
PDF issue: 2025-07-01

Implementing Data-Flow Fusion DSL on
Clojure

桜井, 勇貴 / SAKURAI, Yuuki

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編 / 法政大学大学院紀要. 情報科学研究科
編

(巻 / Volume)
11

(開始ページ / Start Page)
1

(終了ページ / End Page)
6

(発行年 / Year)
2016-03-24

(URL)
https://doi.org/10.15002/00012879

Implementing Data-Flow Fusion DSL on Clojure

Yuuki Sakurai †

Graduate School of Computer and Information Sciences, Hosei University,
Tokyo, Japan

yuuki.sakurai@stu.hosei.ac.jp

Abstract—This paper presents a new optimization tech-
nique for programming language Clojure based on the stan-
dard fusion technique that merges list operations into a
simplified loop.

Short-cut fusions, foldr/build fusion, and stream fusions are
standard fusion techniques used in a functional programming.
Moreover, a recent fusion technique proposed by Lippmeier.
Data flow fusion [7] can fuse loops containing several data
consumers over stream operators on Haskell. However, this is
only for Haskell. Clojure’s transducers [2] are factory func-
tions generating abstract list objects. The functions generated
by them wait evaluation as a lazy evaluation partially.

We introduce data-flow fusion macros into Clojure as a
dynamic typing mechanism and show the difference of data
flow fusion between that of Clojure and Haskell.

We focus on Clojure which is a functional programming
language with attracting features of dynamic typing, Lisp
macros, partial lazy evaluation, and running on the Java
Virtual Machine (JVM).

Our macro compiles S-expression of Clojure to Clojure
code and Java class file. Our ideas are implemented as a
domain specific language, which has strong points of the pro-
vision of a simple interface for loop fusion, and independence
from the implementation of a Clojure Compiler.

We discuss the advantages and disadvantages of data-flow
fusion macro from experimental results and adaptability of
our macro.

I. I NTRODUCTION

Loop fusion is a technique composing several loops to
get rid of un-used data and duplicated loops containing data
we can do without them. This method is widely practiced
both automatically and manually.

A typical example of program fusion in a functional
program is the map fusion or map distribution law as in
equation (1).

map f ◦ map g = map (f ◦ g) (1)

Though both sides give the same results, the RHS
runs faster than the LHS. One reason for this is that the
LHS calls the map function twice, which means the LHS
executes loops twice, while the RHS does it once.

The second reason is LHS generates an intermediate list
for carrying betweenmap f andmap g, while the RHS does
not.

Basically, a program with no intermediate data structures
nor simplified loops runs faster than the others. The purpose
of the fusion technique is to transform a program that has
no such features into a program that does.

† Supervisor: Prof. Shuichi Yukita

Hand fusion is powerful and sometime the fastest way,
but this causes the problems of lowering the readability of
code. The modified code is often ugly and error prone.

Automated fusion prevents such kind of code degrada-
tion. However, automated fusion can be applied only to
limited cases.

Our approach is the middle way between automatic
and manual. The user of our system first insert data-flow
fusion macro manually into the code, and then the Clojure
macro processor takes care of fusion based on the data-flow
information.

A. Clojure and functional programming languages

Clojure is a functional programming language optimized
for parallel programming and executed on the JVM.

Functional programming languages, including Clojure,
provide many useful functions for operation of lists gen-
erally. Typical list operations are map, filter, and reduce1.
These operations return a newly constructed list without
destroying the given list. Therefore, they consume both
space and time. List operations in a functional program
correspond to loops in an imperative program. So, the list
operations appear frequently in a functional program. Their
inefficiency can be a serious bottle neck in the performance
of a functional program.

Lists in Clojure are a “sequence.” The sequence is a
super class for sequable (sequence-able) data types such
as list, vector, and so on. The sequence is with the lazy
evaluation. The list operation generates immutable lazy
sequences.

B. Program Fusion on Clojure

The map distribution law obviously holds in Clojure, but
loop fusions in general are complicated and not straight
forward.

