
PDF issue: 2025-07-06

Automatic Transformation from SOFL
Formal Specifications to Functional
Scenario Forms for Verification and
Validation

Yan, Ye

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編 / 法政大学大学院紀要. 情報科学研究科
編

(巻 / Volume)
11

(開始ページ / Start Page)
1

(終了ページ / End Page)
6

(発行年 / Year)
2016-03-24

(URL)
https://doi.org/10.15002/00012870

Automatic Transformation from SOFL Formal

Specifications to Functional Scenario Forms for

Verification and Validation

Yan Ye

Graduate School of Computer and Information Sciences

Hosei University

Tokyo, Japan

Ye.yan.75@stu.hosei.ac.jp

Abstract— Specification-based testing and inspection are two

important techniques in the SOFL method for verifying programs,

but both of them are established on the basis of the concept known

as functional scenario form (FSF). In this paper, we describe how a

SOFL formal specification can be automatically transformed into a

FSF. The transformation is realized in four steps: lexical analysis

of the formal specification, conversion from the specification to

Reverse Polish Notation (RPN), transformation from RPN to
Disjunctive Normal Form (DNF), and derivation of a FSF from

the DNF. Our discussion focuses on the first three steps that have

already been realized, but we will also discuss how an existing

algorithm can be used for the conversion from the DNF to a FSF

for verification and validation. We present the related algorithms

and illustrate them with examples. Finally, we evaluate our

algorithms implemented in the tool by testing.

Keywords— SOFL specification, Lexical Analyzer, RPN, DNF,

FSF, verification and validation

I. INTRODUCTION

With the rapid growth of large software systems, formal
methods become more and more important in development
activities as Fig.1 shows, the formal specification language
can generate precise and unambiguous requirements document
to provide a rigorous mathematical foundation for software
projects. However, it also has limitation, such as high demand
to developers, only providing symbols and rules, poor
readability of specification etc. In addition, as the software
activities becoming more complex and large-scale, applying
formal methods becomes more difficult and expensive than
before in realistic projects.

Fig.1. SOFL application in software activities

In order to improve the above situations, SOFL, resulting
from an integration of VDM with DFD, was designed as a

formal engineering solution. SOFL provides a simple and
reliable platform that is suitable for specification-based
development. It is not only providing symbols and rules for
specification constructing, but also equipped with related
techniques for various software activities. SOFL creates a
rigorous, efficient and structured method. Its practicability can
be said superior to existing formal methods [1].

Now, automatic transformation from SOFL formal
specifications to a functional scenario form (FSF) becomes an
important technique to support specification-based
applications for programs in SOFL method [2]. Compared
with manual transformation, automatic transformation can
significantly save time, mitigate the workload and reduce
chances for committing mistakes. It establishes a "mapping"
relationship between SOFL formal specification and
executable program to facilitate process revision, adjustment
and testing. Moreover, its intermediate process has the
characteristics of RPN and conduces to the mechanical
implementation on one side. On the other side, automatic
transformation makes a formal specification split into many
relevant items that carry messages, so its content and form
could be converted flexibly to provide an appropriate interface
for multiple applications like test data generation etc.

The rest of the paper is organized as follows. Section II
shows the related work. Section III shows some concepts to
help readers understand the automatic transformation works.
Section IV briefly introduces the whole implementation in
automatic transformation. Section V cites the cases to prove
the techniques over the whole process. Subsequently, Section
VI gives the analysis and evaluation of the results in each part.
At last, section VII makes a conclusion of the current work
and envisages future work.

II. RELATED WORK

In the paper titled "An Approach to Transforming Visual
Formal Specifications to Java Programs" [3], Liu has
discussed how to transform the CDFDs into executable java
program. It describes the policies and rules in transformation
process of various CDFD structures. The author proposed a
series solutions based on Morgan’s refinement rules [4], so the
transformed results meet the functional requirements of CDFD.
The proposed policy is used to transform the CDFDs into java

framework and the rules are used to transform various
structures of CDFD, but it didn’t give a realization. However,
the idea of this article makes basis of automatic transformation
of SOFL specification.

