
PDF issue: 2025-02-05

A Systematic Inspection Approach to
Verifying and Validating Formal
Specifications based on Specification
Animation and Traceability

LI, Mo / 李, 漠

(開始ページ / Start Page)
1

(終了ページ / End Page)
226

(発行年 / Year)
2015-09-15

(学位授与番号 / Degree Number)
32675甲第367号

(学位授与年月日 / Date of Granted)
2015-09-15

(学位名 / Degree Name)
博士(理学)

(学位授与機関 / Degree Grantor)
法政大学 (Hosei University)
(URL)
https://doi.org/10.15002/00012841

仕様アニメーションとトレーサビリティー

に基づく形式仕様の検証と実証の系統的な

検査アプローチ

A Systematic Inspection Approach to Verifying

and Validating Formal Specifications based on

Specification Animation and Traceability

by

Mo Li

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

Graduate School of Computer and Information Sciences

HOSEI UNIVERSITY

September 2015

Advisor: Professor Shaoying Liu, Hosei University

Contents

0 Preface 13

1 Introduction 17

1.1 Formal Methods and Formal Engineering Methods . 20

1.1.1 Formal Methods . 20

1.1.2 Formal Engineering Methods . 22

1.2 Speci�cation Veri�cation and Validation Techniques . 23

1.2.1 Formal Proof . 23

1.2.2 Conventional Inspection . 24

1.2.3 Animation . 24

1.2.4 Model Checking . 25

1.3 Our Solution: Inspection based on Speci�cation Animation and Traceability 26

1.4 Summary . 29

2 Brief Introduction of Structured Object-oriented Formal Language 30

2.1 Informal Speci�cation . 31

2.2 Formal Speci�cation . 32

2.3 Summary . 36

3 Overview of the Inspection Based on Speci�cation Animation and Traceability 37

3.1 The Outline of IBSAT . 37

3.1.1 System Functional Scenario-based Speci�cation Animation 37

3.1.2 Traceability-based Checklist . 39

3.1.3 Formal Speci�cation Inspection . 40

3.2 Background of the Case Study . 42

3.3 Summary . 43

1

4 Formal Speci�cation Animation 44

4.1 CDFD Decomposition . 45

4.2 Extracting System Scenarios . 49

4.2.1 Sequence Structure . 50

4.2.2 Parallel Structure . 52

4.2.3 Loop Structure . 55

4.2.4 Limitation of the Algorithm . 60

4.2.5 Combinatorial Explorsion . 62

4.3 Animating Speci�cations . 64

4.3.1 Animation Process . 64

4.3.2 Test Suite Selection . 67

4.3.3 Execution of System Functional Scenarios . 72

4.4 Summary . 74

5 Traceability of Speci�cations 75

5.1 Explicit and Implicit Requirements . 75

5.2 Requirement Items . 76

5.3 Inspection Targets . 78

5.4 Construction of Traceability . 84

5.5 Summary . 88

6 Formal Speci�cation Inspection using IBSAT 89

6.1 The Four Aspects of Inspection Targets . 89

6.1.1 Necessity . 90

6.1.2 Appropriateness . 91

6.1.3 Correctness . 95

6.1.4 Completeness . 98

6.2 Checklist and Inspection Procedure . 100

2

6.3 Feedback . 103

6.4 Case Study . 104

6.5 Summary . 109

7 Tool Support for SOFL Speci�cation Construction and Veri�cation 110

7.1 Design and Implementation . 110

7.2 Functions Provided in the Framework . 113

7.2.1 Speci�cation Organization . 113

7.2.2 Informal Speci�cation Editor . 115

7.2.3 Semiformal and Formal Speci�cations Editor . 116

7.2.4 Keeping Consistency between the CDFD and the Module 119

7.2.5 System Functional Scenarios Generation . 122

7.2.6 Animation . 123

7.2.7 Inspection . 124

7.2.8 Integrated Functions . 126

7.3 Evaluation of System Scenario Generation Function . 127

7.3.1 Loop Structures . 127

7.3.2 Evaluation of Combinatorial Explosion . 129

7.4 Experience of Using the Tool . 133

7.5 Summary . 133

8 Experiment 134

8.1 Experiment Settings . 135

8.1.1 Background of the Target Speci�cations . 135

8.1.2 Subjects . 137

8.1.3 Categories of Bugs . 138

8.2 Experiment Implementation . 143

8.2.1 The Documents for Traditional Checklist-based Inspection 143

3

8.2.2 The Documents for IBSAT . 144

8.3 Results Analysis . 148

8.3.1 Comparison between Di¤erent Groups . 149

8.3.2 The Unfound Bugs . 157

8.3.3 Possible Improvements . 163

8.4 Findings in the Experiment . 165

8.5 Threats . 166

8.6 Summary . 167

9 Related Work 168

9.1 Animation . 168

9.2 Inspection . 171

9.3 Traceability . 174

9.4 Summary . 176

10 Conclusion and Future Work 177

10.1 Conclusion . 177

10.2 Future work . 178

10.2.1 Research on Inspection Method . 178

10.2.2 Research on Supporting Framework . 179

11 Appendix: Documents Used in the Experiment 193

4

List of Figures

1.1 The principle of formal methods . 21

2.1 The informal speci�cation of a simpli�ed ATM software . 33

2.2 The formal speci�cation of module �SYSTEM_ATM� . 34

2.3 The CDFD of a simpli�ed ATM software . 35

3.1 The relations among basic concepts of our inspection approach . 41

4.1 The decomposition of a single process . 46

4.2 The decomposition of the CDFD of the simpli�ed ATM . 48

4.3 Derivation of system scenarios from the CDFD with sequence structure 53

4.4 Derivation of system scenarios from the CDFD with parallel structure 54

4.5 CDFD with loop structure . 56

4.6 CDFD with nested loop . 61

4.7 A new CDFD by combining process �B�and �C�. 61

4.8 Decomposing the process �New B� . 62

4.9 Sequential Loops . 63

4.10 Two CDFDs with the same number of processes . 63

4.11 The de�nition of process �Check_Password� . 66

4.12 The de�nition of process �Withdraw� . 71

4.13 The animation process of a system functional scenario . 73

5.1 The dependence chain . 82

7.1 The major functions provided by the supporting framework . 112

7.2 The architecture of the framework . 113

7.3 The structure of �le system used in the framework . 114

7.4 The �Hierarchy Explorer�used to manipulate the SOFL project 115

7.5 The user interface for constructing informal speci�cation . 116

7.6 The user interface for constructing formal speci�cation . 117

5

7.7 Creating new module by decomposing a process . 118

7.8 The drop-down list in the �Formal Editor� . 119

7.9 The snapshot of generating system scenarios . 123

7.10 The snapshot of formal speci�cation animation . 124

7.11 The snapshot of formal speci�cation inspection . 125

7.12 The �evaluator�for operation scenarios . 126

7.13 Invoking the integrated pattern system function . 127

7.14 Invoking the integrated parser function . 128

7.15 System scenario generation from a CDFD with single loop . 128

7.16 System scenario generation from a CDFD with sequential loops . 129

7.17 System scenario generation from a CDFD with 30 processes and no loop structure 130

7.18 The main memory usage of generating system scenarios from a CDFD with 30 processes and no

loop structure . 130

7.19 System scenario generation from a CDFD with 30 processes and one loop structure 131

7.20 System scenario generation from a CDFD with 10 processes and two loop structures 132

8.1 CDFD of the traget formal speci�cation . 136

8.2 The process �Deposit�in the target formal speci�cation with bugs 139

8.3 The process �Withdraw�in the target formal speci�cation with bugs 139

8.4 The process �Receive_Bank_Comm�in the target formal speci�cation with bugs 140

8.5 The document used in the experiment . 145

8.6 The document used in the experiment (contiune) . 146

8.7 Part of the process �Buy�in the target formal spceci�cation with bugs 159

8.8 The process �Bank_Account_Authorize�in the target formal speci�cation with bugs 161

6

List of Tables

4.1 Three operation scenarios in the process . 67

4.2 Input data generation algorithm . 69

4.3 Test suites for a normal function . 74

5.1 The inspection targets of a speci�c system scenario . 83

5.2 Relations between speci�cation items . 85

5.3 Traceability rules between inspection targets and requirement items 86

5.4 The trace links between the inspection targets and the requirement items 87

6.1 Typical appropriateness questions for di¤erent inspection targets 93

6.2 Extracting restricted variables from the variables with compound type 97

6.3 Checklist for inspection . 101

6.4 The results of inspecting the necessity property . 105

6.5 Operation scenarios of the related processes involved in the system scenario 106

6.6 The inspection results of the system scenario . 107

6.7 The inspection results of the system scenario (continue) . 108

7.1 The changes that may a¤ect the consistency . 121

8.1 The requirement items and inspection targets in the experiment . 136

8.2 The three groups in the experiment . 137

8.3 The detailed classi�cations of bugs . 139

8.4 The categroies of bugs . 143

8.5 The detailed results made by the subjects in Group A . 150

8.6 The detailed results made by the subjects in Group B . 151

8.7 The detailed results made by the subjects in Group C . 152

8.8 The inspection results of each group and revelant statistics . 153

8.9 The number of bugs found in domain dimension . 156

8.10 The number of bugs found in consistency dimension . 156

7

8.11 The summary of Group B under detailed bug classi�cation . 157

8

ACKNOWLEDGMENTS

First and foremost, I want express my sincere gratitude to my supervisor Prof. Shaoying Liu for his various

tremendous supports throughout my research work. He always pays great attentions to the research process of

mine and gives me many useful suggestions in doing research. Whenever I encountered problems in my research,

I could get timely and useful helps from him. Although he is busy at work, he is always patient in discussing

with me, correcting my writings, and leading me to the right direction. He also shares some of his own experience

which can bene�t my research and daily life. His enthusiasm for research inspired me and all the students in our

laboratory, and his encouragement helps me to overcome a lot of di¢ culties.

I would like to appreciate all the professors in the faculty for their various kind helps during my study. I want

to give my special thanks to the professors who have taught me directly in classes. They help me to expand my

knowledge in di¤erent �elds.

I appreciate the student colleagues in the laboratory for their helps in both research and daily life. I also

appreciate the students who participated in my experiment for their cooperation.

I want give my thanks to the sta¤ in the administration o¢ ce for their constant assistance in my campus life.

Finally, I want to thank my family for their understanding and support.

9

Publications

Journal Paper

1. Mo Li and Shaoying Liu, �Integrating Animation-Based Inspection into Formal Design Speci�cation Con-

struction for Reliable Software Systems,�IEEE Transactions on Reliability, 2015 (Conditional acceptance).

International Conference Papers

1. Mo Li and Shaoying Liu, �Automated Functional Scenarios-Based Formal Speci�cation Animation,�Pro-

ceedings of 19th Asia-Paci�c Software Engineering Conference (APSEC), IEEE Press, Hong Kong, 4-7 Dec.

2012, pp.107-115.

2. Mo Li and Shaoying Liu, �Traceability-Based Formal Speci�cation Inspection,�Proceedings of Eighth In-

ternational Conference on Software Security and Reliability (SERE), IEEE Press, San Francisco, USA, 30

June-2 July, 2014, pp.167-176.

3. Mo Li and Shaoying Liu, �Reviewing Formal Speci�cation for Validation Using Animation and Trace Links,�

Proceedings of 21th Asia-Paci�c Software Engineering Conference (APSEC), IEEE Press, Jeju, Korea, 1-4

Dec., 2014, pp.286-293.

4. Mo Li and Shaoying Liu, �Tool Support for Rigorous Formal Speci�cation Inspection,�Proceedings of IEEE

17th International Conference on Computational Science and Engineering (CSE), IEEE Press, Chengdu,

China, 19-21 Dec., 2014, pp.729-734.

International Workshop Papers

1. Mo Li and Shaoying Liu, �Design and Implementation of a Tool for Specifying Speci�cation in SOFL,�

Proceedings of 2nd International Workshop on SOFL of 14th International Conference on Formal Engineering

Methods, LNCS 7787 Springer, Kyoto, Japan, 13th Nov. 2012, pp. 44-55.

2. Mo Li and Shaoying Liu, �SOFL Speci�cation Animation with Tool Support,�Proceedings of 3rd Interna-

tional Workshop on SOFL + MSVL, LNCS 8332, Springer, Queenstown, New Zealand, 29th Oct. 2013, pp.

118-131.

10

limo
Rectangle

ABSTRACT

The role of requirements analysis in assuring the quality of software products has been well recognized and

writing formal speci�cations has been suggested to be e¤ective in both helping developers understand user�s

requirements and enhancing the quality of the requirements documentation. However, like the other activities

in software development, the construction of formal speci�cations is usually error-prone in practice. Although

many methods have been proposed for error detection, few of them o¤er systematic and practical approaches to

employ the user�s requirements in the detection process. How to e¤ectively detect the defects contained in a formal

speci�cation before it is delivered for implementation is still a challenge.

In this dissertation, we present a novel inspection approach for formal speci�cation veri�cation and validation.

The approach features the combination of a speci�cation animation-based reading technique and a traceability-

based checklist. The animation method adopted is called system functional scenario-based animation method

(SFSBAM) which dynamically presents the operational behaviors of the formal speci�cation by means of �exe-

cuting� corresponding system scenarios. Each system scenario represents an independent operational behavior

and is presented as a sequence of processes. The inspector is guided to read through the formal speci�cation by

following its �execution�and required to check the formal speci�cation items of a speci�c process involved in each

step of the �execution� against the informal speci�cation based on a traceability-based checklist. The informal

speci�cation documents the user�s requirements using a structured natural language and it is the foundation for

building the formal speci�cation. The traceability is presented by the relations between the requirement items

in the informal speci�cation and their corresponding formalizations in the formal speci�cation. In the checklist,

the relations are used to raise speci�c questions to examine formal speci�cation items for keeping the consistency

between the informal and formal speci�cations.

We also present a prototype tool that supports the entire procedure of our speci�cation inspection approach.

Moreover, an experiment has been conducted to evaluate the performance of our inspection approach, and the

results indicate that our approach is more e¤ective than the traditional checklisted-based inspection method.

12

limo
Text Box
11

3. Mo Li and Shaoying Liu, �Adopting Variable Dependency in Animation for Presenting the Behavior of

Process,�Proceedings of 4th International Workshop on SOFL + MSVL, LNCS, Springer, Luxembourg, 6th

Nov. 2014 (to appear).

Others

1. Mo Li and Shaoying Liu, �Using Real Data to Animate SOFL Formal Speci�cations Automatically,�Pro-

ceedings of IPSJ/SIGSE Winter Workshop 2014 in Oarai, 23-24 Jan. 2014, pp. 39-40.

11

limo
Rectangle

limo
Text Box
12

Preface
Nowadays software is deployed in almost all the important systems related to our daily life, such as TV sets,

refrigerators, washing machines, automobiles, trains, and airplanes. The quality of the software is therefore crucial

to the dependability of the systems. The failure of the software may lead to catastrophic disasters. For this

reason, developing reliable software systems has attracted considerable attention from both industry and research

communities.

In the traditional software engineering model, requirements analysis is considered as the �rst phase in the

development process. As a result of the phase, a document called requirements speci�cation is usually constructed,

which describes the expected functionality of the system and de�nes the capabilities of the provided software.

Since the requirements speci�cation will be used as a foundation for the following development phases, its quality

can signi�cantly a¤ect the quality of the �nal software system.

According to IEEE guide to software requirements speci�cations [1], a good requirements speci�cation should be

unambiguous. However, since the traditional requirements speci�cations are usually written in natural languages

(e.g., Japanese, English), the ambiguities cannot be easily removed. To this end, writing formal speci�cations has

been suggested to be an e¤ective way to help developers understand user�s requirements and produce accurate

requirements documentation. Formal speci�cations use mathematically-based formal notations to precisely de�ne

the requirements and therefore remove the ambiguity from the speci�cations. However, like other activities in soft-

ware development, the construction of formal speci�cations is usually error-prone in practice. Therefore, detecting

errors contained in a formal speci�cation before it is delivered for implementation is very important.