The case below is an example of filter-max implemen-
tation.

(defn filter-max [xs f pred]
(let [ys (map f xs)

zs (filter pred ys)
max-value (reduce max 0 zs)]

[zs max-value]))

And the next one is a fused code with loop-recur form.

(defn filter-max [xs f pred]
(loop [[y & ys] xs max-value 0 zs []]

(cond
(not y)
[(reverse ys) max-value]
(pred y)

1“map” function is mapping list to another list whose elements are
applied by given function. “filter” function is filtering list that contains
elements predicate returns true. “reduce” function apply binary operation
between the all elements of the given list.

(recur ys (max max-value y) (cons y zs))
:else
(recur ys y zs))))

Let n be the size of the list. The computational complex-
ity of previous version isO(3n), and the fused version is
O(2n). A Fused code is longer than the unfused version. A
fused code loses some structural information in the unfused
version.

A hand-fused program with loop-recur special form runs
slower than the unfused program on Clojure, because map
and reduce are defined as primitives and implemented as
byte code. On the other hand, a hand-fused program is an S-
expression with the loop-recur special form being compiled
as byte code.

II. RELATED WORKS

Transducers are given official functions for loop fusion
on Clojure. The functions return the fused functions from
the list operations and the compositions of them. The usage
of these functions and a strategy of a fusion are to select
and implement code for the fusion manually. The result of
fusion is automatically generated.

Several techniques exist for the same purpose in pro-
gramming languages Haskell and Gofer. Gill’s foldr/build
fusion [3] fuses two functions, thefolder and the gen-
erator, which is calledbuild , of the list automatically.
Meijer’s Hylomorphism [4] formalizes the fusion laws
for algebraic(recursive) data types with Category theory
and this automated fusion system was developed as a
calculational fusion system HYLO [5].

However, they are not applicable for multiple consumer
functions that contain several map/filter/reduce functions
taking the same arguments.

Data flow fusion [7] compiles a program to a data flow
language and fuses several loops of the same size. This
technique can fuse the loops containing multiple consumer
functions, but it focuses on the stream interface [6] in
Haskell.

III. D ATA -FLOW FUSION MACRO ONCLOJURE

A domain specific language (DSL) is a method for
abstracting program and a way to define another language
for the specialists who is not a programmer. We implement
a macro as a DSL for the users who don’t know the program
fusions.

Recursive functions are sometime complicated like as
goto statement. They make a program bigger than a case
without those functions [10]. The hand fusion of the list
operations is time consuming especially when recursive
calls are involved. Our macro enables to fuse several loops
of list operations in the cases below.

• Simple fold-map, fold-filter fusion.
• Map-map, filter-map or map-filter fusion.
• A composition of above fusions.
• Multiple functions take the same argument from the

single list.

A. Syntax and Semantics

The syntax is composed of let-form, map, filter, and
reduce, because our macro aims at fusing multiple data
flows while keeping the semantics the same as in Clojure.

The syntax of the macro is defined as below. The let
expression plays the central role. The top level is⟨exp⟩.

(require [flow-fusion.flow-fusion])

(defn filter-max [vec1 f pred]
(let [result

(flow-fusion/flow-fusion
(let [vec2 (map f vec1)

vec3 (filter pred vec2)
n (reduce max 0 vec3)]

(list vec3 n)))]
result))

Figure 1. Code for filter max

⟨list operation⟩ corresponds to Clojure’s functions having
the same names. List Operations are given as a syntax, not
a function, but from programmers’ view all of these look
like ordinary Clojure functions. This is one of the strengths
of our approach.var is a symbol. Let syntax is the same
as Clojure’s let. As the result, that semantics is a subset of
Clojure, and there is no problems to read this macro.