The Chapter 19 of the book "Formal Engineering for
Industrial Software Development" [5] have comprehensively
discussed the conversion from the data type, class, model to
the program, it also covers some special structure in SOFL,
such as multiple interfaces etc. It is mainly discussed the
possibility of SOFL automatic converting from interface
arrangement, data structures and some other parts.

In another article "Automatic Transformation from Formal
Specifications to Functional Scenario Forms for Automatic
Test Case Generation" [6], the authors further proposed some
specific conversion methods. It firstly discusses the
transformation of complex expressions, quantization
expressions and equivalent expressions, then showing how to
convert from the predicate expression to generate automatic
test cases in detail and provides an example. This paper is
inspired and worth to learn, such as how to deal with the
branch case. However, because this article is for VDM-SL, the
operator and definition are come from VDM-SL and it didn’t
address the issue in SOFL. Besides, some algorithms
theoretically use the logic symbol which is less suitable for
nesting and some other cases, so these parts should be
improved in practical perspective.

Another paper [7] proposed a formal automatic test
technology. This technique uses the specified black box test
cases group which includes the universal quantifier and
existential quantifier of specification to generate logic
diagrams (e.g. testing framework) automatically. Unlike
processing the language directly in tradition, it dealing with
quantifier straight, so it can be more widely applied to the
expressive specification. To handle with the quantifiers (e.g.
"exsit") is necessary in our research, this idea is worth to learn.

III. THE RELATED CONCEPTS AND PROBLEMS

In this paper, we describe all of the major techniques
necessary for the conversion from a SOFL specification to
FSF. The entire process is illustrated in Fig.2. In order to
achieve this goal, the first step is to design a Lexical Analyzer
(LA), it could identify and process all kinds words in SOFL.
Then, SOFL specification could be converted into the RPN by
the improved RPA based on the LA result, optimized data
structures and storage structure. Next, we build a bridge
between RPN and DNF to obtain the prerequisite for FSF
which is still expressed in RPN. Finally, we show how this
DNF be changed to the FSF for verification and validation.

Fig.2. The automatic transformation process

A. Pretreatment work

 The preparation work is implemented to lay a good

foundation and guarantee the effective execution for the

follow-up works.
Firstly, we should extract pre/post-condition out from

SOFLTOOL (a supporting tool of SOFL) and record all kind
variables and functions that are needed in verification and
validation. Because pre/post-condition is stored as an XML
format in SOFLTOOL, we store it into a XML file to keep its
integrity and originality. Every part of specification has its fix
position in this intermediate file. That is to say, we should be
familiar with the SOFL specification structure as Fig. 3 shows:

Fig.3. SOFL structure and hierarchical

Then, both keywords list and the corresponding priority
list should be arranged. The former affects whether LA could
recognize words correctly and the latter determines whether
the order is accurate in RPN, We must guarantee the result is
complete without omission.

Thirdly, we should be familiar with the data and symbol
type, then considering about the data structure and storage
mode to facilitate the subsequent operations.

B. Lexical Analysis

After the necessary pre-processing work, we could start to
do the body work. Lexical analysis is the first step in our
research and plays an important role. It reads text from the
source file and decomposing it into a series of words based on
the lexical rule. The word is the basic symbol of program
language. The lexical rule is different according to the different
source languages, so the output result is not the same. Fig.4
shows LA mechanism, we generally abstract the grammar from
the source language and form the regular expression, NFA,
DFA etc. Then, we get the state transition diagram (STD).
Finally, we match the words with the lexical rules and get the
LA result. In this part, the issues should be solved as follows:

 To distinguish the multiple end situations in extracted file;

 To apply the new keywords list of SOFL to the LA;

 Extract and register functions and all kind variables;

 To mark and maintain the related information at this stage;

 Clearly understand the word formation rules of SOFL,

then to form the DFA, NFA etc. finally, to get the STD

for programming;

 Compared to the traditional LA, SOFL needs to manage

additional situations.

Fig.4. Intrinsic mechanism of the lexical analysis

C. Reverse Polish Algorithm

In the automatic conversion work, LA and RPN are tightly
linked. LA is the basis of RPN and the output of LA is the
input of RPN.