Speci�cation veri�cation and validation is the activity to detect defects and eliminate inconsistencies from the

requirements speci�cation for enhancing its quality. On the basis of our study of the literature, we �nd that there

are three main kinds of methods for verifying and validating the formal speci�cations. One is to formally prove

the formal speci�cation. This usually requires that the developer have a strong mathematical background and

high skills in manipulating mathematical formulas. The proof process is also usually complex and time-consuming,

which can hardly be adopted in practice. Another kind of method is to execute the formal speci�cation by

13

either translating it into an executable program or using a �nite state machine to traverse the state space of the

speci�cation. But we should notice that the errors found in the execution can only show the existence of defects

but there is no speci�c instruction to guide the developer to �nd the defects. The third kind of method is to review

the formal speci�cation statically. Using this method, humans are required to read through the speci�cation in

order to discover defects. Unfortunately, lack of e¤ective reading techniques limits the e¤ectiveness of such methods

in detecting errors. Furthermore, few of existing methods provide precise and systematic guidance for utilizing

informal speci�cations in the defect detection process.

In this dissertation, we propose a novel inspection approach for verifying and validating formal speci�cations.

In the approach, an animation method called system functional scenario-based animation method is adopted as

reading technique to guide the inspector to read through the formal speci�cation, and a traceability-based checklist

is utilized to instruct the inspector to examine the consistency between the informal and formal speci�cations. A

supporting tool is developed to support the entire inspection process, and an experiment has been conducted to

evaluate the performance of our inspection approach.

Major contributions of our inspection approach are brie�y introduced below:

1. SFSBAM to support reading in speci�cation inspection

A system functional scenario-based animation method (SFSBAM) is proposed and elaborated. In this

method, all of the possible system functional scenarios are �rst derived from the formal speci�cation. Each

system scenario presents an independent operational behavior de�ned in the speci�cation. In the animation,

each system scenario is dynamically presented in a condition data �ow diagram. In the inspection, inspectors

are guided to read through the formal speci�cation by following the animation process.

2. Traceability-based checklist to support speci�cation inspection

In our inspection approach, a formal speci�cation is constructed based on an informal speci�cation which

documents the user�s requirements by using a structured natural language. The traceability between the two

speci�cations is presented by the relations between the requirement items in the informal speci�cation and

their corresponding formalizations in the formal speci�cation. In order to formally de�ne the relations, we

�rst formally de�ne the categories of requirement items and formal speci�cation items. Then, traceability

14

rules between requirement items and formal speci�cation items are formally de�ned. These relations are

used to raise speci�c questions for each formal speci�cation item for examining the consistency between the

informal and formal speci�cations.

3. A prototype tool to support speci�cations construction and inspection

To support the speci�cation inspection process, a prototype tool is developed. The major interesting

functionality of the tool includes supporting the construction of both informal and formal speci�cations,

automatically deriving all possible system functional scenarios from the formal speci�cation, carrying out

animation as a reading technique to support the speci�cation inspection, and managing all of the related

data �les.

4. An experiment

To evaluate the e¤ectiveness of our inspection approach, an experiment is conducted. In the experiment,

the subjects are required to inspect the same formal speci�cation by using either our inspection approach or

the traditional checklist-based inspection method. The results indicate that our inspection method is more

e¤ective than traditional checklist-based inspection method to help the inspector detect defects contained in

the formal speci�cation. We analyze the reasons that lead to the results and point out our �ndings.

Chapter 1 presents the background and the motivation of our research, including the basic terminologies and

concepts, the weakness of existing methods, our solution and the contributions of our research.

Chapter 2 introduces the SOFL informal and formal speci�cations, which will be used as the target speci�ca-

tions for illustrating the main principles of our research.

Chapter 3 �rst gives an overview of our inspection approach and related techniques, and then introduces the

background of the case study that will be used to explain the methods and techniques in the following chapters.

Chapter 4 explains the detailed techniques of our system functional scenario-based animation method. The

formal de�nition of the system scenario is given and the algorithm used to automatically extract possible system

scenarios is explained. We describe the animation procedure and use examples to illustrate how to carry out the

animation.

15

Chapter 5 describes the traceability between SOFL informal and formal speci�cations. The categories of

requirement items and formal speci�cation items are �rst formally de�ned, and the traceability rules for building

trace links between requirement items and corresponding formal speci�cation speci�cation items are then discussed.

The trace links will be used to construct traceability-based checklist for speci�cation inspection.

Chapter 6 demonstrates how the speci�cation inspection is carried out. We �rst discuss the four aspects

that need to be checked for each formal speci�cation item. Then the structure of a traceability-based checklist is

introduced. We discuss the feedback to the questions on the checklist and use a case study to demonstrate the

entire inspection process.

Chapter 7 elaborates on the prototype tool that supports the inspection for SOFL formal speci�cation. We

explain the design of the tool and introduce its major functions.

Chapter 8 reports an experiment conducted to evaluate the e¤ectiveness of our inspection approach. We �rst

point out the purpose of the experiment, and then introduce the experiment settings. We analyze the experiment

results and make several conclusions based on the analysis. We also present several important �ndings based on

our analysis of the experiment result.

Chapter 9 summarizes the research work related to our approach from three aspects: animation, inspection,

and traceability. The novelty of our inspection approach is illustrated through the comparison with these related

work.

Chapter 10 is the last chapter of this dissertation, which gives the conclusion of the research work presented

in the dissertation and points out the future research directions.

16

Chapter 1

Introduction
Software has become an important part of our modern life style. The smart phone we use to communicate with

others works on software; the personal computer we use to �nish our daily job works on software; the automobile

we use to transfer to di¤erent places is controlled by software. From the international company to single person,

we all bene�t from the e¢ ciency and convenience brought by the usage of software. Since more and more services

rely on software, the failure of software system development may lead to great loses [2]. For those safety-critical

systems, like control system of powerstation, public transportation, etc., software failures cause not only the loss

of money, but also the people�s life [3] [4]. How to develop a reliable software system is considered as a critical

problem in software engineering.

Software engineering is the study of how to develop and maintain a software system in a systematic approach [5].

Many models have been proposed to manage the software development process. One of the well known models is

waterfall model [6], that separates the entire software development life-cycle into �ve phases. As indicated by this

model, the �rst phase in the software development is the requirements analysis phase. The major task of this phase

is to collect and document user�s requirements. It is the most critical phase since it lays the foundation for the

subsequent phases, including design, implementation, testing, and maintenance. The artifact of the requirements

analysis phase is usually a software documentation called requirements speci�cation, which describes the expected

functions of the system and de�nes the capabilities of the provided software [7]. Whether a requirements speci�-

cation is well written can signi�cantly a¤ect the quality of the �nal software system and the success of a software

project [8].

Since the requirements speci�cation will be inherited by the following development phases, any defects in the

speci�cation would lead to an incorrect software product and the failure of the development project. Verner et

17

al. in [9] declared that the failures of 73% projects in their 70 failed projects sample are caused by the lack of

adequate and correct requirements information. An incorrect product or a failure project may cause many losses.

These losses include not only the money, but also the time and the human resources. If the development project

is hosted by a software company, the failure will also damage the company�s reputation. In order to avoid the

failures caused by the incorrect requirements, it is usually cost-e¤ective to remove the errors in the requirements

speci�cation as earlier as possible. The earlier the errors in the speci�cation can be found, the more e¤orts and

costs can be saved in the following development. Glass states that requirements errors are the most expensive

defects to �x during production but the cheapest to �x early in development [10]. Boehm even claimed that it is

possible to save up to 100 : 1 by �nding and �xing requirements problems early rather than late in the development

life-cycle. In addition to the savings, detecting errors in early phase also has signi�cant payo¤s in improving the

reliability, maintainability, and human engineering of the �nal product [11].

Speci�cation veri�cation and validation is the activity to detect errors and remove inconsistencies from the

speci�cation for enhancing its quality [11] [12]. Theoretically, veri�cation and validation are two di¤erent activities

[13]. Veri�cation is to check whether the speci�cation is right, namely complying with some standards or criteria,

and validation is the activity to examine whether the speci�cation satis�es the user�s requirements. However, these

two activities are almost inseparable in practice since a person (analyst, designer, stakeholder, etc.) must use

all his knowledge simultaneously to examine a requirements speci�cation, no matter the knowledge is needed for

validation or needed for veri�cation.

Several techniques have already been proposed in di¤erent literatures for verifying and validating requirements

speci�cations [14] [15] [16]. The frequently used techniques include speci�cation review, interviews, conventional

inspection [17], simulation, animation, formal proof, model checking, and prototyping. Some of these techniques

can be applied to both informal and formal requirements speci�cations, and some can be applied to only formal

requirements speci�cations. By informal requirements speci�cation, we mean the requirements speci�cation writ-

ten in natural languages (like English, Japanese). The techniques can be used to verify and validate informal

speci�cations contain reviews, interviews, inspection, etc. However, the inherent characteristics of the informal

speci�cation restrict the e¤ectiveness and e¢ ciency of the veri�cation and validation techniques from two aspects:

� The ambiguity in the informal speci�cation cannot be easily removed

18

The ambiguity of the informal speci�cation is usually caused by the usage of natural languages. The words

with multiple meanings and the lack of rigorous sentence structures in the natural language may lead to di¤erent

interpretations of the same speci�cation content. Moreover, the readers with di¤erent backgrounds and domain

knowledge may interpret the same speci�cation in di¤erent ways.

Some techniques do exist to reduce the ambiguity in the informal speci�cation. For example, the interview

technique mentioned above requires an interviewer to discuss a speci�cation with the person who write it for

identifying potential blind spots, misunderstandings [11]. The result of an interview is a requirements speci�cation

in which the interviewer and the originator have the same understanding. But, the interview cannot guarantee

other speci�cation users (developer, tester, operator, maintainer) interpret the speci�cation in the same way as the

interviewer and the originator.

� The lack of automated tool support a¤ects the e¢ ciency of veri�cation and validation

Whether automated tool support can be provided a¤ects the e¢ ciency of veri�cation and validation signi�cantly.

The tool support can be either fully automated or partly automated. In order to achieve full automation, two

conditions must be satis�ed. One is that the procedure of veri�cation and validation can be automatically carried

out. And the other is that the necessary information used in veri�cation and validation can be automatically

extracted from the requirements speci�cation. Whether the procedure can be automatically performed depends on

the technique itself. If the procedure of a veri�cation and validation technique cannot be automatically performed,

the support to this technique can only be partly automated. Note that the validation activity is to check whether

the speci�cation satis�es the user�s requirements. Even the technical procedure can be fully automated, the �nal

decision must be made by human.

For example, the speci�cation review requires someone other than the originator, called reviewer, to read

through the speci�cation for identifying potential problems. Since the reviewer usually has di¤erent point of

views, it is possible to �nd blind spots or misconceptions that the speci�cation developer might have made. In

general, the reading process must be done by human and cannot be completed automatically. To e¢ ciently support

the reviewing process, the support tool is expected to automatically provide the information that can help the

reviewer to make judgement. For instance, when reading the description of a speci�c function in the speci�cation,

19

the reviewer need to refer to the related data items or constraints documented in the requirements speci�cation to

help him make decisions. If the supporting tool cannot automatically extract such information, the reviewer has to

read through the speci�cation trying to �nd the related information. This will inevitably reduce the e¢ ciency of the

tool support and the speci�cation review process. Unfortunately, since the informal requirements speci�cations lack

well de�ned format and involve ambiguities for interpretations, automated information extraction from informal

speci�cations is almost impossible.

Comparing to informal speci�cations, formal speci�cations use mathematically-based formal notations to pre-

cisely de�ne the requirements and therefore remove the ambiguity from the speci�cations [18] [19] [20] [21]. How-

ever, since the formal speci�cations construction process for large systems is usually error-prone, veri�cation and

validation are also necessary to enhance its quality. Automated tool support for formal speci�cation veri�cation

and validation becomes possible because of the usage of formal notations. In this dissertation, we focus on the

technique for verifying and validating the formal speci�cation and its support tool.

1.1 Formal Methods and Formal Engineering Methods

Formal requirements speci�cation is constructed during the procedure of applying formal methods to collect

and document user�s requirements. In this section, we �rst introduce the formal methods and related concepts,

then we introduce a more practical formal method called formal engineering method.

1.1.1 Formal Methods

The concept formal method refers to systematic approaches to using mathematical methods for analysis, design,

development, and veri�cation of computer and software systems [22]. Di¤erent formal methods have been proposed

in literatures, such as VDM (Vienna Development Method) [23], Z [24], B-Method [25]. These formal methods

have been used to develop di¤erent systems [26] [27] [28] [29] to enhance the quality of software products.

The core of formal methods is the formal requirements speci�cation written in mathematically-based formal

language. Since the formal language has precise syntax and semantics, the formal speci�cation can precisely de�ne

the functions of the expected system without any ambiguity. The �rst version of formal speci�cation is usually

constructed by formalizing the user�s requirements. The requirements can be collected through the communications

20

User’s
Requirement

Formal
Specification 1

Formal
Specification 2

Formal
Specification n

Program

…

refinement

refinement

refinement

refinement

formalization

verification
and validation

verification
and validation

verification
and validation

verification
and validation

verification
and validation

Figure 1.1: The principle of formal methods

with users. Then, the �rst version of formal speci�cation is evolved through continuous re�nement until the �nal

program is implemented. Figure 1.1 shows the principle of applying formal method to software development.

Before the developer can re�ne the current formal speci�cation into next version, he has to make sure the

speci�cation is correct and all user�s requirements are appropriately formalized. As indicated in Figure 1.1, this

is achieved through veri�cation and validation. Veri�cation is a technique aiming to examine the correctness

and internal consistency of the speci�cation, and validation is a technique to check whether the software system

formalized in the speci�cation satis�es the user�s requirements. Although the e¤ectiveness of validation heavily

relies on human decisions, the ideal veri�cation of formal speci�cations can be rigorous, formal, and fully automated.

Moreover, since the formalism is well established in the formal speci�cation, using tool to automatically support

the validation process becomes possible.

Although the formal methods provide a theoretically e¤ective solution for developing reliable software systems,

the e¤ectiveness of formal methods in realistic systems development is controversial [30] [31] [32]. However, the

latest survey conducted by Woodcock and his colleagues in paper [33] indicates that some industrial groups work-

21

ing in the domain of safety critical systems �nd formal speci�cations useful in helping them obtain su¢ cient

understanding of the envisaged system. While recognizing the useful e¤ect of formalization, we �nd that only

mathematically-based notation is unlikely to be widely used in industrial projects in which most of the practition-

ers do not have a strong mathematical background and their development activities are almost always constrained

by limited budget and time [34]. A more practical formal method, known as Structured Object-oriented Formal

Language (SOFL), has therefore been developed for improvement [35] [36].

1.1.2 Formal Engineering Methods

SOFL is not only a formal speci�cation language, but also a systematic formal approach for software development.

This approach is called formal engineering method to distinguish from the traditional formal methods. The

characteristics of formal engineering methods include the integration of formal speci�cations into the modeling

process, the combination of formal notations with graphical notations, and automated tool support for writing

formal speci�cations and carrying out inspections and testing. [37] [38] [39] [40] [41] [42] [43].

As a formal speci�cation language, SOFL uses a formalized data �ow diagram notation called condition data �ow

diagram (CDFD) to describe the architecture of the system and text-based mechanism called module to formally

de�ne the components of the CDFD, including data �ows, data stores, and processes (or operations in general

term), using a formal notation similar to Vienna Development Method - Speci�cation Language (VDM-SL) [44].

Comparing to the traditional formal speci�cations, like VDM-SL, B-Method, PVS [45], such an architecture-based

approach to constructing formal speci�cations has found to be suitable for abstract design of software systems and

helpful in reducing changes in formal speci�cations [46] [35] [47] [48].

Although the use of the visualized notation CDFD enhances the comprehensibility of SOFL formal speci�cations

for communication, formalizing the user�s requirements directly into the formal speci�cation still faces di¢ culty

at the detailed level because of the complexity of the mathematical expressions used in the module. Therefore,

a three-step approach for constructing formal speci�cations is introduced as part of SOFL [36]. In the three-step

approach, an informal speci�cation written in a structured natural language is �rst constructed. The informal

speci�cation documents the user�s requirements from three aspects: functions, data resources, and constraints.

Then, a semi-formal speci�cation is constructed based on the three aspects of the requirements. In the semi-formal

22

speci�cation, the data resources and constraints are formally de�ned as necessary data structures and invariants,

respectively. The functions in the informal speci�cation are de�ned as processes. The interface of each process

is formally de�ned, but the functionality of the process is described in a natural language. In the last step, the

informal functionality described in the semi-formal speci�cation is formalized for constructing a formal speci�cation.