⟨DSL⟩ −→ (flow− fusion/flow− fusion

⟨body⟩)
⟨body⟩ −→ (let [⟨inner⟩] ⟨body⟩)

| (list var · · ·)
⟨inner⟩ −→ var ⟨apply⟩ ⟨inner⟩| ϵ

⟨apply⟩ −→ (map expclj args · · ·)
| (filter expclj arg)

| (reduce expclj expinit arg)

Figure 1 is an example for our DSL code. The expression
flow-fusion/flow-fusion is the special form for
data flow fusion and its argument is the target code. The
three loops, in the example, map, filter, and reduce are fused
into a single loop by our macro.

B. Implementation

We implement the syntax as a macro via the traditional
Lisp macro mechanism of Clojure. A Lisp macro is a
simple function from S-expression to S-expression. An S-
expression is basically composed of symbols and lists as
in other languages of Lisp family. Clojure, in addition, has
vectors as an element of the S-expression. Symbol contains
all literals in that Lisp. However, the function of our macro
contains side effects, because our transformation is from
S-expression to Java byte code and S-expression.

There are two merits for the implementation as a macro
of data-flow fusion. At first, the macro provides simple
interface for programming as yet another syntax, or special
form. The special syntax in Lisp is generalized as special
forms, therefore, it is easy to understand and use for Lisp
users. And second, the transformation independents on the
implementation of Compiler and Interpreter, and it has been
expressed as an external library.

IV. A LGORITHMS FORTRANSFORMATION

The flow of our proposal technique is
1) A-Normalization, filter transformation, add create

function, and type inference
2) Compile A-Normalized code to data flow process

description

3) Schedule the data flow process description to abstract
loop nests from

4) Concretize the abstract loop nests form to Java and
Clojure Code

5) Compile java file and returns S-expression as Clojure
macro.

The parts of our proposal technique for Clojure are the
1st step and the 4th step. In 1st step, we introduce the type
inference to add create function, which is the label for the
finally generated list. We redefine the last two steps for
Clojure’s S-expression and the JVM based code.

The part of step 2 to 3 derives from [7], but those steps
are also redefined for Clojure. The purpose of these steps
is to deform from the expression of composed functional
code to procedural code in juxtaposition.

Data flow process description (DFPD) and abstract loop
nests form (ALNF) are intermediate language for data flow
fusion. The results of the fusion are a compiled Java class
file and S-expression which is interface to call the compiled
Java class file.

A. A-Normalization and filter transformation

A-Normalization [9] is a popular transformation tech-
nique from an expression-based functional program to
an imperative program, such as assembler. This method
transform to the expression that composite several inner
expression by naming for each intermediate expression.

As the result, it regards the sequence of named expres-
sion by let syntax as a series of assign statement. Therefore,
we can deformation from the let assign to assign statement.

In addition, we introduce the filter transformation. Filter
transformation is

(let [ls1 (filter f1 ls0)] exp2)

=⇒ (let [flag (map f1 ls0)]

(mksel flag

(fn [sel]

(let [ls1 (pack sel ls0)] exp2)))).

The transformer applies this for each filter function recur-
sively.

mksel is a guard form to execute the inner function
when thenth element offlag is true. pack function is
another filter function using everynth element ofls0 as
predicate.

B. add create function and type inference

Data flow fusion doesn’t create intermediate data struc-
tures, but it creates returning data structures. The target
DSL is a dynamic typed, but type information is required
to determinate the type of the returning results.

Our technique use a simple type inference, which infers
whether each variable is sequential (list) or not in the
DSL code. The inference checks arguments and assigned
variables of map, filter, and reduce special forms.

Our macro redefines a sequential variable in the return-
ing results as

(list ls0 arg2 ...)

=⇒ (let [new ls0 (create ls0)]

(list new ls0 arg2...)))

with a let form and a create function.

