
PDF issue: 2025-07-15

Automatic Transformation from SOFL
Formal Specifications to Programs for
Software Verification and Testing

Luo, Xiongwen

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編 / 法政大学大学院紀要. 情報科学研究科
編

(巻 / Volume)
11

(開始ページ / Start Page)
1

(終了ページ / End Page)
6

(発行年 / Year)
2016-03-24

(URL)
https://doi.org/10.15002/00012876

Automatic Transformation from SOFL Formal

Specifications to Programs for Software Verification

and Testing

Xiongwen Luo

Graduate School of Computer and Information Sciences

Hosei University

Tokyo, Japan

xiongwen.luo.2b@stu.hosei.ac.jp

Abstract— The Structured Object-oriented Formal Language

(SOFL) method is developed to overcome the disadvantages of

existing formal methods and provide effective techniques for

writing formal specifications and carrying out verification and

testing. Although it has been applied to system modeling and

design in practical and research projects, SOFL has not been

widely applied to the industrial software development systems

because of the lack of efficient tool support. Aiming at improving

the existing SOFL supporting tool and solving the problem that

the formal specifications cannot be directly executed, this paper

firstly analyzes the relationship between the structures of SOFL

formal specifications and C# programs, and then designs and

implements the transforming classes for module transformations

and data type transformations. Finally, a test is performed to

ensure the reliability and validity of the implemented software

system.

Keywords— SOFL; Formal specifications; Automatic

transformations; Programs;

I. INTRODUCTION

Formal Methods (FM), consisting of formal specification
and formal verification, are of great significance in software
systems development. Many formal methods have been
reported in the literatures so far, such as VDM [1], Z [2] and B-
Method [2]. Although we should not deny that formal methods
have many advantages and play a positive role in software
engineering, there are several challenges to be resolved in
formal methods and their industrial application.

In order to provide an effective way to apply formal
methods to industrial software systems, Formal Engineering
Method (FEM) was put forward for the first time in 1997 and
continued to be used in many publications since then [2].
Furthermore, FEM embraces integrated specification,
integrated verification and all kinds of supporting techniques
for specification construction, transformation, and system
verification and validation [3]. Adopting FEM can reduce the
complexity and improve the intuition of formal methods, which
provides an effective approach to applying formal methods to
industrial software systems, especially for the large-scale and
complex software systems.

SOFL is one of the most representative formal engineering
methods. Resulting from the integration of Data Flow
Diagrams (DFD), Vienna Development Method- Specification
Language (VDM-SL) and Petri nets, SOFL has a complete
architecture and framework. It integrates structured methods
and object-oriented methods, which can offer a way to support
functions decomposition and object composition effectively [4].

Owing to the unique and distinctive characteristics, SOFL
has many advantages. By combining operations and formal
graphic symbols, SOFL creates an exclusive approach to
constructing formal specifications accurately and intuitively. It
adopts a three-step approach to developing formal
specifications. This evolutionary method, starting from an
informal specification, through a semi-formal one, finally to a
formal specification, can not only moderate the complexity of
creating formal specifications, but also improve the intuition
and comprehensibility of formal specifications to ensure that
the specifications are desirable. On account of its three step
approach to developing formal specifications and Condition
Data Flow Diagram (CDFD), using SOFL can strike a good
balance among visualization, precision and simplicity.

Although SOFL has been applied to system modeling and
design in both industrial and research projects [5][6], it has not
been widely adopted in the industrial applications owing to the
lack of efficient tool support. Aiming at contributing to the
development of existing SOFL supporting tool and solving the
problem that the formal specifications cannot be directly
executed, this paper discusses the transformation from SOFL
formal specifications to C# programs, and designs an effective
algorithm for building a framework to implement these
transformations. After completing the transformation, it serves
for specification verification, specification animation and
automatic programs testing. Moreover, it also can lay the
foundation for automatic test case generation and further
researches.

The rest of this paper is organized as follows: Section II
analyzes the structure of module and data type in SOFL formal
specification and considers how to transform them to programs.
Then the design and implementation of transformations are
discussed in Section III. Section IV presents the result of

testing the transformation tool. The related work is given in
section V. Finally, Section VI concludes the work of this paper
and points out the future research directions.