RPN is also called suffix expression. As we all know, the
general expression whose binary operator is always located
between its two parameters is called infix expression. RPA
could convert an infix expression into a suffix expression. The
feature of it is that each operator is located behind its operands
after transformation and the relative position of operands keeps
fixed which could be seen in Fig.5. The calculation of RPN is
depends on the order of operand and operator without the
brackets, that is very beneficial for mechanical achievement. In
this paper, converting the SOFL formal specification into the
RPN is a critical intermediate step for automation.

Fig.5. feature of infix expression and suffix expression

Given it is SOFL oriented, the traditional RPA is unable to
meet the demand of this study. It needs to be improved in the
following aspects:

 The traditional RPA do calculation directly, but here need
to combine it with the LA result to get all kind words;

 Traditional RPA only dealing with the arithmetic
operators and simple operation. But the function name,
logical operators etc. also need to be handled in SOFL;

 Compared to the traditional RPA, it not only need to
know the type, priority level and process mode of each
word, but also need to record as much as possible
messages, outputting the corresponding RPN results while
at the end of pre/ post-condition etc. in order to serve
verification and validation;

 To guarantee the pre/post-condition is a whole expression,

so how to handle the branch case should be focused on.

D. Functional Scenarios Form for verification and validation

FSF is already defined in the previous publication by Liu’s
paper [6], it is a key concept for verification and validation. As
Fig. 2 shows, the FSF of SOFL specification originates from
three parts: pre/post-condition, input/output variables and ext

part. The FSF consists of three components. One is called
guard condition that only contains input and initial state
variables, the other is called defining condition which includes
at least one output variable or the state variable, the remaining
one is initial pre-condition. We also name the format which
conjunctive the guard condition with the initial pre-condition
as testing condition (~ represent the initial value of variables).

 In general, As Fig.6 shows, a FSF is a disjunction of
functional scenarios: F1 or F2 or ... or Fn, where each Fn is
called a functional scenario, which is a conjunction of pre-
condition, guard condition and defining condition, its format is
as: P1 and P2 and ... and Pm.

Fig.6. The functional scenario form in general

The premise of forming FSF is to get the DNF of post-
condition [5], and this can be done by using the following
three laws: DeMorgan law, distribution and associative laws.
After previous work, the post-condition has been changed to
the RPN, so we need thinking about how to build a bridge
between RPN and DNF.

IV. IMPLEMENTATION

A. Preparation work

As mentioned before, we need to do some preparation work
before realizing the automatic transformation.

Firstly, we should extract specified SOFL formal
specification from SOFLTOOL. Because it is saved as an
XML format in SOFLTOOL, we store it into an XML file
called SYSTEM.XML to keep its integrity and originality.
Every part of SOFL specification has its fix position in this
intermediate file. Then, we register all kind variables and
functions that are needed in verification and validation. Taking
the variables as an example, we choose Hash table as the
storage structure and offer two kind formats to register this
messages, one is the original format, the other is the code
format which is based on the keyword list that aiming to
facilitate the operation. Every keyword has one unique and
corresponding code (of course, we offer the contrast table
between the keyword list and the code).

Secondly, keyword list affects whether LA could correctly
recognize words, and the corresponding priority list
determines whether the order is accurate in RPN. We should
guarantee these lists are complete and no omission.
Considering the functionality of them, the query efficient also
should be focused on.

Thirdly, we should be familiar with the data and symbol
type, then consider about the data structure and storage mode
to facilitate the operations and being friendliness.

B. SOFL- oriented Lexical Analysis

After finishing preparatory, we can start to build the
Lexical Analyzer. Its design emphasis is on the transformation

from Deterministic Finite Automaton (DFA) to the State
Transition Diagram (STD) [8] and programming.

We build the STD with four kind states, initial state,
intermediate state and final state which are represented by
different circles respectively. In order to raise the logic, we
specially add the judging state into STD and the judge
condition depends on different situations. Here only list one
path of STD as Fig.7 due to the limited space.

Fig.7. State Transition Diagram of SOFL (part)

Through analysis of LA, we know the below issues are
involved in the LA:

 Programming with the STD;
 To distinguish the various end situations (include the

pre/post condition, expression etc.);
 To execute the new LA to get the correct result through

use new keywords list of SOFL etc.;
 To keep the related information at this stage and add new

messages gradually;
 Compared to the traditional LA, SOFL-oriented LA

should manage additional cases as in Table 1.