(let [vec23453 (map inc vec1)]
(let [flags3454 (map even? vec23453)]

(mksel flags3454 (fn [sel3455]
(let [vec33456 (pack sel3455 vec23453)]

(let [n3457 (reduce max 0 vec33456)]
(let [new-lseq3458 (create vec33456)]

(list new-lseq3458 n3457))))))))

Figure 2. A Normalized Code for filter max

Figure 2 is the result of 3 steps, A-Normalization, filter
transformation, and adding create function for filter max of
Figure 1.

C. Data flow graph

Next, Our macro compiles from A-Normal form to data
flow process description (DFPD), a data flow language. A
code in that language generates a data flow graph. The
syntax of DFPD is

⟨dfpd⟩ −→ (⟨operator⟩∗, ⟨yeild⟩)
⟨operator⟩ −→ (mksel [flags sel] ⟨operator⟩∗)

| (v ← (map exp ls))

| (v ← (pack sel ls))

| (n ⇐ (reduce exp vinit ls))

| (v ← (create ls))

⟨yeild⟩ −→ (list var ...).

flags, sel, ls, v, n, var are variables andexp, vinit,
are expressions of Clojure. The other symbols are special
forms, the same meaning of flow-fusion DSL in the section
III-A.

An edge of the graph is variable, and a node of the graph
is special from. An example of the graph of filter max is
in Figure 3.

D. Rate inference

The rate variable represents the abstract loop size and
be a newly generated loop counter in an imperative pro-
gram. Therefore, data flow fusion requires the rate (size)
information as rate variables.

The algorithm of rate inference consists of the 4 steps
as described below.

1) assign a symbolic size for each variables
2) make a restrictionE (= {xi = xj , ...}).
3) resolve the restrictionE.
4) assign rate variables for each a set of the same size.

The restriction of rate inference is

E = Emap ∪ Epack ∪ Ecreate. (2)

Emap, Epack, Ecreate is

Emap = {v = ls | (v ← (map exp ls)) ∈ D}
Epack = {v = sel | (v ← (pack sel ls)) ∈ D}

Ecreate = {v = ls | (v ← (create ls)) ∈ D}.

TheD is a set of expressions in DFPD andv = ls is
a restriction.

input : ls1

(map f ls1)

(map pred ls2)

(mksel sel1 flag1)

(pack sel1 ls2)

(reduce max 0 ls3)

yield : ls4, acc1

ls1

ls2

flag1

sel1

ls2

ls3

ls4 acc1

the same loop size
: ls3

the same loop size
: ls1, ls2, flag1, sel1

return value

free variable
in the DSL

ls3

(create ls3)

Figure 3. Data flow graph for filter max

E. Abstract loop nests form and process scheduling

The process scheduling fuses loops. Abstract loop nests
form (ALNF) is loop-fused intermediate language and
defined as

⟨procedure⟩ −→ (k, ⟨nest⟩∗, ⟨yeild⟩)
⟨nest⟩ −→ (k, ⟨start⟩∗, ⟨body⟩∗, ⟨inner⟩, ⟨end⟩∗)

| (k, ⟨body⟩, ⟨end⟩)
⟨start⟩ −→ x = newVec k

| n = newAcc ⟨expinit⟩
⟨body⟩ −→ xelem = x′elem

| xelem = next k lsin

| xelem = ⟨expf⟩xelem...
| acc := ⟨expf⟩ acc xelem

| writeVec k vec ⟨expinit⟩
⟨end⟩ −→ x = read acc

| sliceVec ⟨expinit⟩
⟨yeild⟩ −→ ⟨expyeild⟩

That form is a composition of a loop and guards. A loop
and guards are the abstractions of afor statement andif
statements.

The Scheduling process is the third step and the main
part for the fusion. The transformer of this part compiles
DFPD to ALNF and fuse statements for each rate variable.
DFPD is a sequence of statements, and the scheduler
is restructuring statements. We define this transformer in
Figure IV-E.

The functionT is scheduler. The scheduler accepts a
sequence of statements as DFPD and calls supplemental
function S until the empty, nil. The transform function is
S, that decomposes a statement of DFPD and reconstructs

from that to the nest of ALNF by▷. f returns the corre-
sponded rate variable of the variable. This data is in the
section IV-D.▷ is an operation to fuse for each statement
with rate variable respectively.