II. TRANSFORMATION PRINCIPLES

In SOFL formal specifications, the module is the most
important element, which is regarded as a functional
abstraction. And the specifications consist of a collection of
corresponding modules in a hierarchical manner. Further, the
data type defined in SOFL formal specifications are unique and
not identical with the C# program. For the purpose of
supporting transformations and utilizing the transformed results
to verify specifications and generate programming testing cases,
data type transformation is an indispensable part. So, after
studying and researching the knowledge of SOFL in-depth, we
consider that module transformations and data type
transformations are the two important tasks that need to be
completed.

A. Module Transformation

In the formal specifications written in SOFL, there are two
major parts. One is the CDFD, which indicates the functional
behaviors of the integrated processes represented by the
graphical symbols. The other is the module, which is an
encapsulation of data and process appeared in the CDFD. In
general, a module has the structure as follows:

Fig. 1. Structure of module

The beginning of the module is the keyword module.
ModuleName is an unique identifier of module in SOFL
specifications. Since the module describes a decomposition of
a high level process, the name of module should include the
ParentModuleName which is the higher level module. Then the
key word const, type and var start the parts for constant
declarations, type declarations, and variable declarations
respectively. The key word inv stands for the type and state
invariants, which represents the constraints on the type
declarations section and variable declarations section. The
CDFD_no after the key word behav specifies the affiliated

CDFD. The last two parts, beginning with keyword process
and function, offers some operations and functions.

The process, basically, consists of five parts: process name,
input data flow variables, output data flow variables,
precondition and postcondition. The process presents an action
or operation that consumes the input data flows and generates
the output data flows. If there are external variables that need
to be used in this process, they are stated after the keyword ext.
A complex process may be decomposed into the lower level
CDFD whose associated module is written after the keyword
decom. The keyword comment starts the informal comment
section, which is usually written to improve the readability of
the formal specifications.

Through analyzing the specific structure of each part in the
module in detail, we consider that the structure of a module is
similar to that of a class in C# program. Thus, it is quite natural
and convenient to transform a module to a C# class. Several
underlying guidelines proposed for module transformations are
presented in Table I:

Table I Main idea of module transformation guidelines
SOFL Module C# language

module M class M

const T X const T X

Type state a type inner class

var y variables in external files

process initialization constructor method

process A method A

function F method F

In summary, the details about module transformation
guidelines shown in Table I are following:

 Transform the module name to the corresponding class
name.

 Transform the constant declaration to the constant in C#,
using the keyword const prior to the constant variables.

 Transform the type declaration to either a basic type or
a class, whose form is in compliance with C# language
syntax.

 Transform the variable declarations to the instance
variables, stored and accessed in the external file.

 Transform the processes to the target methods.

 Transform the functions to the target methods, which
are similar to that of processes.

B. Data Type Transformation

Data types, an essential part of SOFL formal specifications,
provide notations to define data structures in the SOFL formal
specifications. Because the data types of SOFL are not
identical with C# data types both in semantics and syntax, we
cannot directly execute the results of module transformations.
In other words, it is attached no significance to the

transformations of module without the data type
transformations. Only with the supporting of data types
transformations, results of module transformations can be used
for specifications and programming testing.

In SOFL, the data types are classified into two categories:
built-in types and user-defined types. The built-in types have
fourteen kinds of data types, which are further divided into
basic types and compound types. Transformations from built-in
data types in SOFL to the data types in C# require both
semantics preservation and syntactic changes [7]. The syntax
of variable declaration in SOFL is not identical with that in C#.
The former lets the type appear after the variable with a colon
separating them, while the latter makes the type appear prior to
the variable with a space between them. In the semantics
perspective, some of the data types in SOFL and C# are similar,
while some of the others are totally different. The user-defined
types are defined by the specification writers. They are based
on the built-in data types, so the transformation guidelines of
built-in data types also apply to the transformation of user-
defined types.

In general, the choice of the concrete data types in the
transformation will affect somehow the algorithms of the
implemented program using the data types [8]. Therefore, it is
essential to strike a balance between data structures and
algorithms. An executable outline about transformations of all
the built-in data types in SOFL formal specifications are
presented in Table II:

Table II Transformation of data types
SOFL data type C# data type

int int

char char

string string

bool bool

Enumeration enum

nat0 int

nat int

real double

set HashSet

seq List

map Dictionary

composite abstract class

product abstract class

union class

Furthermore, there are several principles for data type
transformation summarized as follows:

 The int type, char type, string type, bool type, and
Enumeration type do not need to be transformed
because they have already existed in C# and can be
used directly.