Unlike the traditional formal methods, the SOFL three-step approach provides a practical and systematic way

for creating formal speci�cations via speci�cation evolution. Since we intend to use the SOFL formal speci�cation

to demonstrate our methodology in this dissertation, a detailed introduction is presented in Chapter 2.

1.2 Specification Verification and Validation Techniques

To construct a good formal speci�cation as a fundamental for implementation, veri�cation and validation must

be performed to enhance the quality of the speci�cation. Several techniques for formal speci�cation veri�cation

and validation have been proposed in literatures. In this section, we summarize some well studied techniques and

point out their weakness.

1.2.1 Formal Proof

Formal proof [46], also called formal veri�cation, is adopted in the traditional formal methods to guarantee the

correctness of formal speci�cations. The basic idea of formal proof is using logical reasoning to prove the consistency

of a formal speci�cation. It provides a fundamental technique for verifying formal speci�cation and is considered

as the most rigorous approach for veri�cation. However, the cost-e¤ectiveness and practicality of formal proof are

controversial [49] [50].

The proof process is usually complex and time-consuming, and in general cannot be fully automated. Since

the modi�cations of requirements and formal speci�cations are almost inevitable in the development process,

revising formal proofs brings additional costs. Therefore, using formal proof for large scale and complex system is

challenging.

The process of formal proof can be supported by theorem provers, such as PVS [45], B-Toolkit [51], and

Z/EVES [52]. But using theorem provers usually requires a high level of expertise. The failure of a proof may

result from the use of inappropriate proof tactics, inference rules, or existence of errors in the consistency properties.

23

This means the failure of a proof cannot indicate the incorrectness of the speci�cation, since it can also be caused

by incorrect proof process. Moreover, the formal proof is perhaps not necessarily as e¤ective as existing techniques

in design and implementation phases. In [49], Hall states that proof is no more a guarantee of correctness than

testing, and in many cases far less of one.

Because of its complexity, time-consuming, and the doubt of its cost-e¤ectiveness, formal proof is rarely used in

industry [33].

1.2.2 Conventional Inspection

Inspection is a static analysis technique used for the veri�cation and validation of software artifacts, which can

be requirements speci�cation, design, or program. The inspection is �rst proposed in IBM by Fagan in [17], and

has been widely used [53] [54] [55] [56] [57] [58]. In an inspection, the target software artifact is �rst distributed

to a team of inspectors that have di¤erent perspectives. The inspectors are asked to read the article based on a

checklist for identifying possible faults. The checklist contains questions specifying the problems and properties

of the target artifact that need to be checked. It serves as a reminder to the inspector to avoid any missing of

major defects. As long as the inspectors �nish reading the article, the leader of the inspection team will schedule

a meeting, called inspection meeting, to gather the team members to discuss their discoveries. The defects that

are found in the meeting are documented for further modi�cation.

Many methods and models have been proposed to enhance administrative aspects of the inspection process [59]

[60] [61] [62] [63], and some tools have been developed. However, whether an inspection can result in a software

artifact with high quality depends on how many potential defects can be found when reading the artifact. In order

to improve the e¤ectiveness of the inspection, many methods have been developed to provide reading techniques

to help inspector read through the speci�cation [17] [64] [65] [66]. But due to the lack of rigorous and precise

de�nition of the reading process, building e¤ective tool support for reading process is generally di¢ cult.

1.2.3 Animation

Animation is developed as a technique for verifying and validating requirements speci�cations. It dynamically

presents the operational behaviors de�ned in the speci�cation to give the end users and the �eld experts with

24

a chance to interact with the speci�cation and observe its functionality [67]. An animation should provide an

intuitive way to the users to monitor the states of a behavior so that they can check whether the speci�cation

re�ects their original expectation.

To perform formal speci�cation animation e¤ectively, some tools have been built to support animation of di¤erent

speci�cation languages, such as SOFL Animator [68], ProB [69], and VDMTools [70]. The operational behaviors

of a speci�cation are presented in di¤erent ways in these tools. For instance, ProB uses a list of invoked functions

to describe the behavior and a �nite state machine to present the states change of a behavior. SOFL Animator

presents the behaviors in Message Sequence Chart (MSC).

In order to dynamically present the de�ned behaviors, most of these tools require either a translation from a

formal speci�cation language to an executable programming language or an interpreter for the executable speci�ca-

tion. In this approach, the speci�cation is executed based on some provided input values, and the user can observe

the execution and analyze the results. However, there are two issues faced by this approach. One is that the

translation or execution of speci�cations may impose many restrictions on the style of the speci�cations, and the

other is that not all of the speci�cations can be executed or translated into an executable programming language.

1.2.4 Model Checking

Model checking is a speci�cation veri�cation technique that can be performed automatically [71]. The idea of

this technique is to explore all possible states of a speci�cation or model to check whether there is any possibility

that the pre-de�ned properties are violated. For example, UPPAAL [72] is a toolkit for building models and

automatically performing model checking. The models in UPPAAL are described by �nite state machines rather

than text-based speci�cations. The states and transitions between states in the state machine are formally de�ned.

The user can set invariants to each state, and set guards and actions to each transition. The invariants describe

the condition that should be satis�ed by the state; the guards restrict the possible state changes by disabling

transitions; and the actions change the value of the variables involved in the state. By using the model checker

provided by UPPAAL, all possible states of a state machine will be checked against relevant invariants.

The well-known weakness of model checking is the state explosion problem, which is caused by the in�nite state

space of the target system [73] [74]. The state explosion problem may be solved by abstraction in functions or

25

restriction on the range of data types. But making the abstraction and restriction requires high-level skills, and

whether the re�ned model can be used as a representative of the original one may not be guaranteed.

1.3 Our Solution: Inspection based on Specification Animation and Traceability

In order to improve the e¤ectiveness and e¢ ciency of formal speci�cation veri�cation and validation, we put

forward a new approach called Inspection based on speci�cation animation and traceability (IBSAT) that utilizes

advantages of the above existing techniques and avoid their weaknesses.

As brie�y introduced in the previous section, the inspection is a static analysis technique. The e¤ectiveness

of an inspection highly depends on whether the potential errors can be e¤ectively found by the inspector during

reading the speci�cation. However, few conventional inspection methods provide detailed reading techniques and

precisely de�ned checklists to guide the inspector reading through and examining the formal speci�cation [75]. In

the IBSAT, a new animation based reading technique and a traceability based checklist are proposed.

The animation method adopted in our inspection approach is called system functional scenario-based animation

method [76]. Comparing to other existing animation methods, this method does not need the translation from

formal speci�cation languages to programming languages. The operational behaviors in our animation method are

presented as system functional scenarios (or system scenarios for short) rather than the execution paths. A system

scenario in SOFL formal speci�cation can be formally de�ned as a sequence of processes or graphically presented

as a data �ow path in the CDFD. To dynamically demonstrate an operational behavior, every process involved

in a system scenario is demonstrated in turn to the inspector. Such step-by-step style can guide the inspector

read through the formal speci�cation in a systematic way. The animation performed on the CDFD also provides

inspector with an intuitive way for understanding how each part of the formal speci�cation works together. See

Chapter 4 for details.

The checklist in our inspection approach is built on the basis of the traceability of speci�cations [77] [78]. The

traceability can be either internal or external. By internal traceability, we mean the traceability exists within

the same level speci�cation. For example, the internal traceability of informal speci�cation describes the relations

between di¤erent items de�ned in the informal speci�cation. In contrast with internal traceability, the external

traceability is the traceability between the speci�cations belonging to di¤erent levels. For instance, the traceability

26

between informal and formal speci�cations is external traceability. It represents the relations between the informal

speci�cation items and formal speci�cation items. In order to avoid unnecessary ambiguity, the term traceability

used in the rest of this dissertation refers to the external traceability.

The traceability is utilized for building checklist because of: 1) using the informal speci�cation as a representative

of user�s requirements to help the inspector to validate the formal speci�cation; 2) using the informal speci�cation

as a reference to help the inspector to verify the formal speci�cation. The questions on the checklist are designed

to examine the formal speci�cation from four aspects: necessity, appropriateness, correctness, and completeness.

These questions guide the inspector to check the correctness of the formal speci�cation and the consistency between

the informal and formal speci�cations. See Chapter 6 for details.

Unlike the conventional inspection, the reading process and checklist are formally de�ned in our inspection

approach. Therefore, using a tool to automatically support the inspection process becomes possible. Along with the

proposed inspection approach, we provide a prototype software tool to support the entire process of speci�cations

construction [79], animation [80], and inspection. In addition, this tool also provides a �exible framework to

integrate other techniques through a set of well de�ned interfaces. Some works of other researchers have already

been integrated into it.

The major contributions we make in this dissertation are summarized as follows:

1. SFSBAM to support reading in speci�cation inspection

A system functional scenario-based animation method (SFSBAM) is proposed and elaborated. By this

method, all of the possible system functional scenarios are �rst automatically derived from a CDFD and

animation for each of the derived system scenario is then carried out as a reading technique to aid a thorough

inspection of its consistency and validity. A system functional scenario is a data �ow path in the CDFD

that de�nes an independent relationship between the input and output of the CDFD through the formal

speci�cations of the processes involved in the path, see details in Chapter 3.1.1 and Chapter 4.

2. Traceability-based checklist to support speci�cation inspection

A set of traceability rules between inspection targets and requirement items are formally de�ned. The

de�nition of traceability rules include the formal de�nition of user�s requirements in the informal speci�cation

27

and the formal de�nition of inspection targets in the formal speci�cation. Based on the formally de�ned

traceability rules, a traceability-based checklist is proposed. The questions on the checklist are designed to

check the formal speci�cation from four aspects. Several properties are proposed to restrict the contents of

formal speci�cation and its relation with informal speci�cation. Moreover, a dependence chain are proposed

to guide the inspector check all related inspection targets. See details in Chapter 5 and 6.

3. A prototype tool to support speci�cations construction and inspection

A prototype software tool is developed to support both the construction of formal speci�cations and

the inspection of speci�cations. The major interesting functionality of the tool includes supporting the

construction of both CDFDs and modules, automatically maintaining the structural consistency between

the CDFD and the module, decomposing high level processes, automatically deriving all possible system

functional scenarios from a designated CDFD, carrying out animation as a reading technique to support the

inspection of the consistency and validity of each system scenario, and managing all of the related data �les.

See details in Chapter 7.

4. An experiment to evaluate the performance of our inspection approach

An experiment is conducted to evaluate the performance of our proposed inspection method. In the experi-

ment, the subjects are divided into di¤erent groups based on their experience in SOFL formal speci�cations.

All the groups are required to inspect the same formal speci�cation but use di¤erent inspection methods.

We compare our inspection method with the traditional checklist-based inspection method, and the results

indicate that our inspection method is more e¤ective to help the inspector to detect defects contained in the

formal speci�cation. We analyze the reasons that lead to the results and point out our �ndings. See details

in Chapter 8.

Note that the principles of the proposed approach in this dissertation are not only applicable to the SOFL

speci�cation language, but also to other model-based formal speci�cation languages, such as the well known VDM-

SL and B-Method because they use similar formal notations and mechanism for constructing formal speci�cations.

We choose SOFL as the target formal technique for discussion in this dissertation partly because it has been

recognized as a practical technique by academics and practitioners [47] [81] [82] [83] and partly because it shares

28

many commonalities with existing model-based formal notations as mentioned previously. Thus, the proposed

approach can be easily learned and applied by academics and practitioners even with the background of other

existing formal methods.

1.4 Summary

In this Chapter, we �rst discussed why requirements speci�cation is so important to ensuring the quality of the

software product. We also discussed the major challenges of informal speci�cation veri�cation and validation, and

then brie�y introduced formal methods and formal engineering methods, and discussed some well studied formal

speci�cation veri�cation and validation techniques. Finally, we proposed a novel inspection approach based on

speci�cation animation and speci�cations traceability.

In the next Chapter, we will introduce the structure of SOFL informal and formal speci�cations which will be

used to demonstrate our inspection approach.

29

Chapter 2

Brief Introduction of Structured Object-

oriented Formal Language

In our inspection method, the formal speci�cation is veri�ed and validated against the informal speci�cation

based on the traceability between the two speci�cations. The construction of traceability between speci�cations

is critically a¤ected by the structure of the speci�cations. In this chapter, we brie�y introduce the fundamental

principle of the SOFL formal engineering methods and the structure of SOFL informal and formal speci�cations,

which will be used as target speci�cations in our approach. For more details of the SOFL, the reader can refer to

the SOFL book [36] and other related work [81] [82] [83] [84] [85].

SOFL stands for Structured Object-oriented Formal Language and was �rst proposed in Liu�s paper [86]. It is

not only a formal language, but also a software modelling approach. It is designed to bridge the formal methods and

their applications in real software development. Comparing to other formal methods, the SOFL formal engineering

method provides both a comprehensible formal language and a practical three-step method for constructing formal

speci�cations.

As a formal engineering method, SOFL provides rigorous but practical techniques to build formal speci�cation

of software system in a three-step evolutionary manner. In this three-step modelling approach, three kinds of

speci�cations with di¤erent level of formalization are constructed, namely the informal, semi-formal, and formal

speci�cations.

The informal speci�cation is �rst constructed in a development process. The major task of building informal

speci�cation is to discover and collect all desired requirements from the end user. Informal speci�cations can

30

generally be speci�ed in any style as long as it can be used to communicate with the user easily. In SOFL modeling

approach, it is speci�ed in a structured natural language containing functions, data resources, and constraints

The semi-formal speci�cation is re�ned from the informal speci�cation. It is a more accurate and better

structured speci�cation to enhance communications between the user and the designer and to help the designer

clarify ambiguities in the informal speci�cation. All the requirements in the informal speci�cations are encapsulated

into system modules in the semi-formal speci�cation. The desired functions in each system module are de�ned

as SOFL processes. In the semi-formal speci�cation, not everything is fully formalized. The data structures

and interface of processes are formally de�ned, but the functionality of each process is informally de�ned using

structured natural languages. Since the semi-formal speci�cation is used to communicate with the end user to

clarify the software system, de�ning the functionality of the system using informal language is reasonable. The

formally de�ned data structures and informally de�ned functionality are adopted as basis to construct formal

speci�cation.

The formal speci�cation re�nes the semi-formal speci�cation according to the feedbacks from the end user and

formalizes the informal parts of the semi-formal speci�cation. The expected function of each SOFL process is

formally de�ned by mathematically-based notations in a manner of pre- and post-conditions. It is intended to

precisely and accurately de�ne the functionality and architecture of the software system.

Since the traceability used in our inspection method is constructed between SOFL informal and formal speci�-

cations, we introduce the structure of these two kinds of speci�cations as follows.

2.1 Informal Specification

As shown in Figure 2.1, three sections of requirements must be documented in the informal speci�cation. The

�rst section, �Functions�, is a collection of desired functions. Each function describes an expected behavior to be

implemented in the system under development. A function can be decomposed into several low level functions and

all functions are presented hierarchically. Each function in the informal speci�cation is assigned with an unique

identi�er which consists of a capital character �F� and the number in front of the function. For example, the

�rst function in the informal speci�cation shown in Figure 2.1 is �Withdraw�, and its identi�er is �F1.1�. We

will use this identi�er to indicate the function �Withdraw�in the rest of this dissertation. The identi�ers of other

31

requirement items in the informal speci�cation have the same structure.

Another section in the informal speci�cation is the �Data Resources�, which works like database to supply

necessary data to the functions listed in the �Functions�section. The data items listed under �Data Resource�

can be accessed or updated by more than one function. The identi�ers of the functions that have the potential

to access a speci�c data resource are listed in a pair of brackets after the description of the data resource. For

instance, the only data resource D2.1 will be accessed or updated by function F1.1.2, F1.1.4, F1.2.2, and F1.2.3

as shown in Figure 2.1.

The third section of informal speci�cation is �Constraints�. It describes a collection of constraints either on

the captured functions or the data resources. A constraint shows a restriction condition that usually prevents

the system from providing unnecessary functions; it can be used to document nonfunctional requirements, such

as business policy, safety, or security. The identi�ers of the functions or data resources that have to comply with

a speci�c constraint are listed after the description of the constraint. For example, the function F1.1.3 is listed

after constraint C3.4, that means the functionality described in F1.1.3 must comply with the C3.4. Namely, the

�Receive withdraw amount�function should not accept a withdraw amount that is lager than 10,000.