F. Concretize code of Java and S-expression
In the last step, our macro generates Clojure and Java

codes. After that, our macro compiles the concrete Java
code to a JVM byte code, which is the finally fused
code. The interoperation between Clojure and Java is to
set the parameters in public static field variables. The
concretization in Java is defined in Table I

A traditional Lisp macro is defined as a simple func-
tion from S-expression to S-expression. S-expression is a
composition of two kinds of objects, symbols and lists. The
result our data-flow fusion macro is also a function from
S-expression to S-expression, but our macro invoke side
effects, because of creating and compiling Java class file.

Figure 6 is the output of flow fusion in Java.
APersistentVector is a class for vector of Clojure
and IFn is a class for function in Clojure. The type of
accumulators or the result of calculation isObject class,
because Clojure is dynamic Typed. However, flag variables
and rate variables are determinable. A flag variable requires
to be boolean type and a rate variable requires to be integer
type for loop counter. An object ofIFn class uses with
invoke method and it corresponds to the function calls of
Clojure. The loop method in the compiled class is the fused
loop.

Our macro callsjavac command, the standard Java
compiler with the generated Java code. It compiles a
generated Java code such as Figure 6 and generates the
class file. That class is the final result of the fusion.

Figure IV-F is an example from the filter-max code on
Clojure. The part of(.FlowFusionGenerated2675
vec1) is to call for class member andset! sets the value
at the variable. The flow in Figure IV-F is to set the values,
loop parameters, to execute the loop and to return values.

The macro processor of Clojure with our macro expands
the generated S-expression such as Figure IV-F in the
defined (called) point as an S-expression.

(do
(set! (.FlowFusionGenerated2675 vec1) vec1)
(set! (.FlowFusionGenerated2675 fn2676) inc)
(set! (.FlowFusionGenerated2675 fn2677) even?)
(set! (.FlowFusionGenerated2675 fn2678) max)
(.FlowFusionGenerated2675 loop)
(list (.FlowFusionGenerated2675 new_lseq2660)

(.FlowFusionGenerated2675 n2659)))

Figure 5. Generated Clojure code for filter max

V. A PPLICATION

Filter max is an example for a composition of filter and
reduce, and it exists universally in a functional program.
In the situation using a sequence of data structure, such
as XML, CSV, instances on the JVM, or some, filter
corresponds to an extraction of data from the sequence and
reduce corresponds to an integration of data. Additionally
map is the control of modification of that data.

Neither build/fold fusion nor system HYLO can fuse
the code of multiple reduces for the single list, but the data

T (nest, nil) = nest
T (nest, (cons statementdfpd statementsdfpd)) = T (S(nest)[[statementdfpd]], statementsdfpd)

S(nest)[[(mksel [flag sel] bodyinner)]] ⇒ T (nest ▷ (f(flag)× : inner [: guard (flag, sel)]), bodyinner)

S(nest)[[(v ← (map expf ls))]] ⇒ nest ▷ (f(v)× : body [velem = (expf lselem)])

S(nest)[[(v ← (pack sel lselem))]] ⇒ nest ▷ (f(sel)× : body [velem = lselem]

S(nest)[[(n ⇐ (reduce expf vinit ls))]] ⇒ nest ▷ (⊤× : start [acc = vinit])
▷ (f(ls)× : body [acc = expf acc lselem])
▷ (⊤× : end [(read acc)])

S(nest)[[(v ← (create ls))]] ⇒ nest ▷ (⊤× : start [v = newVec k])
▷ (f(v)× : body [velem = lselem])
▷ (⊤× : end [(slice k vec)])