 The nat0 type defines the natural numbers including
zero and nat type defines the natural numbers, so that
these two types can be implemented by int type in C#.

 The real type represents the real numbers, which can
be implemented by double type in C#.

 The set type is an unordered collection of distinct
objects, which is similar to the HashSet type in C#, so
it is natural to implement it through HashSet type.

 The sequence type is an ordered collection of objects
that allows duplications of objects. Taking this into
account, I believe that List type in C# is the best choice
to implement it.

 The map type is a finite set of pairs, the domain and
range to the map share the similar meaning with the
key and value to the Dictionary type in C#.

 The composite type and product type represent a
collection of several data items, so the abstract classes
are used to implement these two types and their
inherent functions.

 The union type is a special type associated with several
functions. It can be regarded as a collection of
variables in different types. We consider that we will
transform this type to a class with many fields in C#.

III. DESIGN AND IMPLEMENTATION

A. Abstract Tree of Transformation

In general, the transformations can be divided into module
transformations and data type transformations. The module
transformations would be broken down to lower level
transformations, while the data type transformations are also
composed of several lower levels transformations. In this case,
a tree structure has been built to clearly and correctly describe
the top-down decomposition of transformations. For this kind
of tree structure, we propose an abstract tree of transformations
[9-11] shown in Fig. 2.

Fig. 2. Abstract tree of transformations

B. Transformation Rules and Algorithms

Some principles of the abstract tree related to the
transformations are as follows:

 As for the overall transformations, the main program
should be corresponding to the root node of the
abstract tree.

 The module transformations and data type
transformations are the two child nodes of the root
node.

 The module transformations node include the constant
transformation node, type transformation node,
variable transformation node, process transformation
node, function transformation node and XML tool
node.

 Except for the process transformation node, other
nodes are similar. The process node can be divided into
single-port process child node and multiple-port
process child node. Other nodes are the corresponding
terminal nodes.

 The data type transformations node contains nine data
type interface child nodes that need to be transformed,
each of which has a terminal node representing the
implementation class corresponding to the related data
type interface.

Based on the above principles, starting from the top
transformation, a root node is created, namely the automatic
transformation node. And then it extends to the child nodes
step by step, until the terminal node is built.

Through using preorder traversal algorithm, we can
complete every part of the transformations. The abstract tree
shown in Fig. 2 offers an outline of the transformations and can
help us clearly understand the complete structure of the
transformations. It is also a necessary part to check the integrity
of the programs and ensure the reliability and correctness of the
whole systems.

C. Design and implementation of classes

In general, we create three packages to implement the
transformations. One is automatic transformation package, and
other two are module transformations package and data type
transformations package as shown in Fig. 3. In the automatic
transformation package, we need to invoke the methods
defined in the module transformations package to complete the
module transformations. The results of transformations cannot
be executed without the support of data type transformations
which are completed in SOFL date type package.

Fig. 3. Structure of transformation framework

1) Implementation classes in module transformation

package
The module transformation package involves several

classes as follows:

 XmlTool class: the objective of this class is to provide a
XML file tool used for extracting the data information
of SOFL formal specifications form the XML files.
Before executing the transformations process, we
should make formal specifications generate the
corresponding XML files through the existing SOFL
supporting tool, then this class is to parse these XML
files to get the data information we need.

 ModuleDeclarationTransformation class: this class is to
realize the functions of module transformations by
invoking the methods in other classes. It has two
methods, one is to write the first line of module and the
other is to complete the transformations of other parts in
module sequentially.

 ConstantTransformation class: this class mainly deals
with constant declaration in SOFL formal specifications.
It contains two methods, one is to get the constant
variables and write into the external file, and the other is
to judge constant variables types and invoke the former
method to write the corresponding constants.

 TypeTransformation class: this class is used to complete
the type declaration transformations. Because there are
many kinds of different data types, we need to invoke
different methods to implement the transformations. In
other words, each of the compound type transformation
uses one method.

 VariableTransformation class: The purpose for this
class is to transform the variable declaration section to
the programing in C#. Since the variables appearing in
this corresponding part are either the local variables or
external variables, so we design two methods to
implement this process. One is for writing the local
variables into target files and the other is for writing the
external variables.