2.2 Formal Specification

A SOFL formal speci�cation consists of a hierarchy of CDFDs and the associated hierarchy of modules. Each

module in a SOFL speci�cation is a structure, which contains necessary constant declarations, type declarations,

state variable declarations, invariant de�nitions, and a collection of process speci�cations. For example, one module

named �SYSTEM_ATM�is shown in Figure 2.2 and its associated CDFD is displayed in Figure 2.3. This module

contains one type declaration, one state variable, three invariants, and four processes.

Theoretically, each desired function in the informal speci�cation is realized by a process speci�cation; each data

resource is represented by a state variable with a corresponding type declaration; and each constraint is mapped to

either part of a process speci�cation or to an invariant, which is a property that must be sustained by all related

processes throughout the entire speci�cation. Each process in a module of SOFL formal speci�cation presents an

independent operation that produces output data based on the input data it receives. It can access and update

the data of state variables de�ned in the same module, which usually realize the data resources described in the

32

1 Functions
1.1 Withdraw

1.1.1 Receive command
1.1.2 Check password
1.1.3 Receive withdraw amount
1.1.4 Pay cash

1.2 Check balance
1.2.1 Receive command
1.2.2 Check password
1.2.3 Show balance

2 Data Resources
2.1 Bank account database (F1.1.2, F1.1.4, F1.2.2, F1.2.3)

3 Constraints
3.1 Only two commands can be received “withdraw” and

“showbalance”(F1.1.1, F1.2.1)
3.2 ID No. of each account should be 4 digital number (F1.1.2,

F1.2.2, D2.1)
3.3 Password of each account should be 4 digital number (F1.1.2,

F1.2.2, D2.1)
3.4 Maximum amount of withdraw is 10,000 (F1.1.3)

Figure 2.1: The informal speci�cation of a simpli�ed ATM software

informal speci�cation.

For each module, there is a corresponding formal graphical notation called Condition Data Flow Diagram

(CDFD). The CDFD uses visual notation to intuitively and comprehensibly express the structure of a module,

namely the relationships between di¤erent processes contained in the module. A process in a CDFD is represented

by a rectangle box with its name in the center. Di¤erent processes are connected by data �ows to present the

potential functions of a formal module. In addition to the data �ows, a process can access to the data in a data

store. A data store is the graphical representation of a state variable declared in the associate module. The

relation between a process and a data store in a CDFD is consistent with the relation between the process and the

corresponding state variable in the associated module.

The CDFD is both a formal and intuitive notation suitable for describing system structure. Figure 2.3 shows the

associated CDFD of the module displayed in Figure 2.2, four processes �Receive_Command�, �Check_Password�,

�Withdraw�, �Show_Balance�, and a data store �Account_�le�are included.

As shown in Figure 2.2, a process in SOFL formal speci�cation consists of �ve parts: name, input variable list,

33

module SYSTEM_ATM;

type
Account = composed of

id: string
name: string
password: string
balance: real
available_amount: real
end;

var
ext #Account_file: set of Account;

inv
forall[a: Account] | len(a.id) = 4;
forall[a: Account] | len(a.password) = 4;
forall[a, b: Account] | a <> b a.id <> b.id;

process Receive_Command(withdraw_comm: string | balance_comm: string)
sel: bool

pre true
post withdraw_comm = “withdraw” and sel = true

or
balance_comm = “balance” and sel = false

end_process;

process Check_Password(id: string, sel: bool, pass: string)
acc1: Account | err1: string | acc2: Account

ext rd #Account_file
pre true
post (exists![x: Account_file] | ((x.id = id and x.password = pass) and

(sel = true and acc1 = x or sel = false and acc2 = x)))
or
not(exists![x: Account_file] | (x.id = id and x.password = pass)) and

err1 = "Reenter your password or insert the correct card"
end_process

process Withdraw(amount: nat0, acc1: Account) cash: nat0 | err2: string
pre...
post...
end_process

process Show_Balance(acc2: Account) balance: nat0
pre...
post...
end_process
end_module

Figure 2.2: The formal speci�cation of module �SYSTEM_ATM�

34

Receive_command Check_Password

Withdraw

Show_Balance

balance_comm

withdraw_comm

sel

id

pass

err1

acc1

acc2

amount cash

err2

balance

Account_file

Figure 2.3: The CDFD of a simpli�ed ATM software

output variable list, pre-condition and post-condition. The name of a process is an identi�er. The input variable

declarations are put in parenthesis. In some process, the input variable list is divided by vertical bars into several

input ports. Each input port contains some input variables and is exclusive to each other. For example, the process

�Receive_Command�in Figure 2.2 contains two input variables �withdraw_comm�and �balance_comm�. These

two input variables being separated by a vertical bar indicates that the process �Receive_Command� cannot

receive them in the same time. The process can receive either input variable �withdraw_comm�or input variable

�balance_comm�. The input variable list is followed by the output variable list. It is de�ned in the same manner

as input variable list. The vertical bars can divide the output variable list into output ports.

The pre- and post-conditions formally de�ne the semantics of the process using mathematically-based notations.

The semantics of a process is interpreted as follows: when one of the input ports of the process is activited, which

means that the values of the input variables included in the activited port satisfy the pre-condition, the process

will be executed. As a result of the execution, one of the output ports is made avaliable, which means that the

values of its output variables satisfying the post-condition are produced based on the input values.

In the CDFD, the input and output ports of a process is denoted by the narrow rectangles on the left and right

side of a process, respectively. They are used to receive and send out input and output data �ows, which are the

35

counterparts of input and output variables in the CDFD. When one of the input ports of a process receives all the

necessary input data �ows, the process can be activated and executed to produce corresponding output data �ows.

In the SOFL formal speci�cation, the processes contained in the same module can contact with each other via

input and output variables. A process can also be decomposed into a lower level module, which contains a group of

lower level processes. This decomposition can be continued until the designer considers that the process no longer

needs to be decomposed. Generally, the type declarations, state variable declarations, and invariant de�nitions

are used inside the module that de�nes them. But, if a process is decomposed into a new lower level module, the

types, state variables, and invariants speci�ed in the module containing the process can be used directly in the

new lower level module.

2.3 Summary

In this Chapter, we brie�y introduced the structure of SOFL informal and formal speci�cations. In the next

Chapter, we will give an overview of our inspection approach, and the background of the example used in this

dissertation will also be introduced.

36

Chapter 3

Overview of the Inspection Based on Spec-

i�cation Animation and Traceability

In this chapter, we �rst introduce the overview of the IBSAT (Inspection Based on Speci�cation Animation

and T raceability) based on the SOFL informal and formal speci�cations. Then, the background of the example

used in this dissertation for demonstrating our inspection approach will be introduced.

3.1 The Outline of IBSAT

The inspection approach proposed in this dissertation consists of two parts: an animation-based reading tech-

nique and a traceability-based checklist. The reading technique provides a systematic procedure to guide the

inspector reading through the formal speci�cation without missing any important contents, and the traceability-

based questions remind the inspector what should be checked. In this section, we brie�y introduce these parts as

follows.

3.1.1 System Functional Scenario-based Speci�cation Animation

The reading technique plays an important role in an inspection method. Inspection of formal speci�cations is a

static analysis technique and it usually requires the inspector to read through the speci�cation for error detection.

An e¤ective reading technique can guide the inspector to read the speci�cation in a systematic manner. It helps

the inspector understand the speci�cation and inspect all contents concerned. In our inspection method, we adopt

formal speci�cation animation as a reading technique. By speci�cation animation we mean a dynamic visualized

demonstration of the system behaviors de�ned in the speci�cation by means of showing the relation between the

37

input and output of the system. To ensure that the animation can e¤ectively and e¢ ciently assist the user and

the designer to validate the speci�cation against the corresponding informal requirements, utilizing speci�cation

animation as a reading technique to facilitate inspection of the speci�cation has found to be bene�cial (see Chapter

8).

The animation approach used in the inspection method is called system functional scenarios-based animation

method (SFSBAM), as mentioned before. The �rst step of an animation is to derive all possible system functional

scenarios. Each system functional scenario is intended to describe an individual behavior of the system in terms

of the input and output relation, which is similar to a use case in the UML use case diagram [87]. In SOFL formal

speci�cation, a system scenario can be formally de�ned as a sequence of processes and graphically presented as a

data �ow path in the CDFD. The second step of the animation is to select an appropriate test case (or animation

case) and an expected output for animation. The selection process can be either manual or automatic. Usually, the

animation case generated automatically cannot present the most concerns of users. The third step in the animation

is to use the selected test case and expected output to �execute�the system scenario by �executing�every process

involved in the system scenario in turn.

There are two major advantages by adopting system scenario-based animation as a reading technique. The

�rst advantage is that the animation can help the inspector understand the formal speci�cation. Firstly, the

animation is performed on the CDFD to provide inspector with an intuitive way for understanding how all of the

parts of the formal speci�cation work together. Secondly, the selected test cases represent the states of system

behaviors. The inspector can observe the behaviors by monitoring the states to understand the functionality of

the formal speci�cation. The other advantage is that animation can guide the inspector to check all important

formal speci�cation items. Since the system scenarios represent system behaviors, all related formal speci�cation

items will be �nally integrated together to perform system scenarios. By inspecting system scenarios, all related

formal speci�cation items will be inspected correspondingly.

Speci�cally, in each step of an animation, a speci�c process is �executed�during which the inspector is guided

by a checklist to read and examine the speci�cation of the process. All the contents of the process speci�cation,

including its name, input variables, output variables, pre- and post-conditions, are examined. In the meantime,

other formal speci�cation items related to the process (such as type declarations, invariants, etc.) are also inspected.

38

By inspecting the possible system scenarios, all formal speci�cation items that contribute to the functionality of

system de�ned in the speci�cation are checked. For other formal speci�cation items that have not been inspected,

the inspector should consider whether they are de�ned incorrectly or their formalization is unnecessary.

The details of the system scenario-based animation method is introduced in Chapter 4 and how to use animation

as reading technique to carry out an inspection is demonstrated in Chapter 6.

3.1.2 Traceability-based Checklist

In an inspection, the inspector veri�es and validates the formal speci�cation by answering the well prepared

questions on a checklist. In order to help performing an e¢ cient inspection, two problems must be addressed. One

is what to ask, and the other is what kind of information should be provided to support the inspector to answer the

questions. To address the �rst problem, we form questions for the checklist by taking the following four important

aspects of the formal speci�cation into account: necessity, appropriateness, correctness, and completeness. Several

questions are prepared for each aspect, and these must be answered to ensure that the user�s requirements are

properly formalized in the formal speci�cation.

To handle the second problem, we use the traceability between informal and formal speci�cations to provide

necessary information to help the inspector answer the questions. The traceability presents the connection between

the two speci�cations. When answering the questions about a speci�c formal speci�cation item, the inspector can

trace back to the original requirement of this item by using the traceability, and the requirement can help the

inspector to make better judgements to answer the questions.

The traceability between informal and formal speci�cations is constructed based on some traceability rules.

In order to formally de�ne the traceability rules, we �rst formally de�ne the informal speci�cation as a group

of requirement items and the formal speci�cation as a group of inspection targets. An inspection target is an

independent unit in the formal speci�cation that needs to be inspected. It may contain one or more formal

speci�cation items. The traceability rules describe how a trace link can be constructed between an inspection

target and a requirement item, which is the original requirement of the inspection target.

The requirement items can be either explicit or implicit. The explicit requirement items are the requirements

that are explicitly de�ned in the informal speci�cation, including functions, data resources, and constraints. The

39

implicit requirement items are described by the relation between di¤erent explicit requirement items. Although

the implicit requirements are not de�ned explicitly in the informal speci�cation, they still need to be treated as

user�s requirements and formalized in the formal speci�cation.

Similarly, the inspection targets are also divided into explicit and implicit targets. The explicit inspection

targets are the formal speci�cation items that explicitly de�ned in the speci�cation, containing type declarations,

state variable declarations, invariants, processes, etc. An implicit inspection target of formal speci�cation is the

relation between two di¤erent explicit inspection targets. For example, a variable must be declared with a type,

the relation between variable and its type is considered as an inspection target and should be inspected.

When an inspection target is under inspected, the inspector needs answer the questions prepared for the current

inspection target. The trace link guides the inspector to �nd the original requirement of the inspection target. The

original requirement provides necessary information to the inspector to answer the related questions. However,

before the trace links can be used to trace the inspection targets back to their original requirements, the links

have to be constructed �rst. In our approach, the trace links are constructed manually. The construction process

will force the inspector to uncover the essence of the inspection target and help the inspector understand the

corresponding formal speci�cation items. As long as the trace links are built, the linked requirement items will

serve as background to help the inspector answer other questions on the checklist.

3.1.3 Formal Speci�cation Inspection

To inspect a formal speci�cation, the inspector reads through the formal speci�cation by following the system

scenario-based animation process. In each step of the animation, one speci�c process in a SOFL module is �exe-

cuted�. The inspector should check all the formal speci�cation items that are involved in the �execution�of the

process. The involved formal speci�cation items and their relations are formalized as inspection targets in our

inspection method and inspected against the informal speci�cation. The traceability-based checklist reminds the

inspector what to check about an inspection target and where to �nd necessary information. By answering the

questions on the checklist, the inspector veri�es and validates the formal speci�cation on the basis of his experience

and skills.

Figure 3.1 illustrates the inspection process. The CDFD shown in Figure 3.1 presents a system functional

40

P

Formal Specification Informal Specification

Variable 1

Variable 2

……

Function 1

Function 2

……

process A

……

process P

Data Resource 1

Data Resource 2

……
Inspection Target

(IT1)

Requirement Item (RQ1)

Requirement Item (RQ2)

Trace Link 1

Trace Link 2

Checklist for process P

Q1. Whether IT1 formalizes RQ1

Q2. Whether IT2 formalizes RQ2

Inspection Target
(IT2)

Q3. ………

Q4. ………

Figure 3.1: The relations among basic concepts of our inspection approach

scenario and the data �ows indicate the �execution� order of the processes involved in the system functional

scenario. The inspector checks each process in turn by following the �execution�order. As shown in Figure 3.1,

the second process �P� in the system functional scenario is under inspection. A traceability-based checklist is

provided to the inspector for examining the process.

The questions on the checklist are raised based on the trace links between inspection targets and requirement

items. As shown in Figure 3.1, the inspection targets are the items de�ned in the formal speci�cation and the

requirement items are the items described in the informal speci�cation. The trace links are the bridges that connect

related inspection targets and requirement items.

To inspect the process �P�, all the inspection targets that are related to process �P�need to be checked. The

41

questions on the checklist are formed to instruct the inspector to examine each inspection target. To raise speci�c

questions, both the inspection targets and associated requirement items are used for questions construction. For

example, the inspection target �IT1�in Figure 3.1 is the process speci�cation of �P�. The trace link �Trace Link

1�connect the �IT1�with the requirement item �RQ1�, which is a function described in the informal speci�cation.

To inspect �IT1�, requirement item �RQ1�is used for constructing question �Q1�on the checklist. The question

asks �Whether IT1 formalizes RQ1?�. Similarly, the inspection target �IT2�and requirement �RQ2�, which are

connected by �Trace Link 2�, are used to form the second question on the checklist.

In order to facilitate the inspector to do the inspection, a support tool is developed. This tool can support

the entire process displayed in Figure 3.1 including constructing informal and formal speci�cations, decomposing

formal speci�cation into system scenarios, animating system scenarios, and constructing checklist. The inspector

can focus on answering the questions and making judgements. The details of this support tool can be found in

Chapter 7.

3.2 Background of the Case Study

Before explain the details of our animation-based inspection method, we �rst brie�y introduce an example. This

example will be used to demonstrate the concepts and technique details in the following chapters.

The example we use is a simpli�ed ATM system. The system contains only two major functions: withdraw and

show balance. The description of these two functions is as follows:

� Withdraw

The ATM system should �rst receive the �withdraw�command. Then, the user should be asked to provide

the ID and password of his bank account. If the provided bank account exists in bank�s database and the

provide ID and password match each other, the user can withdraw money from his or her bank account.

However, the amount that can be withdrawn cannot be more than the balance of provided bank account.

Meanwhile, the bank requires that the amount that can be withdrawn cannot be more than 10,000 JPY each

time. If the user provides an amount that cannot be withdrawn, an error message should be displayed.