Figure 4. Scheduling abstract loop nests form

Table I
CONCRETIZING ALNF TO JAVA CODE

Attribute Abstract loop nests form (k : rate variable) Generated Java code
create new Vector vec = newVec k vec = new Object[sizek];
create new Variable var = newAcc expinit var = expinit;
iterator var = next k varseq var = varseq[k];
assign (function call) var = f ls · · · var = f.invoke(ls.nth(k), · · ·);
assign (rename) var = var′ var = var′;
assign (accumrate) acc = f acc ls acc = f.invoke(acc, ls.nth(k));
write to a vector writeVec k vec lselem vec[k] = lselem;
read variable (read acc) −
slice vector (slice k vec) −
Loop frame : loop (k) for (k = 0; k < sizek ; k ++)

{ bodyinner }
Guard frame : guard (flag, sel) ∗(k = f(sel)) if (flag) { bodyinner k++; }

flow fusion can. That code appears in the situation to find
the maximum value, the minimum value, the summation or
specific values of the single list at the same time.

In general, data flow fusion may fuse other cases. The
simple example to reduce two vectors of the same length is
the evaluation of Pearson correlation coefficientr of the two
vectorsx = (x1, · · · , xn),y = (y1, · · · , yn) in statistics.
The r is defined as

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
.

After the calculation of the averages,̄x and ȳ, the
evaluation ofr is able to express as single loop, on the
ground that the two vectors are the same lengthn and that
code can consist of map, filter and reduce.

VI. B ENCHMARK TESTS

To evaluate the effectiveness of our macro, we do
benchmark tests of four kinds of program, map-map-reduce,
Pearson correlation coefficient (PCC), multiple reduces, and
filter sum. Map-map-reduce is the simple fusion of two
maps and a reduce. PCC and multiple reudces are described

as in the section V. filter sum is to extract data with a
predicate and take that summary.

We examine our macro in the point of the elapsed times
for three kinds of program style, unfused, hand-fused, and
macro-used. Hand-fused codes is fused with loop-recur
special form. The test executed on Windows 8.1 Enterprise
with Intel Core i5-4300U CPU @ 1.90GB with 8GB of
RAM.

The results of benchmark tests are in Table II. The times
of benchmark are not stable, so Table II is an example. The
unit of time is milliseconds.

Table II
BENCHMARKS

- Unfused Hand-fused Macro-used

Map-map-reduce 2.74 5.69 2.22
PCC 104.00 107.59 100.96
Multiple reduces 2.55 5.93 2.77
Filter sum 3.28 - 2.51

import clojure.lang.APersistentVector;
import clojure.lang.IFn;
public class FlowFusionGenerated2675{

public static APersistentVector vec1;
public static IFn fn2676;
public static IFn fn2677;
public static IFn fn2678;
public static Object n2659;
public static Object[] new_lseq2660;
public static void loop(){

int k2672 = 0; int k2674 = 0;
int k2673 = 0; int k2671 = 0;
n2659 = 0;
new_lseq2660 = new Object [vec1.length()];
int size2679 = vec1.length();
for (k2673 = 0; k2673<size2679; k2673++){

Object vec22655 =
fn2676.invoke(vec1.nth(k2673));

boolean flags2656 =
(boolean)fn2677.invoke(vec22655);

if (flags2656) {
Object vec32658 = vec22655;
n2659 = fn2678.invoke(n2659, vec32658);
new_lseq2660[k2672] = vec32658 ;
k2672++;

}}}}

Figure 6. Generated Java code for filter max

VII. D ISCUSSION

The macro-used codes are faster than the unfused code
except for multiple reduces, but the other values are less
effective in spite of the retrieval of intermediate data
structures and unnecessary loops. Besides, it’s better not
to do the hand-fusion with loop-recur form in Clojure.

There are three reasons of the instability of the bench-
mark tests. At first, our macro can’t make the target
program faster in this benchmark tests. The test programs
might be affected by the optimizations in the JVM. The
typical optimization is JIT compilation. Therefore, bench-
mark tests on JVM is difficult in general [11]. Secondly, it’s
considered the effect of the garbage collector. The last cause
is the effects of an interpretation on Clojure. These are
the lazy sequence, the reflections of JVM, dynamic typing
mechanism, and the garbage collection of Clojure’s objects.