Table 1. Typical cases in SOFL

Case Example Description

 type

Separate
map to split by the space

case…of split by expression / variable

Delimiter
, many situations

; three typical cases

Combine mk_A
combined operator with

operand

Keyword
~a not conform to naming rules

true special keyword

same start

< less than

same start but different

symbols

<= not bigger

<> not equal to

<...> Enumeration

function fun . A/ a. fun . A two typical cases

place
different = pre-post/ type judgment/ renaming

same -> modify/others revise/ mapping

 In addition, we adopt advanced search technique which is
commonly used in this process. We should focus on the search
indicator backtracking, whether it is backtrack, when it is back
and what place it should back to.

After finishing these works, we could go on transforming
the LA result to the RPN.

C. Optimize Reverse Polish Algorithm

Our ultimate goal is to enable RPN that comes from SOFL
specification could be transformed to serve verification and
validation, so we need to provide information as detailed as
possible for converting the RPN to the format that verification
and validation needs. The essence is to mark this information
and maintain it from the start to the end.

As mentioned before, RPA is used to transform from the
infix expression into the suffix expression. In this study, the
infix expression is the predict text (includes pre/post-condition,
all kind variables and function section etc.) that has extracted
from SOFLTOOL and saving it in the intermediate XML file.
Then, we should convert the specified part in this text to the
RPN with keeping and adding related messages on the basis of
LA result. Aiming to solve the problems in Section III.C, there
mainly have two aspects should be optimized in RPA. One is
to improve the relevant structures, the other is adjusting the
algorithm for SOFL. Next, the results should be written into a
XML file. We design several storage formats to record
different messages according to the characteristic of XML.

Based on the above data and storage structures, we work
out the improved RPA flow as Fig.8 shows. It uses the LA
result as its input and output the RPN with related messages.

Fig.8. Improved RPA flow

 The items in SOFL specification have different reverse
polish format, here only show two cases in Table 2:

Table 2. The RPN of some typical cases

Category Description Typical example Reverse Polish Notation

function

function
formats

A.fun(a,b) a b , A.fun

fun(a,b) a b , fun

fun() fun

SOFL

function

operator

modify(A,a->b,c->d) A a b-> , d e -> , modify

a inset dom(b) a b dom inset

override(a,b) a b , override

separate

symbol

， multiple situations be used then ingored

| multiple situations be used then ingored

；

in if if a ; b; then c else d a b and if c then d else

in case case a of b->c; d->e a case b c -> d e -> or

others e.g. A; B; in explicit be ignored directly

D. From DNF to FSF to Serve verification and validation

As mentioned before, the premise of forming FSF is to get
the DNF of specified specification. Now we have got the
pre/post-condition expressed in RPN, so the first step is to
change the RPN to DNF as the prerequisite for functional
scenario form. By analyzing the feature between RPN and
DNF, we figure out an algorithm to convert RPN to DNF. At
last, we get the DNF of specification.

Here, owning to Liu’s paper [6] has put forward an
algorithm to transform from DNF to FSF, so we implement
this existing method in our work. Here the DNF is the RPN, so
we adjust that method to make it apply to this research. Here
give Case 1 to illustrate the FSF forming process.

Case 1. A simple DNF specification (RPN)

(1) For P1, it has three sub conjunctive normal items.

Q1= a ~c >, Q2= c a b - ~c * = and Q3 = ~c b >

(2) To judge each sub conjunctive normal item, if it only
includes the input variables (a, b) and initial state variable (~c),
then put this item into the Out1 collection, conversely, if it
contains at least one output variable (here has no output
variables) or state variable(c), then add it into the Out2.

(3) We get Out1 is {a ~c > ~c, ~c b > }, Out2 is { c a b - ~c * =}

(4) So for the P1, S1
1
 is {a ~c >~c b >∧}, S2

1
 is {c a b - ~c * =}

(5) Repeat the above 2~4 steps, the S of P2 and P3 are:

 S1
2
 = a ~c >~c b >∧，S2

2
 = c a b + ~c /=

 S1
3
 = a ~c < = ，S2

3
 = c a b / 1+~c / >

(6) S1
1
 is equal to S1

2
, so merge S1

1
 and S1

2
 and disjunctive

their corresponding S2
1
 and S2

2
 as a form like S1

1∧(S2
1∨S2

2
):

a ~c >~c b >∧ a b - ~c * =c a b + ~c /= ∨

(7) The others guard conditions are different from each other.
so conjunctive S1

i
 and S2

i
 directly to get:

a ~c <= c a b / 1+~c / > ∧

(10) To combined with initial pre-condition ~c 0 <>, to get

1） ~c 0 <> a ~c >~c b >∧ a b - ~c * =c a b + ~c /=∨∧∧

2） ~c 0 <> a ~c <= c a b / 1+~c / >∧∧

(11) Finished, we get the FSF as (10) shows, it has two
functional scenarios 1) and 2) and each them has its defining
condition (green) and testing condition (red).

V. TEST

This section takes a ATM withdraw specification to proof
the algorithms in accordance with the transformation process,
including SOFL-oriented LA, the optimized RPA, RPN to
DNF etc.

A. The test of LA and RPA

The Fig.9 includes the various variables, pre/post-
condition and method names. While implement the LA and
RPA on it, we get the XML form as Fig.10 shows, which
shows the result of RPN that carry with information.

 Fig.9. SOFL Specification of ATM withdraw (part)

Fig.10. The RPA result of Fig.9

B. Serve for verification and validation

In this part, we firstly convert the RPN of Fig.10 to the
DNF which is the premise to forming FSF, the result is the
form of RPN, but in order to improve the readability, we show
the original form of these four disjunctive items in Fig.11.

Fig.11. All the items of DNF of case 2

The FSF forming process has introduced in Section IV.D,
do like that, we obtain all the functional scenarios in a FSF

R1 = Search_Account(id, pass,~accounts) and R1.found=true and

R1.account.balance >= amount and

R1.account.amount_available >= amount and cash=amount

and accounts= Update_Account(~accounts,R1.account,amount)

R2 = Search_Account(id, pass,~accounts) and R2.found=true and

R2.account.balance >= amount and

R2.account.amount_available < amount and cash=0 and

accounts= ~accounts and overdrawn_message="The requested

amount exceeds the withdrawal limit."

R3 = Search_Account(id, pass,~accounts) and R3.found=true and

R3.account.balance < amount and cash=0 and accounts=

~accounts and overdrawn_message="The requested amount

exceeds the account balance."

R4 = Search_Account(id, pass,~accounts) and R4.found=false

and cash=0 and accounts=~accounts and warning_message="our

id or pass is wrong."

Process OP (a, b: nat)

Ext wr c:real

Pre c 0 <>

Post a ~c > c a b - ~c * = ~c b > ∧∧ (P1)

 a ~c > c a b + ~c /= ~c b > ∧∧ (P2)

 a ~c <= c a b / 1+~c / > ∧ (P3）

∨∨

derived from the DNF in Fig. 11. Fig.12 shows its infix format.
We can see that this withdraw process has four functional
scenarios, and every disjunctive clause is composed of a
testing condition and a defining condition. Then, we could use
this FSF to serve verification and validation.

Fig.12. The FSF of Fig.9

VI. EVALUATION

Though analyzing the previous test results, the
intermediate file has stored the SOFL formal specification that
is extracted from SOFLTOOL correctly, and every part of
SOFL formal specification has its own appointed position.
This file is as the input for LA and the LA result is as the input
for improved RPA successfully.

After execution of the lexical analysis and Reverse Polish
Algorithm, via analyzing the result shown in Fig.9, we can
know from the perspective of operation object, all operands
and operators can be accurately identified. Besides the
ordinary words, functions like “Search_Acount” also can be
identified as an operator. The parameters of these functions
are also be separated clearly by delimiter and the order of
delimiter and the parameter are correct as well. After adding
the naming rules, “~account” as a whole could be correctly
identified as an operand. Also, the symbols like “>” have the
same start can also be distinguished. Various brackets are
ignored. Special keyword “true” is exactly identified as an
operand. The Composite type “R.account.amount_available”
can also be correctly identified as the operand. The ESC of
XML can be automatically converted back as well.

From the view of location, the overall sequence is correct,
and the range of every sub disjunctive item is accurately
marked. Pre/post-condition has been precisely separated from
each other and the corresponding RPN can be output correctly
respectively. Finally, the structure of the whole result is
consistent with the characteristic of RPN.