� Show balance

42

The ATM system should �rst receive the �show balance� command. Then, the user should be asked to

provide the ID and password of his bank account. If the provided bank account exists in bank�s database

and the provide ID and password match each other, the user can check the balance of the provided bank

account, and the balance will be displayed.

The informal and formal speci�cations of this simpli�ed ATM system are shown in Figure 2.1 and Figure 2.2,

respectively. The corresponding CDFD is shown in Figure 2.3. In the informal speci�cation, the two major

functions are decomposed into several sub-functions. For example, the �withdraw�function consists of four sub-

functions: �Receive command�, �Check password�, �Receive withdraw amount�, and �Pay cash�. The only data

resource �Bank account database� record all the bank accounts information. Four constraints restrict both the

functions and data resource.

The formal speci�cation contains four processes that formalize the functions in the informal speci�cation. Note

that the formal speci�cation is not simple formalization of the informal speci�cation. It contains developers�

design of the software system. The developer may combine di¤erent functions in the informal speci�cation into

one process or decompose a function into several processes. The corresponding CDFD depicts the relations of

these four processes. In addition to the processes, the formal speci�cation includes one type declaration, one state

variable declaration, and three invariants. All these formal speci�cation items will be inspected for veri�cation and

validation.

This simpli�ed ATM system is designed for demonstration purpose only. Although it is not a comprehensive

system, it is enough for illustrating our approach. A more rigorous evaluation of our inspection approach can be

found in Chapter 8.

3.3 Summary

In this Chapter, we explained the outline of our inspection approach and brie�y introduced the relevant tech-

niques and concepts underlying the inspection approach. The example used in this dissertation to demonstrate

our inspection approach was also introduced. Starting from the next Chapter, we will explain the details of our

inspection approach. Each technique will be illustrated in turn. The technique introduced in the next Chapter is

the system functional scenario-based animation method.

43

Chapter 4

Formal Speci�cation Animation

Similar to other animation methods introduced in Chapter 1, our system functional scenario-based animation

method can be adopted independently to validate formal speci�cations. Moreover, this animation method can be

adopted as a reading technique to support formal speci�cation inspection. In this chapter, we explain our system

functional scenario-based animation method in detail.

As introduced previously, a formal speci�cation is �rst decomposed into a group of exclusive system functional

scenarios in our animation method. In order to further explain the details of this animation method, we �rst

formally de�ne system functional scenarios. The following de�nition indicates how a system scenario is expressed.

De�nition 1 A system functional scenario, or system scenario for short, of a CDFD is a data �ow path denoted

by the corresponding sequence of processes, di[P1; P2; :::; Pn]do, where di is the set of input variables of the scenario,

do is the set of output variables, and each Pi (i 2 f1; 2; :::; ng) is a process, P1 and Pn being the staring process

and the terminating process, respectively, where a starting process must only be activated by its one-end open input

data �ows and a terminating process must only produce one-end open output data �ows.

The system scenario di[P1; P2; :::; Pn]do de�nes an independent behavior that transforms input data item di into

the output data item do through a sequential execution of processes P1; P2; :::; Pn. Such a scenario can be perceived

as a use case from the user�s point of view, de�ning one pattern of using the system. For instance, from the formal

speci�cation and corresponding CDFD of a simpli�ed Automated Teller Machine (ATM) in Figure 2.2 and Figure

2.3, the following �ve system scenarios can be derived:

� {withdraw_comm}[Receive_Command, Check_Password, Withdraw]{cash}

� {withdraw_comm}[Receive_Command, Check_Password, Withdraw]{err2}

44

� {withdraw_comm}[Receive_Command, Check_Password]{err1}

� {balance}[Receive_Command, Check_Password]{err1}

� {balance}[Receive_Command, Check_Password, Show_Balance]{balance}

For simplicity, we omit all of the intermediate data �ows, such as �id�, �pass�, �acc1�, �acc2�, and �amount�.

The �rst scenario shows that given the input �withdraw_comm�, the three processes, which are �Receive_Command�,

�Check_Password�, and �Withdraw�, are executed in turn. As a result, the output �cash�is produced. The other

system scenarios can be interpreted similarly.

In order to animate the entire formal speci�cation, we require that each system scenario be animated. A system

scenario is animated by means of �executing�each process involved in the scenario in turn. The �execution�of a

process is presented by its input and output data, which can be collected from the user or generated automatically.

In the rest of this chapter, we �rst introduce how to derive all possible system functional scenarios automatically,

and then illustrate how to collect appropriate data and animate a system scenario.

4.1 CDFD Decomposition

The �rst step of our animation approach is to derive all possible system scenarios. Since each system scenario

is expressed as a sequence of processes, deriving all possible system scenarios can be realized as �nding all possible

sequences of processes. As introduced in Chapter 2, the CDFD is designed to graphically describe the architecture

of the module and the connection of processes, therefore, our animation method derives system scenarios from the

CDFD.

In order to automatically generate all possible scenarios based on the topology of CDFD, the CDFD has to

be decomposed �rst. Since the topology of CDFD is composed of data �ows (edges) and processes (nodes),

the decomposition of CDFD can be realized by decomposing every process in the CDFD. The processes must

be decomposed because their semantics is much more complex than the semantics of nodes in a normal graph.

The semantics of processes must be considered in the derivation of system scenarios. Figure 4.1 illustrates the

decomposition of a single process and explains the reason that it must be decomposed.

In SOFL formal speci�cation, each process may have more than one input port and the input ports are exclusive

45

Process

P_i_1 P_o_1

P_i_2 P_o_2

Figure 4.1: The decomposition of a single process

to each other. This means in each time of execution of a process, only one of the input ports of the process can be

activated. Similarly, only one of the output ports of the process can be activated in each time. For example, the

process in Figure 4.1 has two input ports and two output ports. Theoretically, there are four possible combinations

between these ports. However, in each time, only one of the combination is valid. By valid combination, we mean

the combination that connects both the activated input and output ports of the process. In order to explicitly

present all possible combinations between the input ports and output ports, a process is decomposed as shown in

Figure 4.1.

In the original CDFD, the port list on the left side of a process is input port list, in which each input port is

ordered from top to bottom, we use a number to label each port. The output ports of a process are labelled in

the same way. In the decomposed graph, each node represents one port of the process, either an input port or an

output port.

Each node in the decomposed graph has a name, consisting of three parts: the �rst character of the process�s

name, the identi�cation of input or output port, and the port number. For example, the node named �P_i_1�

indicates that it represents the �rst input port of process �Process�. Di¤erent nodes are connected by two kinds of

46

edges, solid edges and dotted edges. The solid edges represent the data �ows in the original CDFD and the dotted

edge represents the mapping relationship inside the process. Like the data �ows connecting two di¤erent processes

in CDFD, the solid edges connect one input port node and one output port node that belong to di¤erent processes.

Contrasts to the solid edges, the dotted edges connect the input port nodes and output port nodes that are in the

same process. In practice, only one dotted edge in each process can be valid each time. It means in each time, a

process receives data from the input port node and sends data from the output port node that are connected by

the valid dotted edge.

To decompose an entire CDFD, every process in the CDFD should be decomposed in the same way as shown

in Figure 4.1. Let us use the CDFD of simpli�ed ATM, as shown in Figure 2.3, as a small example to illustrate

how to decompose a CDFD. For the sake of duplication, we merely focus on the decomposition of process �Re-

ceive_Command�. This process has two input ports and one output port. Each of the two input ports receives

one data �ow from outside, and the output port sends out a data �ow to process �Check_Password�. Therefore,

there are three nodes in the decomposed graph representing these three ports, and three solid edges corresponding

to the data �ows. Two of the solid edges represent the data �ows received from outside. The other solid edge

represents the data �ow which is sent out, it connects the output port node and the node denoting the input port

of �Check_Password� . In addition to the nodes and solid edges, there are two dotted edges in graph explicitly

present the relation inside the process �Receive_Command�.

The remaining processes in the CDFD will be decomposed in the same way. Figure 4.2 shows the decomposed

graph, where the solid edges are utilized to express the valid dotted edges. The system scenario expressed in

the context of Figure 4.2 is {withdraw_comm}[Receive_Command, Check_Password, Withdraw]{cash}. In our

approach, we use notation �Pab�in system scenarios to represent a process with speci�c input and output ports that

involved in the system scenario. The notation consists of two parts: �P�represents the name of the process, and

�a�and �b�are both integers that denote the number of the input and output port involved, respectively. When

notation �Withdraw 11�appears in a system scenario, it means that the dotted edge connecting node �W_i_1�

and �W_o_1�is valid.

The activity of deriving all possible scenarios in CDFD can be completely converted into �nding all possible

paths in the corresponding graph. For each process, one and only one dotted edge must be valid each time. It

47

RC_i_1 RC_i_2

RC_o_1

CP_i_1

CP_o_1 CP_o_2 CP_o_3

W_i_1

W_o_2W_o_1

S_i_1

withdraw_comm balance_comm

sel

acc1 err1 acc2

cash err2 balance

S_o_1

Figure 4.2: The decomposition of the CDFD of the simpli�ed ATM

48

presents a speci�c combination of the input port and the output port. All possible system scenarios can be derived

by making each dotted edge in a process valid in turn. An algorithm has been developed to automatically �nd all

possible system scenarios. It is introduced in the next section.

4.2 Extracting System Scenarios

As mentioned previously, a system functional scenario of a CDFD is a data �ow path in the CDFD. Therefore,

the procedure of deriving all system scenarios can be realized by �nding all possible data �ow paths in a CDFD.

It is equivalent to �nd all possible paths in the decomposed graph of the CDFD. In this section, we introduce an

algorithm to derive all possible system scenarios from the decomposed graphs of CDFDs. Note that the proposed

algorithm may not be e¤ective and e¢ cient enough to deal with the CDFDs with complicated structures, but

the algorithm itself does not a¤ect the e¤ectiveness of our animation method. We propose this algorithm for two

reasons. The �rst is that we want to use this algorithm to explain the basic idea for deriving all possible paths from

the decomposed graph. Although we do not �nd any literature about �nding all paths from a graph, we �nd this

topic has been widely disscussed on many technical forums [88] [89]. However, these discussions focus on deriving

paths from normal directed graphs, and cannot be directly used in deriving paths in the graph decomposed from

CDFD. This is because the normal directed graphs contains only one kind of edges, but the graph decomposed

from CDFD contains two kinds of edges and these two kinds of edges should be treated di¤erently in the derivation

process. The algorithm introduced in this section illustrates how these two kinds of edges should be treated and the

principle underlying the algorithm can be adopted to modify the existing algorithms to e¤ectively derive system

scenarios from the CDFDs with more complicated structures. The second reason we propose the algorithm is that

we want to implement a supporting tool to support our inspection method in practice. The proposed algorithm

can handle most of the cases we meet in the pratice.

The structures of CDFDs that can be handled by the proposed algorithm include sequence, parallel, and simple

loop. We explain the algorithm under each structure respectively.

49

4.2.1 Sequence Structure

Sequence structure is the simplest basic structure. Under a sequence structure, every output port of a process in a

CDFD sends output data �ow to only one input port of another process. In the decomposed graph, every output

port node of a process connects to only one input port node that belongs to other process. It corresponds to that

every output port in the original CDFD sends out data �ow to only one input port or outside. The CDFD of the

simpli�ed ATM system in Figure 2.3 and its decomposed graph in Figure 4.2 have this structure. Deriving system

scenarios from this structure is a straightforward process. Simply traversing the nodes connected by the solid edges

and valid dotted edges in a decomposed graph can �nd one possible scenario. To �nd all possible scenarios, all

possible combinations of input port nodes and output port nodes of the same process must be traversed. Therefore

the valid dotted edge between one speci�c input port node and one speci�c output port node of the same process

must be updated after one scenario is found. The following pseudo code describes the data structure to maintain

the dotted edges of a process and the algorithm to update the valid dotted edge.

Algorithm 1 class InputPortNode{

String processName;

int id;

OutputPortNode[] nexts;

OutputPortNode nextNode;

}

void Update(Stack s){

while (s is not empty){

if (s.topNode is type of InputPortNode){

int index = nexts.indexOf(nextNode)

if (index == nexts.length - 1){

nextNode = nexts[0];

s.pop();

} else {

50

nextNode = nexts[index + 1];

return;

}

} else {

s.pop();

}

}

}

To explain the Update method, we �rst introduce the �InputPortNode�class declaration. This class represents

the input port node in the decomposed graph of the CDFD. In our algorithm, we use input port node to maintain

the possible combinations between the input port nodes and output port nodes in a process. The array nexts in

the class declaration collects the output port nodes belonging to the same process as the input port node, and the

output port nodes are stored in order in the array. The variable nextNode refers to the output port node that is

connected with the input port node by valid dotted edge. In default, the valid dotted edge connects the input port

node and the �rst output port node. In our algorithm, we use another class structure named �OutputPortNode�

to represent the output port node. Since it has similar structure as �InputPortNode�, we do not present it here.

Method Update is executed to replace the current valid dotted edge with one invalid dotted edge each time after

one system scenario is derived. To avoid missing any possibility, the update process should be carried out in order.

To this end, we use a stack to record the part of a system scenario that have been found. The input port node and

output port node of the �rst process involved in the system scenario are �rst pushed into the stack. Therefore, the

input port node and output port node of the process at the end of the system scenario are pushed on the top of the

stack. In Update method, the algorithm �rst checks the type of the item on the top of the stack. If the item is an

output port node, it is popped out directly. This is because the output port node does not maintain dotted edges.

However, if the item is an input port node, the algorithm will decide whether the valid dotted edge connected to

this input port node should be updated, or this input port node should be popped out. To make the judgement,

the algorithm needs to check whether the nextNode of this input port node refers to the last item in the array

nexts. If it does, that means the current valid dotted edge has presented the last possible combination between the

51

input port node and the output port node in the same process. Only updating the valid dotted edge of this input

port node cannot help to �nd a new system scenario. The input port node will be popped out from the stack. On

the contrary, if the nextNode does not refer to the last item in the array nexts, the algorithm updates the nextNode

referring to the next item in the array nexts. The update process will not terminate until the stack is empty.

Figure 4.3 shows the example of derivation of system scenarios from the CDFD with sequence structure. The

CDFD in this example contains two processes P1 and P2. Process P1 has one input port and one output port,

and process P2 has one input port and two output ports. This CDFD is �rst decomposed into a graph containing

�ve nodes. Then, our automatic system scenario derivation algorithm is used to �nd all possible paths in the

decomposed graph. The states of the stack shown in Figure 4.3 demonstrate the derivation process. The stack is

used to record system scenario, and its state is changed ten times to �nd the system scenarios.

The fourth state of the stack shows that the �rst possible system scenario is found. Then the Update method is

executed to help to �nd another system scenario. The node P2_o_1 is popped up in the �fth state of the stack

because it is an output port node. In state six, Update method sets the dotted edge between P2_i_1 and P2_o_2

to be valid, so that the second possible system scenario is found.

4.2.2 Parallel Structure

The parallel structure is a structure to facilitate the description of di¤erent computations. It allows the output

port in a process to send output data �ows to more than one input port that belongs to di¤erent processes in a

CDFD. In the corresponding decomposed graph, a output port node can connect to more than one input port node

via solid edges. The CDFD in Figure 4.4 is a CDFD with parallel structure. Note that the process P1 sends out

two data �ows to process P2 and P3, respectively. The process P4 can be executed as long as it receives the data

�ow sent from the second output port of P2 and the data �ow sent from the �rst output port of P3.

The process of deriving system scenarios from the CDFD with parallel structure is similar to deriving scenarios

from sequence structure. However, there is only one additional condition that needs to be checked. This condition

is that each input port node in the decomposed graph can be traversed if and only if all of the previous output

port nodes that connect with it by solid edges have been traversed.

Checking the condition is necessary to ensure that every input port node can be traversed. This is because the

52

P1 P2

The states of the stake used to record system
scenario:

1. [P1_i_1]
2. [P1_i_1, P1_o_1]
3. [P1_i_1, P1_o_1, P2_i_1]
4. [P1_i_1, P1_o_1, P2_i_1, P2_o_1] found
5. [P1_i_1, P1_o_1, P2_i_1]
6. [P1_i_1, P1_o_1, P2_i_1, P2_o_2] found
7. [P1_i_1, P1_o_1, P2_i_1]
8. [P1_i_1, P1_o_1]
9. [P1_i_1]
10. finish

P1_o_1

P2_i_1

P2_o_2P2_o_1

P1_i_1

Figure 4.3: Derivation of system scenarios from the CDFD with sequence structure

semantics of a process requires all its input data �ows must be available before the process can be executed. That

means an input port node cannot be traversed semantically if one of its input data �ow is unavailable. Checking

whether all necessary input data �ows are available is equivalent to checking whether all the data �ows have been

generated. In the decomposed graph of the CDFD, checking whether a data �ow has been generated can be realized

by checking whether the output port node connected by the data �ow has been traversed. If the output port node

has been traversed, the data �ow that is sent out from this output port is considered having been generated.