It is difficult to find the best code in the point of speed.
The benchmark test might be also trapped by those several
reasons.

A way of the decision whether the macro make code
faster than the previous code is to implement on other
languages, such as Scheme, LFE (Lisp Flavored Erlang),
Hy, or Common Lisp not on the JVM.

Moreover, there is future work except for the speeds.
It’s to add another functions of list operations. Clojure has
many sequential (list) operations. For example, These are
interpose/interleave functions that interpose the elements
into the target list. The loop rates of those functions are
decidable.

VIII. C ONCLUSION

We introduce a optimization technique for a Clojure
code with the macro and implement data flow fusion for
dynamic typing mechanism.

The transformation technique has three principal trans-
formations. The first step is from the DSL code to A

normal form, which is a popular method for compilation
from a functional programming language to an imperative
programming language. In this step, we introduce the type
inference for dynamic typed mechanism and add create
functions following the results of type inference.

And second, our macro compiles an A-Normal form to
DFPD, for readjusting the code and compiles from DFPD
to ALNF. While compiling to ALNF, the loops in the
program have been fused each other. In this step, we follow
Lippmeier’s technique [7].

Finally, we implement the generator of the concrete
Java code and Clojure code. The codes derive from the
ALNF and are compiled to a class file of Java and an S-
expression. A standard Java compiler compiles generated
Java code, and Clojure’s macro processor embeds the
generated Clojure code in the whole code.

Our macro has many applicable situations, because a
composition of map, filter and reduce generates several
programs and data flow fusion can fuse the code containing
several list consumers for one list. Additionally, program-
mers can embed the macro in a general program of Clojure.

In the benchmark tests, we conclude that our macro
makes code faster than the previous code in some cases.
However, the macro is not always effective in the cases of
the calculation PCC and the multiple reduces. A benchmark
test on the JVM sometimes causes unstable elapsed times
of the code.

The future works are the precision of the benchmark
tests on JVM and to add other list operations and special
forms of Clojure.

REFERENCES

[1] Clojure, http://clojure.org/
[2] Clojure - Transducers,

http://clojure.org/reference/transducers
[3] A. Gill, J. Launchbury, S. Jones, A Short Cut to Deforesta-

tion, Conference on Functional Programming Languages
and Computer Architecture, 1993.

[4] E. Meijer, M. Fokkinga, R. Paterson. Functional pro- gram-
ming with bananas, lenses, envelopes and barbed wire,In
FPCA, Functional Programming Languages and Computer
Architecture.ACM, 1991.

[5] Y. Onoue, Z. Hu, H. Iwasaki, M. Takeichi, A Calculational
Fusion System HYLO,In IFIP, TC2 Working Conference
on Algorithmic Languages and Calculi, Chapman and Hall,
1997.

[6] D. Coutts, R. Leshchinskiy, D. Stewart, Stream fusion: from
lists to streams to nothing at all,International Conference
on Functional Programming, ACM, 2007

[7] B. Lippmeier, M. M. T. Chakravarty, G. Keller, A. Robinson,
Data flow fusion with series expression in Haskell,ACM
SIGPLAN symposium on Haskell, 2013.

[8] S. Chatterjee, G. E. Blelloch, and A. L. Fisher. Size and
access inference for data-parallel programs,In PLDI, Pro-
gramming Language Design and Implementation.ACM,
1991.

[9] C. Flanagan, A. Sabry, B. F. Duba, M. Felleisen, The
Essence of Compiling with Continuations,In PLDI, Pro-
gramming Language Design and Implementation.ACM,
1993.

[10] J. Gibbsons and O. Moor, the fun of programming Palgrave
Macmillan, 2005.

[11] S. Oaks, Java Performance: The Definitive Guide, O’Reilly
Media, Inc, 2014.