After finishing the above work, we go to convert the RPN
to the DNF. The transformation result shows it correctly

translating the RPN to the DNF. It maintains the integrity and
feature of RPN and inherits the related information like type,
serial number of RPN result. Moreover, it adds the sign of
each sub disjunctive item. This DNF format is the premise to
get the FSF for verification and validation.

Ultimately, we translate this DNF to the FSF. The result
shows the functional scenarios as expected, and every
functional scenario is composed of a testing condition and a
defining condition which is corresponding to a disjunctive
item in DNF. Of course, this result is the reverse polish format.
These conditions are keeping the related messages and abide
by the definition of FSF components.

VII. CONCLUSION AND FUTURE WORK

Aiming to achieve automatic transformation from SOFL
formal specification to FSF for verification and validation, we
have designed a SOFL-oriented Lexical analyzer firstly and
optimized the RPA, then making a bridge from RPN to DNF
to form the prerequisite for FSF. This means we have set up a
foundation for conversion into FSF. Furthermore, in this study,
the intermediate process not only has the characteristics of
RPN, but also carrying useful messages that is superimposed
by different stages in automatic transformation process. In
addition to verification and validation, this intermediate result
could offer flexible interfaces for some other applications. At
last, we use some cases to show the whole processing
procedure. It shows that the SOFL formal specification could
be successfully transformed to the expected format for
verification and validation.

In the future, we will continue to make the full execution
automatically, and adjust the intermediate process and
interfaces to serve for as much as possible applications.
Furthermore, we will also make the SOFL tool to be more
comprehensive as well.

REFERENCES

[1] Liu, S., “Formal Engineering for Industrial Software Development”,
BeiJing: Tsinghua University Press, 2008:7.

[2] Liu, S., Nagoya, F., Chen, Y., Goya, M., & McDermid, J. A. “An
automated approach to specification-based program inspection”. In
Formal Methods and Software Engineering. Springer Berlin Heidelberg.
pp. 421-434, 2005

[3] Liu, S., “An Approach to Transforming Visual Formal Specifications to
Java Programs”, Journal of Three Dimensional Images， 17(1): pp. 121-
128, 2003.3.

[4] Carroll Morgan, “Programming from Specifications”, UK: Prentice-Hall
International Ltd, pp.3-13, 1990.

[5] Liu, S., “Formal Engineering for Industrial Software Development”.
BeiJing: Tsinghua University Press， pp.349-380, 2008.

[6] Liu, S., Hayashi, T., Takahashi, K., Kimura, K., Nakayama, T., &
Nakajima, S. “Automatic transformation from formal specifications to
functional scenario forms for automatic test case generation”. In
Proceedings of the 2010 conference on New Trends in Software
Methodologies, Tools and Techniques: Proceedings of the 9th
SoMeT_10 , pp. 383-397, IOS Press, August 2010.

[7] Michael R.Donat, Donat M R. TAPSOFT '97: “Theory and Practice of
Software Development”. Springer Berlin Heidelberg, Volume 1214:
pp.833-847, 1997.

[8] Andersen, M., Elmstrøm, R., Lassen, P. B., & Larsen, P. G. “Making
specifications executable—using IPTES Meta-IV”. Microprocessing and
Microprogramming, 35(1), pp. 521-528.,1992.

Testing condition: R1=Search_Account(id, pass, ~accounts) and

R1.found=true and R1.account.balance>=amount and

R1.account.amount_available>=amount

Defining condition: cash=amount and

accounts=Update_Account(~accounts,R.account,amount)

Testing condition:R2=Search_Account(id, pass, ~accounts) and

R2.found=true and R2.account.balance >=amount and

R2.account_balance< amount

Defining condition: cash=0 and accounts=~accounts and

overdrawn_message=“The requested amount exceeds the

withdrawal limit.”

Testing condition: R3=Search_Account(id, pass, ~accounts)

and R3.found=true and R3.account.balance<amount

Defining condition: cash=0 and accounts= ~accounts and

overdrawn_message=“The requested amount exceeds the account

balance.”

Testing condition: R4= Search_Account(id, pass,~accounts) and

R4.found=false

Defining condition: cash=0 and accounts=~accounts and

warning_message= “our id or pass is wrong.”

