体の分解能を 12bit 構成とした.

初段のみ MDAC にキャパシタミスマッチを±1%与えた. "Calibration Logic"では、パイプライン型 ADC から得 られた出力と、初段の NSDEM の選択信号で相関演算を行う ことで、キャパシタミスマッチを検出する.

表1に示す条件でシミュレーションを行った.

表1 シミュレーション条件			
ミスマッチ	1段目に 1%		
入力周波数	$0.0625 \; \mathrm{fs}$		
検出帯域	0.45- 0.5 fs		
入力信号周波数帯域	0-0.125fs		
OSR	8		

図12と図13には2つの提案手法の補正前の出力スペクトラム(青)と補正後の出力ペクトラム(赤)を示した. 補正前の出力スペクトラムは,NSDEMを用いてシェーピングをかけたことによる,ミスマッチの影響が支配的なのがわかる.補正後の出力スペクトラムでは,ハイパスとローバス特性の量子化雑音が支配的であることが確認できる.

図12 提案手法1の補正前後の出力FFT

図13 提案手法2の補正前後の出力FFT

表2および表3に提案手法1と2でのSNRと有効ビット 数(ENOB)の理論値と補正前後結果の比較を示す.

全体 12bit 構成のパイプライン ADC を 8 倍オーパーサン プリングしているため,提案手法 1 での SNOB は約 13.7bit になる.提案手法 2 での SNOB は約 14.2bit になる.

表2 シミュレーション結果(提案手法1)

	Ideal	With	After
		mismatch	calibration
SNR	$85.9~\mathrm{dB}$	46.9 dB	84.4 dB
ENOB	14.0bit	7.5 bit	13.7 bit

表3 シミュレーション結果(提案手法2)

	Ideal	With	After
		mismatch	calibration
SNR	88.9 dB	46.9 dB	86.6 dB
ENOB	14.5bit	7.5 bit	14.2 bit

また従来手法[5]では検出帯域の量子化雑音に2次ハイ パスシェーピング特性を持たせたため,提案手法より検出 速度は速い.提案手法の検出時間は約1900クロックで, 許容範囲以内と考える.

6. まとめ

本論文では、エラーフィードバック構成とNSDEMを用い て、DACのキャパシタミスマッチをバックグラウンドキャ リブレーションにより補正できるパイプラインADC構成法 を提案した.

量子化ノイズにハイパスとローパスの特性を持たせる ことで、NSDEMによりミスマッチ検出の精度と検出時間を 向上させたまま、ノイズシェープ型パイプライン ADC を実 現した. MATLAB/Simulink によるシミュレーションによっ て、提案手法の有効性を確認した.

本手法では,従来手法で必要であった ΔΣ型 ADC が不要 であり,アナログ回路の不完全性に対する感度が高い初段 にエラーフィードバック構成を用いる必要も無い.このた め,より容易にパイプライン ADC の高精度化を実現できる 手法である.

7. 謝辞

本研究を行うにあたり、大変貴重なお時間を割いて、研 究を進めるに上で懇切なるご指導をいただいきました安 田彰助教授に厚く御礼申し上げます.半導体システム工学 研究室の皆様にも数々のご協力、助言を頂き、本稿が作成 出来た事にも感謝申し上げます.

X	Ĥ

- Andrea Panigada, Ian Galton: "Digital Background Correction of Harmonic Distortion in Pipelined ADCs" IEEE Transactions On Circuits And Systems I:Regular Papers, vol. 53, no. 9, pp. 1885–1895, Sep. 2006.
- 2) Y.-S.Shu and B.-B.Song "A 15-bit linear 20-MS/s pipelined ADC digitally calibrated with signal-dependent dithering" IEEE Journal of Solid-State Circuits, vol. 43, pp. 342-350, Feb. 2008.
- 3) Z. Chen, et al. "Noise Shaping Implementation in Two-Step/ SAR ADC Architectures Based on Delayed Quantization Error" 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS 2011), pp.1-4, Aug. 2011.
- 4) Yoshimasa Serizawa: Akira Yasuda; Jun Tayama "A New Background Calibration Method Using Noise Shaping for Precise Mismatch Detection of a Pipeline" IEEJ AVLSIWS2006, ADC I, No.2, pp.1-5, Nov. 2006.
- 5) Takahisa Kawabe, Satoshi Saikatsu, Michitaka Yoshino, Akira Yasuda "Background Calibration Tehnique for a Pipelined ADC Using a Noise-Shaping and Feedback Structre" IEEJ 2013 International Analog VLSI Conference (AVIC'13), pp.64-68, Oct.2013.
- 6) 安田 彰, 和保 孝夫 監訳 "ΔΣ 型アナログ/ディジタル変 換器入門" 丸善出版.