For example, the only input port node of process P4 in Figure 4.4, P4_i_1, is connected to output port nodes

P2_o_2 and P3_o_1 via solid edges (data �ows). It can be traversed if and only if both P2_o_2 and P3_o_1

are traversed. If one of these two output port nodes has not been traversed, the input port node P4_i_1 cannot

be traversed since not all its input data �ows are available.

In order to address the issue mentioned above, we use a modi�ed depth-�rst algorithm for deriving system

scenarios. In this modi�ed algorithm, before an input port node can be traversed, whether the output port nodes

that connect with it by solid edges have been traversed will be checked. If all of the output port nodes have been

53

P1

P2

The states of the stake used to record system scenario:

1. [P1_i_1]
2. [P1_i_1, P1_o_1]
3. [P1_i_1, P1_o_1, P2_i_1]
4. [P1_i_1, P1_o_1, P2_i_1, P2_o_1]
5. [P1_i_1, P1_o_1, P2_i_1, P2_o_1, P3_i_1]
6. [P1_i_1, P1_o_1, P2_i_1, P2_o_1, P3_i_1, P3_o_1]
7. [P1_i_1, P1_o_1, P2_i_1, P2_o_1, P3_i_1]
8. [P1_i_1, P1_o_1, P2_i_1, P2_o_1, P3_i_1, P3_o_2] found
9. [P1_i_1, P1_o_1, P2_i_1, P2_o_1, P3_i_1]
10. [P1_i_1, P1_o_1, P2_i_1, P2_o_1]
11. [P1_i_1, P1_o_1, P2_i_1]
12. [P1_i_1, P1_o_1, P2_i_1, P2_o_2]
13. [P1_i_1, P1_o_1, P2_i_1, P2_o_2, P3_i_1]
14. [P1_i_1, P1_o_1, P2_i_1, P2_o_2, P3_i_1, P3_o_1]
15. [P1_i_1, P1_o_1, P2_i_1, P2_o_2, P3_i_1, P3_o_1, P4_i_1]
16. [P1_i_1, P1_o_1, P2_i_1, P2_o_2, P3_i_1, P3_o_1, P4_i_1, P4_o_1] found
17. [P1_i_1, P1_o_1, P2_i_1, P2_o_2, P3_i_1, P3_o_1, P4_i_1]
18. [P1_i_1, P1_o_1, P2_i_1, P2_o_2, P3_i_1, P3_o_1]
19. [P1_i_1, P1_o_1, P2_i_1, P2_o_2, P3_i_1]
20. [P1_i_1, P1_o_1, P2_i_1, P2_o_2, P3_i_1, P3_o_2]
21. [P1_i_1, P1_o_1, P2_i_1, P2_o_2, P3_i_1]
22. [P1_i_1, P1_o_1, P2_i_1, P2_o_2]
23. [P1_i_1, P1_o_1, P2_i_1]
24. [P1_i_1, P1_o_1]
25. [P1_i_1]
26. finish

P3

P4

Figure 4.4: Derivation of system scenarios from the CDFD with parallel structure

54

traversed, the input port node will be traversed and pushed into the stack as a part of current system scenario.

Otherwise the algorithm traverses the �rst node in the bu¤er or terminates the derivation process. The reason

why our algorithm underlies the depth-�rst algorithm is that the depth-�rst algorithm can traverses the nodes in

their execution order.

Due to the depth-�rst algorithm is a well-known algorithm and the modi�cation is not very huge, we merely

give an example in Figure 4.4 rather than describe the algorithm in detail. The Update method used in sequence

structure can also be used in parallel structure. In this example, the state of the stack is changed 26 times to

derive two system functional scenarios. In the sixth state of the stack, node P3_o_1 is traversed. However, node

P4_i_1 cannot be traversed since node P2_o_2 is not traversed and there is no node in the bu¤er. Then the

Update method is executed to update the valid dotted edge in process P3, and the �rst system scenario is found

in the eighth state of the stack.

4.2.3 Loop Structure

Loop structure is the most complicated one in the three structures. It may contain sequence or parallel structures.

Before discussing the derivation algorithm, we �rst de�ne what the loop structure is. The loop structure in the

decomposed graph of a CDFD is de�ned as follows:

� The beginning of a loop is the output port node that sends out a data �ow to an input port node that has

already existed in one system scenario.

� The loop structure is a series of nodes, including input and output port nodes. The end of a loop structure

is the input port node that connects to the beginning output port node by solid edge in the system scenario.

For example, the CDFD shown in Figure 4.5 contians a loop. In the CDFD, the second output port of process

�P3�sends out a data �ow to the second input port of process �P1�. Since the process �P1�is executed before

the execution of process �P3�, a loop is caused by the second output port of �P3�. In the decomposed graph, the

loop starts from the node P3_o_2, which presents the second output port of �P3�, and the end of the loop is the

node P3_i_1 since it is connected to the beginning node P3_o_2 by valid dotted edge when the loop is caused.

55

P1

P2

P4

P3

Figure 4.5: CDFD with loop structure

Since the purpose of system scenario generation is to perform animation rather than execut the formal speci�-

cation, the series of nodes of a loop will only appear once in each system scenario and it is enough for the user to

observe the behavior of the system in the animation.

To teminate a loop in the system scenario, the algorithm needs to ensure that the output port node that causes

the loop cannot be visited again in the scenario. For example, the loop in the CDFD shown in Figure 4.5 is caused

by node P3_o_2, therefore, this node will not be visited again when the input port node P3_i_1 is visited.

The loop structure will be represented in at least one system scenario. One of such scenarios in the CDFD

shown in Figure 4.5 is [P1 11, P2 12, P4 11, P3 12, P1 21, P2 12, P4 11, P3 11]. The starting node of the loop structure

is P3_o_2, and the end node is P3_i_1. Since the loop can only be presented once in the system scenario, the

output port node P3_o_2 will not be traversed again.

Because each node might be traversed more than once in the loop structure, the node class structure we discussed

in the previous section is not suitable. It needs to be improved to deal with the loop structure. In addition to the

modi�cation to node class structure, the Update method also needs to be modi�ed to handle the loop structure.

Since the output port node causing a loop structure cannot be traversed again after the loop is terminated, the

afterward update process of invalid dotted edges should avoid the end node. The original Update method is not

adapted for handling this issue.

Algorithm 2 class InputPortNode{

String processName;

56

int id;

OutputPortNode[] nexts;

OutputPortNode[] nextNodeEachTime;

//the following variables is used to handle the loop structure

bool inLoop;

OutputPortNode causedNode;

int startLocation;

OutputPortNode[] nextsInLoop;

}

void Update (Stack s) {

while (s is not empty) {

if(s.topNode is type of InputPortNode) {

int length = nextNodeEachTime.length;

if(s.topNode.inLoop) {

if(s.topNode.startLocation == length) {

s.topNode.inLoop = false;

int index = nexts.indexOf(nextNodeEachTime[length - 1]);

if(index == nexts.length - 1){

nextNodeEachTime.removeIndexOf(length - 1);

s.pop();

continue;

} else {

nextNodeEachTime[length - 1] = nexts[index + 1];

return;

}

}

57

} else {

int index = nextsInLoop.indexOf(nextNodeEachTime [length - 1]);

if(index == nextsInLoop.length - 1){

nextNodeEachTime.removeIndexOf(length - 1);

s.pop();

continue;

} else {

nextNodeEachTime[length - 1] = nextsInLoop[index + 1];

return;

}

} else {

int index = nexts.indexOf(nextNodeEachTime[length - 1]);

if(index == nexts.length - 1){

nextNodeEachTime.removeIndexOf(length - 1);

s.pop();

continue;

} else {

nextNodeEachTime[length - 1] = nexts[index + 1];

return;

}

}

}

} else {

s.pop();

continue;

}

}

58

}

Since in a loop structure, an input port node may appear more than one time in a system scenario, an array

nextNodeEachTime is used to replace nextNode in the improved class structure to maintain the valid dotted edges

each time the input port node appears. Moreover, four variables are added to the improved class declaration for

recording the information of loop structure. The �rst variable is boolean typed isLoop, which is used to record

whether a loop is started. It is necessary since after a loop is started, we need to avoid the start node of the loop

being traversed again. The second variable causedNode is used to record the start node of the loop structure. The

third is an integer typed variable startLocation, which is used to record how many times an input port node has

appeared before one of its connected output port node causes a loop. The last variable named nextsInLoop is an

array that stores all of the output port nodes belonging to the same process in order except the node that causes

the loop.

The re�ned Update method is used to update the valid dotted edges and avoid the start node of a loop structure.

The essential idea of this re�ned method is the same as the original one, and it can also deal with the sequence

and parallel structures. The modi�cation in the re�ned method is adding a judgment before updating an invalid

dotted edge. If inLoop is true, that means the current appearance of the input port node is inside a loop structure,

and the new valid dotted edge should avoide the output port node that causes the loop. Therefore, the dotted edge

that would be set valid should connect with an output port node in the array nextsInLoop. If the current output

port node connected by the valid dotted edge refers to the last node in nextsInLoop, that means all the possible

combinations have been explored. The current input port node will be popped out from the top of the stake. The

rest of the method is almost the same as the original one.

We use the CDFD shown in Figure 4.5 as an example to illustrate the derivation process under loop structure.

Since the entire derivation process is too long to be presented here, we merely explain part of the entire process

for illustration. Assuming the following system scenario has already been derived:

[P1 11, P2 12, P4 11, P3 11]

The last item P3 11 in the system scenario indicates that the last process in the system scenario is process

P3, and it receives input data �ow from its �rst input port and sends out data �ow from its �rst output port.

59

Correspondingly, in the �rst two nodes on the top of the stake in the algorithm is P3_i_1 and P3_o_1. By

executing the Update method, the output port node P3_o_1 is popped out �rst, then the valid dotted edge

connected to the input port node P3_i_1 is updated to connect the output port node P3_o_2. Since the node

P3_o_2 sends out a data �ow to input port node P1_i_2, which has already been traversed in the current system

scenario, a loop is caused.

Therefore, the variables of node P3_i_1 used to record loop structure information are initialized respectively.

The variable inLoop is assigned value true and the variable causedNode refers to output port node P3_o_2 that

causes the loop. The value of startLocation is 1 because the input port node P3_i_1 appears only one time when

the loop is started. The last variable nextsInLoop contains all the output port nodes of process P3 except the

output port node P3_o_2.

By traversing the nodes following the solid edges and updated valid dotted edges, the following system scenario

can be derived:

[P1 11, P2 12, P4 11, P3 12, P1 21, P2 11, P4 12]

Then, the Update method is executed again and the following system scenario is derived:

[P1 11, P2 12, P4 11, P3 12, P1 21, P2 12, P4 11, P3 11]

To derive another possible system scenario, the Update method �rst pops out P3_o_1, which is the node on

the top of the stack. The input port node P3_i_1 is popped out next rather than updated. This is because the

isLoop variable of node P3_i_1 is true. That means the node P3_i_1 is in a loop and the valid dotted edge

should be updated to connect to the output port node in array nextsInLoop. Since the node P3_o_1 is the only

item in nextsInLoop, the node P3_i_1 is popped out.

The Update method is executed continuously until all the nodes are popped out from the stack and no new

possible system scenario is found.

4.2.4 Limitation of the Algorithm

In the algorithm introduced in the previous section, we assume that no nested loop structure existing in the CDFD.

We make this assumption since in our experience almost all of the CDFDs do not include the nested loop structure.

60

A B C D

Figure 4.6: CDFD with nested loop

A New B D

Figure 4.7: A new CDFD by combining process �B�and �C�

Although it is correct in syntax, in practice it will make the whole CDFD very complex and few designers will use

it. The CDFD with nested loop structure and its associated module speci�cation can confuse not only the users

but also the developers.

In SOFL practice, we suggest using two levels of CDFDs to present the functionality of a nested loop structure.

For example, Figure 4.6 shows a CDFD with nested loop. By combining the process �B� and �C� into a new

process �New B�, the CDFD shown in Figure 4.7 can be constructed. To present the functionality of the CDFD

shown in Figure 4.6, the pocess �New B�should be decomposed into a new CDFD, as shown in Figure 4.8. The

two CDFDs in Figure 4.8 describes the same functionality as the CDFD in Figure 4.6 but have clearer structures.

To facilitate the user to decompose process, the supporting tool developed for SOFL approach provides a function

to allow the user decompose a process from the CDFD directly (see Chapter 7 for detail).

Except for the nested loop, the proposed algorithm is able to derive system scenarios from simple loop structure

and sequential loop structure. Figure 4.9 shows a CDFD with sequential loop structure. Two loops �Loop A�and

�Loop B�exist in the CDFD and they are executed sequentially. By using the proposed algorithm, the following

61

B1 B2

CDFD decomposed from process “New B”

A New B D

Figure 4.8: Decomposing the process �New B�

four system scenarios can be derived:

1. [A11, B11, C 11, D11]

2. [A11, B11, C 11, D12, C 21, D11]

3. [A11, B12, A21, B11, C 11, D11]

4. [A11, B12, A21, B11, C 11, D12, C 21, D11]

The proposed algorithm has been implemented as part of our supporting tool introduced in Chapter 7. Based

on the testing results, we believe the algorithm can be used to derive all possible system scenarios for CDFDs that

do no contain nested loop. The results of generating system scenarios from the CDFDs shown in Figure 4.5 and

4.9 will be demonstrated in Chapter 7.3.

4.2.5 Combinatorial Explorsion

The essential idea of the proposed algorithm is to explore every possible combination between input ports and

output ports. With the increasing of the complexity of the CDFD, the number of the combinations between

di¤erent ports will increase repidly. The combinatorial explorsion can signi�cantly a¤ect the e¢ ciency of the

62

A B C D

Loop A Loop B

Figure 4.9: Sequential Loops

A1 C1B1

A2

C2

B2

(A)

(B)

Figure 4.10: Two CDFDs with the same number of processes

proposed algorithm. Unfortunately, there is not general formula to estimate how many system scenarios can be

produced from a CDFD merely based on the number of processes and ports. Even for two CDFDs with the same

number of processes and input and output ports, the number of system scenarios of these two CDFDs may be

di¤erent due to their di¤erent structures.

For example, Figure 4.10 shows two CDFDs that both have three processes and each process has two input ports

and two output ports. However, these two CDFDs contain di¤erent numbers of system scenarios. Figure 4.10 (A)

shows a CDFD with three processes that are sequentially connected. In this CDFD, 16 system scenarios can be

produced. Figure 4.10 (B) shows a CDFD with parallel structure, which also has three processes. The number of

system scenarios that can be produced form CDFD (B) is 12, which is di¤erent from CDFD (A).

Although the complexity of a control �ow diagram has been estimated in some literatures [90] [91], there is no

63

existing theory for estimating the complexity of a data �ow diagram. Instead, we use testing rather than a general

formula to estimate the number of system scenarios in a CDFD, the test results will be reported in Chapter 7.3.

Meanwhile, we belive the maxmum number of system scenarios in a CDFD can be calculated by follows.

Assume a CDFD contains n processes, and each process Pi (i 2 {1, 2, ..., n}) has ai (ai 2 [1, +1)) input ports

and bi (bi 2 [1; +1)) output ports, then, the number of system scenarios contained in the CDFD will not be more

than:

nY
i=1

ai � bi

Based on our experience, the real number of system scenarios of a CDFD is far less than the number calculated

using the above formula. In Chapter 7.3, we use a CDFD containing 30 processes to evaluate the combinatorial

explorsion problem of the proposed algorithm and the result indicates that a huge number of possible system

scenarios will be generated from a CDFD with complex structure.

Since the system scenario generation algorithm is not the most concern of our research, we did not formally

prove and evaluate its e¤ectiveness and e¢ ciency in this dissertation. The aim of proposing the algorithm is to

explain the basic idea of �nding system scenarios in CDFDs and handle the most common cases we met in practice.