 ProcessTransformation class: In this class, a method is
defined to judge different cases, and for each case, we
invoke the methods of SinglePort class to execute the
single-port process transformations and the methods of
MultiplePort class to exe-cute the multiple-port process
transformations.

 FunctionTransformation class: this class is to handle the
transformations from function declaration to programs.
Owing to the similar structure with the method in C#,
we design a method to write these function declarations
into the target files.

2) Implementation classes in SOFL data type package
There are fourteen kinds of data types in SOFL, but five of

them share the same semantics and syntactic with C# language
so that they can be directly executed in the programming. The
rests need to be transformed in the C# to support the results of
module transformations. In this case, we design nine interfaces

to implement the transformations of nine kinds of data types.
The relationship is shown in Table III:

Table III SOFL data types and implementation classes
SOFL data type Data type interface Implementation class

nat0 Inat0 nat0

nat Inat nat

real Ireal real

set Iset set

seq Iseq seq

map Imap map

composite Icomposite composite

product Iproduct product

union Iunion union

Note that the naming conventions of class in C# is that the
first letter of class name is capitalized, but we do not observe
this rule because we want to make the name of implementation
classes in accordance with the keyword of data type in SOFL,
so as to use the implementation classes efficiently and
unambiguously.

In the SOFL data type package, We design nine interfaces,
which are Inat0, Inat, Ireal, Iset, Iseq, Imap, Icomposite,
Iproduct and Iunion, to implement the transformations of these
nine kinds of data types. The methods in each interface are in
accordance with the operators in the related SOFL data types.
Then nine classes, which are nat0, nat, real, set<T>, seq<T>,
map<T, E>, composite, product and union, are created to
implement the corresponding interfaces.

3) Main program in automatic transformation package
The automatic transformation package includes the main

class of the transformations, whose main method is the entry of
the automatic transformations. This package invokes the
methods of classes in the module transformation package and
is supported by the classes in the SOFL data type package.

In this process, firstly, we enter the path of XML file, and
then judge whether the file exists or not. If the XML file exists,
we have to enter the output file path and also make a
judgement to ensure that the file name is legal. In the next step,
we will make a choice to decide whether starting the
transformations or not. If we choose to start the transformations,
the specifications will be transformed to C# programs. After
completing the transformation, the system is exited.

IV. TRANSFORMATION RESULTS

After the transformation software system is implemented, it
is essential to perform a test to detect faults and ensure the
validity and robustness of the system. In order to check
whether each function in the transformations can be used
correctly, we adopt the black-box testing method to test the
transformations process. Firstly, unit testing method is used to
test each transformation section, namely the constant
transformation, type transformation, variable transformation,
process transformation and function transformation. And then

the integration testing and system testing methods are adopted
to ensure the success of the entire formal specification
transformations.

The testing procedures can also be the guidance of how to
use these programs to make the automatic transformation,
which are listed as follows:

Step 1: use the existing SOFL supporting tool to create the
formal specifications and draw the related CDFDs [12].

Fig. 4. SOFL formal specification of ModuleTest

In the existing SOFL supporting tool, we can use the three-
step approach to constructing the formal specifications as
shown in Fig. 4. The structure of the components in current
project is displayed in the upper-left corner. In the center, a
CDFD related to the module is drawn. If one item in the CDFD
is selected, the attributes of it will be presented in the lower-
left corner. The module in detail is written in the right side.

Step 2: generate the related XML file through the existing
SOFL supporting tool.

Fig. 5. XML file of related SOFL formal specification

In Fig. 5, the names of labels are related to the
corresponding keywords in the SOFL formal specification
constructed in step 1. For example, the label “module” is
related to the keyword module in the specification.

Step 3: Using the software system we have developed to
parse the XML file and complete the transformation. A result
of the transformation is presented in Fig. 6.

Fig. 6. Results of transformations

Using the implemented software system, we can parse the
XML files corresponding to the SOFL formal specifications
and transform them into C# programs. In Fig. 6, the module
name is related to the class name. The constant declarations in
the module are transformed to the constant variables. The type
declarations are transformed to either a basic type or a class.
The variable declarations are transformed to the instance
variables. The process and function are implemented by the
target methods.

V. RELATED WORK

There exist some tools to support automatic transformation
from other formal notation to programming languages.
VDMTools reported in [13] offers the functions of analyzing
system models expressed in the formal notation VDM-SL,
which has been successfully applied to developing industrial
software systems. The VDM specification can be executed
directly through the interpreter inside this tool. User can test
the VDM specification by providing test cases and observe the
system behavior by setting breakpoints or stepping. ProB[14] is
a validation toolset for the B method. In this tool, a model
checker and a refinement checker can be used for executing the
B specifications to detect various errors. However, in order to
perform the exhaustive model checking, the given sets must be
finite, and the integer variables must be restricted to a small
range. UPPAAL[15] is a verification tool for timed automate,
which allows user to model the system behavior in terms of
states and transitions between states. In UPPAAL, there is no
specification written in words, but user can construct the finite
state machine to module the functions of system, which can be
executed in this tool to detect faults.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, aiming at contributing to the development of
existing SOFL supporting tool and making the automatic
transformation from SOFL formal specifications to programs
for software verification and testing, we discuss the
implementation of transformations from SOFL formal
specifications to C# programs. Firstly, we analyze the module
structure and data type in the SOFL formal specifications,
which lays the foundation for the transformation. Then, the
design and implementation of the transformations are described.
After implementing the transformations systems, we use black-
box testing method to verify the results of transformations. We
believe that it is a vital part to make the transformations and it
can serve for the specification verification and automatic
generation of testing cases, which are very useful and
meaningful in software development.

In the future, we will continue the transformation work and
plan to extend to the CDFD and class in SOFL formal
specifications. With the development of transformations, we
are also interested in applying the transformation results to
specifications testing and specification animation.

REFERENCES

[1] Peter D.Mosses, “VDM semantics of programming language:

combinators and monads,” Formal Aspects of Computing, 2011, 23:
221-238.

[2] Shaoying Liu, “Formal engineering for industrial software development
using the SOFL method”, Berlin Heidelberg: Springer-Verlag, 2004.

[3] Shaoying Liu, “An approach to applying SOFL for agile process and its
application in developing a test support tool,” Innovations Syst Softw
Eng, 2010, 6:137-143.

[4] Fauziah binti Zainuddin, Shaoying Liu, “An approach to low-fidelity
prototyping based on SOFL informal specification”, IEEE APSEC, 2012,
1530-1362/12.

[5] Weikai Miao, Shaoying Liu, “Service-Oriented modeling using the
SOFL formal engineering method”, IEEE APSCC, 2009, 978-1-4244-
5336-8/09.

[6] Shaoying Liu, Xiang Xue, “Automated software specification and
design using the SOFL formal engineering method”, IEEE WCSE, 2009,
978-0-7685-3570-8/09.

[7] A Rahman Mat, Cheah Wai Shiang, Shaoying Liu, “SOFL three-step
approach to construct the formal specification of a brain tumor treatment
system”, SDIWC, 2013, ISBN: 978-0-9853483-3-5.

[8] Yuting Chen, “A case study of using SOFL to specify a concurrent
software system”, IEEE, 2010, 978-1-4244-6055-7/10.

[9] Jie Han, Haopeng Chen, “Requirements analysis based on SOFL formal
method, Computer Applications and Software”, 2007, 24(9):57-59.

[10] Xiaoli Fang, Haopeng Chen, “Principle and realization of review based
of SOFL specification”, Computer Engineering, 2006.9, 32(8).

[11] Zhenghua Gao, Haopeng Chen, “Semantic analysis based on SOFL
specification”, Computer Applications and Software, 2007.11, 24(11).

[12] Mo Li, Shaoying Liu, “Tool support for rigorous formal specification
inspection”, IEEE CSE, 2014, 978-1-4799-7981-3/14.

[13] John Fitzgerald, Peter Gorm Larsen, Shin Sahare, “VDMTools:
Advances in Support for Formal Modeling in VDM”, ACM SIGPLAN
Notices, 43(2), 2008.

[14] Michael Leuschel, Michael Butler, “PROB: An Automated Analysis
Toolset for the B Method”, Int J Softw Tools Technol Transfer, 10:185-
203, 2008.

[15] Gerd Behrmann, Alexandre David, Kim G.Larsen, “UPPAAL 4.0”,
IEEE QEST06, 0-7695-2665-9/06, 2006.