In the future, we plan to investigate the existing algorithms to �nd a more e¤ective and e¢ cient algorithm for

generating possible system scenarios.

4.3 Animating Specifications

As introduced previously, the formal speci�cation can be reorganized into a collection of mutually exclusive and

collectively exhaustive system functional scenarios. Each system scenario represents an independent behavior of

the software system described in the formal speci�cation. To dynamically present the potential behaviors of the

entire formal speci�cation, we suggest that every possible system scenario de�ned in the speci�cation should be

animated. In this section, we introduce the procedure to animate a formal speci�cation.

4.3.1 Animation Process

For a given formal speci�cation, the following steps supply a procedure for systematically performing the animation.

64

Step 1: Derive all possible system scenarios from the formal speci�cation.

An algorithm has been introduced in the previous sections to derive system scenarios from the topology of a

CDFD. This algorithm can be used in Step 1, and a supporting tool has been implemented based on the algorithm

to automatically derive system scenarios.

Before further discussion, the concept of operation functional scenario must be introduced �rst since it is used

in the second step. An operation scenario is a conjunction of pre-condition, guard condition, and de�ning condition

that is extracted from the pre- and post-conditions of a process de�ned in the module; it de�nes an independent

behavior of the process in terms of input and output relation. Let P(Piv, Pov)[Ppre, Ppost] denote the process

speci�cation of a process P, where P iv is the set of all input variables whose values are not changed by the process,

Pov is the set of all output variables whose values are produced or updated by the process, and Ppre and Ppost are

the pre and post-conditions of the process P, respectively. The following is the de�nition of operation functional

scenario.

De�nition 2 Let Ppost � (C1 ^ D1) _ (C2 ^ D2) _ ... _ (Cn ^ Dn), where each Ci (i 2 {1, ..., n}) is a predicate

called �guard condition� that contains no output variable in Pov and foralli;j 2 f1, ..., ng � i 6= j) Ci ^ Cj =

false; Di a �de�ning condition� that contains at least one output variable in Pov but no guard condition. Then,

the formal speci�cation of a process can be expressed as a disjunction (~Ppre ^ C1 ^ D1) _ (~Ppre ^ C2 ^ D2) _

... _ (~Ppre ^ Cn ^ Dn). A conjunction ~Ppre ^ Ci ^ Di is called an operation functional scenario, or operation

scenario for short.

Note that we use ~x and x to represent the initial value of state variable x before and after the process respectively.

The decorated pre-condition ~Ppre = Ppre[~x=x] denotes the predicate resulting from substituting the initial state

~x for the �nal state x in the pre-condition Ppre. For example, three operation scenarios are listed in Table 4.1.

Step 2: Let {di}[P1, P2, ..., Pn]{do} be a selected system scenario. Derive appropriate operation scenarios of

each process Pi (i 2 {1, 2, ..., n}) from the speci�cation and get a set of operation scenarios {OS1, OS2, ...,

OSn}, where OSi is the appropriate operation scenario of process Pi.

According to our animation strategy, each time only one system scenario should be selected to animate. For

any selected system scenario, the related operation scenarios of each process involved should be derived from the

65

process Check_Password(id: string, sel: bool, pass: string)
acc1: Account | err1: string | acc2: Account

ext rd #Account_file
pre true
post (exists![x: Account_file] | ((x.id = id and x.password = pass) and

(sel = true and acc1 = x or sel = false and acc2 = x)))
or
not(exists![x: Account_file] | (x.id = id and x.password = pass)) and

err1 = "Reenter your password or insert the correct card"
end_process

Figure 4.11: The de�nition of process �Check_Password�

formal speci�cation. Since an operation scenario de�nes an independent relation between the input and output of

a process, only one operation scenario of a process can be involved in a speci�c system scenario. Therefore, the

second step of the entire animation process should be deriving appropriate operation scenarios.

Using the process speci�cation of �Check_Password�as an example. This process belongs to the formal speci�ca-

tion of the simpli�ed ATM system in Figure 2.2. Figure 4.11 shows the de�nition of the process �Check_Password�.

According to De�nition 2, three operation scenarios are de�ned in this process, which are listed in Table 4.1. Sup-

posing the system scenario that is currently under animation is {withdraw_comm} [Receive_Command, Check _

Password, Withdraw] {cash}, the context of this system scenario indicates that the process �Check_Password�

sends out data to process �Withdraw�. Therefore, only the �rst operation scenario listed in Tabel 4.1 is involved

in the current system scenario.

Step 3: Collect appropriate test suites that satisfy each operation scenario OSi derived in Step 2.

As introduced previously, our animation is done by means of �executing� a system scenario. However, the

�execution� is not to actually run the formal speci�cation on a computer. Instead, we use data to connect each

process involved in the system scenario and demonstrate how the input data are produced to the output data.

The collected test suites are the data used to animate the system scenario. A test suite includes the input data

66

Table 4.1: Three operation scenarios in the process

Number Test cases

1 true and exists![x: Account_�le] j ((x.id = id and x.password = pass) and

sel = true and acc1 = x)

2 true and exists![x: Account_�le] j ((x.id = id and x.password = pass) and

sel = false and acc2 = x)

3 true and not(exists![x: Account_�le] j (x.id = id and x.password = pass))

and err1 = �Reenter your password or insert the correct card�

(test case) and output data (expected result). In principle, the collected test suites should satisfy the operation

scenario and represent the most concerns of the user. The details will be introduced in the next section.

Step 4: Use the test suites collected in Step 3 to execute the selected system functional scenario.

In this step, the processes in the system scenario are �executed� in turn. The execution is presented on the

corresponding CDFD, and the data �ows used to connect involved processes are replaced by the test suite in

�execution�order. This process will be illustrated in the following section.

Step 5: Repeat Step 2 to Step 4 until all the system scenarios derived in Step 1 are animated.

Animating all possible behaviors of the system is required by our animation method. The process of animating

a speci�c behavior is described from Step 2 to Step 4 above.

4.3.2 Test Suite Selection

Animation of a CDFD is done by animating each individual system scenario derived. Animation of a system

scenario in this case is actually a dynamic �execution� of the scenario, By �execution�, we mean a dynamic

demonstration of what input values are used to lead to what output values. To perform such an animation, we

need both input and output values.

The input and output values for an animation are known as test case and expected result, respectively, throughout

this dissertation. A test case and the corresponding expected result together are called a test suite. Since the

67

purpose of animation in our approach is to serve as a reading technique to facilitate inspection of the scenario

against the corresponding informal requirement, a test suite should be generated based on the informal requirements

speci�cation. Furthermore, due to the fact that the judgement on whether errors are found during the process of

animation-based inspection usually needs to be made by both the designer and the user through comparing the

animation result to the informal requirements, the test suite should usually be made by both the designer and the

user in collaboration. The �rst thing to do in the animation is to substitute the test case for the corresponding

input variables in the pre-condition and the expected result for the corresponding output variables in the post-

condition to automatically check whether they satisfy the pre- and post-conditions of the process to be animated.

Only the satis�ed test suite is used for dynamic demonstration.

An alternative way to collect the test suite satisfying the pre- and post-conditions is automatically generating

the test suite. According to the previous section, only one of the operation scenarios of a process is involved in

the system scenario. Therefore, for a speci�c system scenario, the generated test suite must satisfy the related

operation scenario rather than other operation scenarios in the process. The generation can be separated into the

generation of test case and the generation of expected result. An automatic test case generation method have been

given in [92], however, it did not indicate how to generate expected result. We extend the original method to deal

with our problem. The following procedure can be used to generate test suites.

Stage 1: Eliminate De�ning condition. The de�ning condition Di is eliminated �rst since it usually does not

provide the useful information for test case generation. Based on the de�nition of operation scenario, as the

input data of a process, the test case should be generated based on the conjunction of pre-condition and

guard condition ~Ppre ^ Ci.

Stage 2: Convert to disjunctive normal form. The conjunction of pre-condition and guard condition ~Ppre

^ Ci is transformed into an equivalent disjunctive normal form (DNF) with form P1 _ P2_ ... _ Pn. Each

Pi is a conjunction of atomic predicate expressions, say Qi1 ^ Qi2 ^ ... ^ Qim.

Let Q(x1; x2; :::; xw) be one of the atomic predicate expressions Qi1, Q
i
2, ..., Q

i
m mentioned previously. The

variables x1; x2; :::; xw is a subset of all the input variables. The values for the input variables involved in each

atomic predicate expression Q can be generated using an algorithm that deals with the following three situations,

68

Table 4.2: Input data generation algorithm

Number 	 Algorithms of test case generation for x1

1 = x1 = E

2 < x1 = E + �x

3 > x1 = E � �x

4 �; �; 6= similar to above

respectively. Here we are using variables of numerical types as examples for convenience.

Situation 1: If only one input variable is involved and Q(x1) has the format x1 	 E, where 	 2 f=; <; >; �;

�; 6=g is a relational operator and E is a constant expression, using the algorithms listed in Table 4.2 to

generate test cases for variable x1.

Situation 2: If only one input variable is involved and Q(x1) has the format E1 	 E2, where E1 and E2 are

both arithmetic expressions which may involve variable x1. This atomic predicate is �rst transformed to the

format x1 	 E. Then apply the algorithm in Table 4.2 to generate test cases for variable x1.

Situation 3: If more than one input variables are involved and Q(x1; x2; :::; xw) has the format E1 	 E2, where

E1 and E2 are both arithmetic expressions possibly involving all the variables x1; x2; :::; xw. First randomly

assigning values from appropriate types to the input variables x2; x3; :::; xw to transform the format into

the format E01 	 E02 that contains only one input variable x1, then generate the test case for x1 as stated in

Situation 2.

Usually, more than one atomic predicate may be contained in an operation scenario and one variable may be

included in more than one atomic predicate. For example, the conjunction of pre- and guard conditions of an

operation scenario has the form x < y ^ y < z. Two atomic predicates and three input variables are included, and

variable y is in both predicates. The generated value for variable y must satisfy both predicates in the meantime.

An expected result corresponds to the test case in the same test suite. It is the output of an operation scenario

that receives the test case. After having the test case, the expected result can be generated by applying the test

case to the operation scenario. The following procedure is used to generate expected result.

69

Stage 3: Replace input variables. Replace the input variables in the operation scenario with the generated

test case, and get a new predicate ~P 0pre ^ C 0i ^ D0
i, which merely contains output variables.

Stage 4: Convert to disjunctive normal form. Convert the conjunction ~P 0pre ^ C 0i ^ D0
i into an equivalent

disjunctive normal form (DNF) with form P 01 _ P 02_ ... _ P 0n. Each P 0i is a conjunction of atomic predicate

expressions, say Qi01 ^ Qi02 ^ ... ^ Qi0m.

The conjunction Qi01 ^ Qi02 ^ ... ^ Qi0m has the same form as the conjunction Qi1 ^ Qi2 ^ ... ^ Qim explained

previously. The only di¤erence is that the former contains only output variables and the latter includes only input

variables. The three situations and the algorithm listed in Table 4.2 can also be used for generating expected

result.

Note that a process, except the �rst one in a system scenario, may receive input data from two origins. One

origin is its previous process, and the other is outside. Supposing the system scenario {withdraw_comm} [Re-

ceive_Command, Check_Password, Withdraw] {cash} is selected for animation. The process �Withdraw�is the

last process in this system scenario and its previous process is �Check_Password�. Figure 4.12 shows that the

process �Withdraw� receives two input variables �amount� and �acc1�. Considering the de�nition of process

�Check_Password� shown in Figure 4.11, the input variable �acc1� of process �Withdraw� is also the output

variable of process �Check_Password�. When generating test case for �Withdraw�, only the value of variable

�amount�is generated. The value of variable �acc1�is received from �Check_Password�, and the value is actu-

ally the expected result of �Check_Password�.

According to the context of the selected system scenario, the operation system of process �Withdraw�involved

in the system scenario is �true and amount <= ~acc1.balance and acc1.balance = ~acc1.balance - amount and

cash = amount�. We use the pre-condition and guard condition to generate test case for this operation scenario

as shown in the following:

true and amount <= ~acc1.balance

In this predicate expression, the value of variable �acc1�is predetermined and received from process �Check_Password�.

The type of �acc1� is �Account� that is a compound type and contains four �elds, �id�, �name�, �password�,

and �balance�, as shown in Figure 2.2. Assuming the value of �acc1�received from �Check_Password�is (0001;

70

process Withdraw(amount: nat0, acc1: Account) err2: string | cash: nat0
ext wr #Account_file
pre true
post amount <= ~x.balance and x.balance = ~x.balance ­ amount and

cash = amount
or
amount > ~x.balance and err2 = “You do NOT have enough balance!”

end_process

Figure 4.12: The de�nition of process �Withdraw�

\Jack�; 1111; 15000), each item in this 4-tuple corresponding to the �elds in type �Account� respectively. By

replacing the variable acc1 with its value, the above predicate expression is transformed into a new expression with

only one variable.

true and amount <= 15000

According to the algorithm listed in Table 4.2, the value of �amount� can be automatically generated by

executing the expression 15000 � �x, where �x is a positive random number. If a positive value 332 is randomly

assigned to �x, the value of �amount� should be 14668. Therefore the test case for the operation scenario is

f(0001; \Jack�; 1111; 15000); 14668g.

By replacing the input variables in the operation scenario with the test case, the original operation scenario

becomes a predicate with only output variables:

true and 14668 <= 15000 and acc1.balance = 15000 - 332 and cash = 14668

Two output variables contained in above predicate are �acc1.balance�and �cash�. The �acc1.balance�presents

the balance of the account �acc1�after the withdraw is executed, and it is equal to the original balance in the bank

account minus the amount that has been withdrawn. The �cash�is the number that is displayed to the end user

to inform him the success of withdraw, and this number should be equal to the amount that has been withdrawn.

71

By applying the algorithm listed in Table 4.2, we can get the expected result f(0001; \Jack�; 1111; 332); 14668g.

Although the above procedure provides a possibility for full automation in test suite generation, the e¤ect

of using the automatically generated test suite may not be satisfactory in practice because the intention of the

automatically generated test case and expected result may be hard to understand by the user and/or the designer.

For internal consistency checking of a system scenario, automatically generated test suite may be cost-e¤ective

because most of the internal consistency properties can be de�ned as a predicate expression in advance and the

meaning of their evaluation is precisely de�ned.

A test suite should be generated to ful�ll at least the following targets in order to help validation:

1. Demonstrate a normal use case.

2. Demonstrate an exceptional use case when some condition of interest fails to meet.

3. Demonstrate extreme cases, such as boundary conditions, data items in a data structure being too many or

too few.

For example, for the animation of the �rst system scenario of the simpli�ed ATM, that is, {withdraw_comm}

[Receive_Command, Check_Password, Withdraw]{cash}, we generate the test suites in Table 4.3 manually to

demonstrate a normal use case.

4.3.3 Execution of System Functional Scenarios

Execution of a system scenario is to dynamically display the situation where the selected test case as input leads

to the selected expected result for each process involved in the scenario. Such an execution must be carried out

sequentially. In the case of a data �ow being used as both an output of a process and an input of the next adjacent

process, the value produced for it must be kept consistent in use. Figure 4.13 shows a process of animating

the �rst system scenario derived from the ATM CDFD. Figure 4.13 (A) shows the execution of the starting

process �Receive_Command�; (B) shows the execution of the second process �Check_Password�; and (C) shows

the execution of the terminating process �Withdraw�. These three diagram together depicts the process of the

animation of the system scenario. The test cases and the expected results used in this animation are taken from

Table 4.3.

72

Receive_command Check_Password

Withdraw

“withdraw”

true

id

pass

acc1

amount cash

Account_file

(A)

Receive_command Check_Password

Withdraw

“withdraw”

true

0001

1111

amount cash

Account_file

{(0001, “Jack”,
1111, 15000)}

{(0001, “Jack”,
1111, 15000)}

(B)

Receive_command Check_Password

Withdraw

“withdraw”

true

0001

1111

5000 5000

Account_file

{(0001, “Jack”,
1111, 15000)}

(0001, “Jack”,
1111, 15000)

(C)

{(0001, “Jack”, 1111,
10000)}

Figure 4.13: The animation process of a system functional scenario

73

Table 4.3: Test suites for a normal function

Input variables Test cases Expected variables Expected results

withdraw_comm �withdraw� sel true

id 0001

sel true

pass 1111 acc1 (0001, �Jack�

1111, 15000)

Account_�le {(0001, �Jack�

1111, 15000)}

acc1 (0001, �Jack� Account_�le {(0001, �Jack�

1111, 15000) 1111, 10000)}

amount 5000 cash 5000

Note that the animation only provides an example of executing the scenario but not capable of detecting any

errors by itself. It is humans (e.g., the designer, the user, or anybody appointed as the inspector) who have to

judge whether any errors have been revealed. The question is how can the animation be utilized to help humans

uncover errors, especially those in relation to the user�s requirements. Experience in practice suggests that software

inspection can help to address the problem [75], to make the inspection more e¤ective, speci�cation animation can

be utilized as a reading technique to guide the human to carry out the inspection. The problem is how the

animation can be adopted to facilitate the inspection. We address this problem in the following chapters.

4.4 Summary

In this Chapter we illustrated the details of system functional scenario-based animation method. We �rst

formally de�ned the system scenario, and then explained the algorithm for automatically deriving system scenarios

based on the topology of CDFD. We also introduced the process for performing animation.

In the next Chapter, we will systematically introduce the traceability between the formal and informal speci�-

cations. The traceability rules between inspection targets and requirement items will be formally de�ned.

74

Chapter 5

Traceability of Speci�cations
Traceability between the formal speci�cation and the informal speci�cation is a measurement that tells how the

corresponding parts in both speci�cations should be connected. The meaning of such a connection should re�ect

the idea that the requirements in the informal speci�cation must be realized correctly in the formal speci�cation.

Before we utilize the traceability in forming appropriate checklist for inspection, we must �gure out what parts in

both speci�cations should be connected. This will allow us to trace the part of interest in a formal system scenario

back to the corresponding part in the informal speci�cation during inspection.

In this chapter, we discuss this issue by focusing on the four topics: explicit and implicit requirements, require-

ment items, inspection targets, and construction of traceability.

5.1 Explicit and Implicit Requirements

The connections between the informal and formal speci�cations mentioned above can be separated into two

categories. The �rst kind of connection is called �connection of explicit requirements�, which re�ects the connections

between the explicit requirement items in the informal speci�cation and the corresponding parts in the formal

speci�cation. For convenience in discussion, we use the term �explicit requirement items�to mean the requirement

items that are explicitly described in the informal speci�cation, including functions, data resources, and constraints.

The other category of connection is called �connection of implicit requirements�, which re�ects the connections

between the implicit requirement items in the informal speci�cation and the corresponding realizations in the formal

speci�cation. Similarly, we use �implicit requirement items�to mean any requirement that is implicitly represented

in the informal speci�cation through relations between explicit requirement items. For instance, consider the two

items: function F1.1.2 and data resource D2.1 in the informal speci�cation shown in Figure 2.1 in Chapter 2. The

75

relationship between F1.1.2 and D2.1 is that function F1.1.2 uses data item D2.1. The similar relationship also

exists between function F1.2.2 and data item D2.1. Such relationships should also be considered as requirements

and realized properly in the formal speci�cation.

5.2 Requirement Items

As stated previously, the requirements are divided into explicit requirements and implicit requirements. To

make the requirements traceable, the categories of the requirements described in the informal speci�cation must

be formally de�ned. The explicit requirements are the requirements that are explicitly de�ned in the informal

speci�cation, including functions, data resources, and constraints. The following de�nition formally de�nes the

explicit requirements in an informal speci�cation.

De�nition 3 Let SI = (FI ; DI ; CI) denote an informal speci�cation, where FI is the set of all function items, DI

is the set of all data resource items, and CI is the set of all constraint items. Then, the explicit requirements of

SI are de�ned as follows, where �RQ�stands for a set of �requirements�.

RQ1 = FI

RQ2 = DI

RQ3 = CI

The implicit requirements are described by the relations between explicit requirements. The �rst kind of implicit

requirement is the relation between the function items and the data resource items. This relation indicates what

function items use what data resource items. A data resource item in the informal speci�cation works like a database

or �le that provides necessary data to support the functionality of the desired system. Each data resource item

described in the informal speci�cation should be used by at least one function; otherwise the data resource item

will be unnecessary for the system. The following function usingD formally de�nes the relation between data

resources and functions.

De�nition 4 Let the function usingD be de�ned as:

usingD : DI ! power(FI)

where f 2 usingD(d) if and only if function item f uses data resource item d. Then, the corresponding implicit

76

requirement is de�ned as follows:

RQ4 = f(d; f) j d 2 DI ^ f 2 FI ^ f 2 usingD(d)g

Applying the function usingD to a data resource item d yields a set containing all the function items that use

data resource item d. In this de�nition and the others to be given later in this dissertation, we use the symbol

power(a) to denote the power set of set a where a may be specialized to di¤erent set in di¤erent de�nitions.

For example, the informal speci�cation of the simpli�ed ATM system shown in Figure 2.1 contains nine functions

and one data resource. The identi�ers listed behind the data resource D2.1 indicate that this data resource is used

by four functions: F1.1.2, F1.1.4, F1.2.2, and F1.2.3. Therefore, the RQ4 type implicit requirement includes four

speci�c requirement items:

RQ4 = f(D2:1; F1:1:2); (D2:1; F1:1:4); (D2:1; F1:2:2); (D2:1; F1:2:3)g

In addition to the RQ4 type implicit requirement, the other two types of implicit requirements are the relations

associating constraint items with function items or data resource items. We use applyingtoD and applyingtoF to

represent these two relations and de�ne them as follows.

De�nition 5 Let the two functions applyingtoD and applyingtoF be de�ned as:

applyingtoD : CI ! power(DI)

applyingtoF : CI ! power(FI)

Then, the two types of implicit requirements are de�ned as follows:

RQ5 = f(c; d) j c 2 CI ^ d 2 DI ^ d 2 applyingtoD(c)g

RQ6 = f(c; f) j c 2 CI ^ f 2 FI ^ f 2 applyingtoF (c)g

Applying the function applyingtoD to a constraint item c yields a set containing the data resource items that are

restricted by constraint d, and applying the function applyingtoF to a constraint item c yields a set containing the

function items that are restricted by constraint d. Note that a constraint in the informal speci�cation may restrict

both function items and data resource items. Such constraint is usually the restriction to a speci�c kind of data,

and the restricted data resources contain this kind of data and the restricted functions contain variables belonging

77

to this kind of data. For example, the constraints C3.2 and C3.3 in the informal speci�cation in Figure 2.1 restrict

both data resource D2.1 and functions F1.1.2 and F1.2.2. This is because these two constraints restrict the length

of �ID�and �password�of a bank account, which are contained in D2.1 and used by F1.1.2, F1.2.2. As parts

of a bank account, the ID and password are contained in the data resource D2.1 that is a set of bank accounts.

In addition, the ID and password are used as input variables of functions F1.1.2 and F1.2.2 that describe the

functionality of checking the password of the bank account with given ID.

The constraints that only restrict functions in the informal speci�cation are usually the restrictions of the

functionality of the system. For example, the C3.4 declares that the maximum amount of withdraw is 10000. It

is a part of the functionality of function �Withdraw�, and should be formalized in the formal speci�cation.

By analyzing the informal speci�cation of the simpli�ed ATM system, we conclude that the RQ5 and RQ6 types

implicit requirements contains following requirement items:

RQ5 = f(C3:2; D2:1); (C3:3; D2:1)g

RQ6 = f(C3:1; F1:1:1); (C3:1; F1:2:1); (C3:2; F1:1:2); (C3:2;

F1:2:2); (C3:3; F1:1:2); (C3:3; F1:2:2); (C3:4; F1:1:3)g

5.3 Inspection Targets

In an inspection, the inspector is required to examine a speci�c part of the speci�cation in each step of animation,

namely, the part of the speci�cation that is involved in the current step of animation. We call each speci�c content

that needs to be inspected an inspection target. Similar to the requirement items in an informal speci�cation, the

inspection targets of a formal speci�cation are also divided into two classes based on whether the inspection target

is de�ned explicitly.

The �rst class of inspection target is the formal speci�cation items de�ned explicitly, including operation sce-

narios, state variables, type declarations, and invariants that are de�ned in a module. As introduced previously,

an operation scenario is a conjunction of pre-condition, guard condition, and de�ning condition that are extracted

from the pre- and post-conditions of a process de�ned in the module; it de�nes an independent behavior in terms

of input and output relation. A state variable corresponds to a data store in the associated CDFD, which is used

as an external variable to provide necessary data to related process. It can be an independent variable, a �le, or a

78

database in the implemented system. Similar to most programming language, each state variable in SOFL formal

speci�cation must be declared with a type before it can be used. If the type is not one of the basic type in SOFL,

it has to be declared �rst. A type declaration is a statement of declaring a new name for a designated type in the

module. An invariant is a logical expression that describes a constraint on either a state variable or a declared

type. Such an invariant is required to be sustained throughout the entire system.

The second class of inspection target is the dependence relations between the formal speci�cation items. Since

di¤erent items de�ned in the formal speci�cation work together to present the user�s requirements, their dependence

relations should also be inspected for their validity. All of these inspection targets are formally de�ned below; they

will serve as a basis for forming questions in the checklist for inspection. We have developed a prototype tool to

support the use of the inspection targets in forming the questions in the checklist.

De�nition 6 Let SF = (M1;M2; :::;Mn) denote a formal speci�cation, where each Mi(i 2 f1; 2; :::; ng) is a module

de�ned in the speci�cation.

De�nition 7 Let M = (TM ; VM ; IM ; OSM) be a module in the formal speci�cation SF , where TM , VM , IM , OSM

are the set of all type declarations, state variable declarations, invariants, and operation scenarios, respectively.

Note that in above de�nition, the module contains the set of all operation scenarios derived from the processes

in the module rather than the processes and the associated system scenarios themselves. This is because the

operation scenario is the basic unit in the formal speci�cation for presenting the desired functions, and both the

process and system scenario can be transformed to a conjunction or disjunction of operation scenarios.

De�nition 8 Let OSF =
nS
i=1
Mi:OSM be the set of all operation scenarios de�ned in the entire formal speci�cation,

TF =
nS
i=1

Mi:TM , VF =
nS
i=1

Mi:VM be the set of all type and state variable declarations respectively, and IF =
nS
i=1

Mi:IM be the set of all invariants. Then, the four kinds of inspection targets belonging to the �rst class are de�ned

below, where �IT�stands for the set of �inspection target�.

IT1 = OSF

IT2 = VF

IT3 = TF

IT4 = IF

79

The second class of inspection target is dependence relations between di¤erent inspection targets de�ned in

De�nition 8. It describes how each part of a formal speci�cation works together to represent the user�s requirements.

Inspecting dependence relations aims to check whether the collaborations between di¤erent formal speci�cation

items are correct and appropriate according to the user�s requirements.

Based on the previous explanation of SOFL speci�cations, the de�nition of an operation scenario in the formal

speci�cation will involve the usage of state variables. Therefore, the basic inspection target operation scenario is

directly involved in the dependence relations with state variables. For each state variable in the formal speci�cation,

it must be declared with a speci�c type. Thus, there are dependence relations existing between state variables and

their types. In addition, since operation scenarios relate to state variables and state variables relate to their type,

the dependence relations between operation scenarios and type declarations can be constructed through shared

state variables. The following de�nition formally de�nes the three kinds of dependence relations described above

and corresponding inspection targets.

De�nition 9 Let the following three functions present the dependence relations between operation scenarios and

state variables, between state variables and types, and between operation scenarios and types, respectively.

usingV : VF ! power(OSF)

typeofV : VF ! TF

typeofOS : OSF ! power(TF)

Then, the three kinds of inspection targets corresponding to the dependence relations are de�ned as:

IT5 = f(v; os) j v 2 VF ^ os 2 OSF ^ os 2 usingV (v)g

IT6 = f(v; t) j v 2 VF ^ t 2 TF ^ t = typeofV (v)g

IT7 = f(os; t) j os 2 OSF ^ t 2 TF ^ t 2 typeofOS(os)g

The function usingV indicates that a state variable can be accessed by more than one operation scenario. For ex-

ample, the only state variable �Account_�le�in the formal speci�cation shown in Figure 2.2 in Chapter 3 is accessed

by the operation scenarios de�ned in the three process �Check_Password�, �Withdraw�, and �Show_Balance�.

The function typeofV presents that each state variable belongs to a speci�c type; and the function typeofOS implies

that an operation scenario may include more than one variable, therefore relate to more than one type declaration.

80

As explained above, each dependence relation is an inspection target and expressed as a pair of relevant inspection

targets.

The invariant in the formal speci�cation is a predicate that expresses a property to restrict a speci�c type.

Therefore, a kind of dependence relation should exist to link the invariants and relevant types. The function that

is used to describe this kind of dependence relation is formally de�ned as follows:

De�nition 10 Let applyingI denote the dependence relation between invariants and types.

applyingI : IF ! TF

Then, the inspection target corresponds to the dependence relation is de�ned as:

IT8 = f(i; t) j i 2 IF ^ t 2 TF ^ t = applyingI(i)g

Since each type declaration may be involved in the dependence relations with operation scenarios or state

variables, the invariants can be linked to operation scenarios or state variables through the types. These two kinds

of dependence relations and corresponding inspection targets are formally de�ned as follows:

De�nition 11 Let the following functions present the dependence relations between invariants and operation sce-

narios, and between invariants and state variables, respectively.

applyingtoV : IF ! power(VF)

applyingtoOS : IF ! power(OSF)

Then, the inspection targets corresponding to the dependence relations are de�ned as:

IT9 = f(i; v) j i 2 IF ^ v 2 VF ^ v 2 applyingtoV (i)g

IT10 = f(i; os) j i 2 IF ^ os 2 OSF ^ os 2 applyingtoOS(i)g

As introduced in Section 3.1.3, the inspector checks all possible system scenarios derived from formal speci�cation

by following the animation process. In the inspection of each system scenario, the processes involved in the system

scenario are inspected in turn. When inspecting a speci�c process, the basic inspection target to be checked is

the involved operation scenario. It de�nes the unique functionality of the process that is involved in the system

scenario. The operation scenario will lead the inspector to other related inspection targets based on the dependence

chain shown in Figure 5.1. The oval nodes in Figure 5.1 represent inspection targets, and the arrows represent the

81

Operation Scenario
(OS)

Type (T)

State
Variable (V)

Invariant (I)

typeofv

usingv

applyingtov

typeofos

applyingtoos

applyingI

Figure 5.1: The dependence chain

dependence relations between di¤erent inspection targets, which have been formally de�ned previously. Starting

from the operation scenario, all related inspection targets can be inspected by following the dependence chain.

For example, if system scenario {withdraw_comm} [Receive_Command, Check_Password, Withdraw] {cash}

is under inspection, the inspection targets of each process will be checked in turn. Table 5.1 lists the inspection

targets that need to be inspected.

The �rst column of Table 5.1 indicates the process that each inspection target belongs to. For example, the

inspection target in the second row belongs to process �Check_Password�. The second column is the identi�er

of the inspection target, and the third column is its contents. The identi�er �IT 21�consists of three parts: name

�IT�, a subscript �1�, and a superscript �2�. The name �IT� stands for �Inspection Task� as we explained

previously; the subscript �1�means it belongs to inspection target type IT1; and the superscript �2�is its index.

This inspection target is an operation scenario as indicated in the forth column of the table.

All of the inspection targets in Table 5.1 are derived from the process speci�cations shown in Figure 2.2, Figure

4.11, and Figure 4.12. Note that not all kinds of inspection targets de�ned above are included in the table. For

example, the inspection targets in the second, forth and �fth rows are operation scenario IT 21 , state variable IT
1
2

82

Table 5.1: The inspection targets of a speci�c system scenario

Process ID Inspection Task Description

Receive_Command IT 11 true and withdraw_comm = \withdraw�̂ sel = true operation scenario

IT 21 true and (exists[x : Account_file] j x:id = id and operation scenario

x:password = pass and sel = true and acc1 = x)

IT 12 Account_file state variable

IT 13 Account type

IT 23 set of Account type

IT 14 forall[a : Account] j len(a:id) = 4 invariant

IT 24 forall[a : Account] j len(a:password) = 4 invariant

Check_Password IT 34 forall[a; b : Account] j a <> ba:id <> b:id invariant

IT 15 (IT 12 ; IT
2
1) (variable, scenario)

IT 16 (IT 12 ; IT
2
3) (variable, type)

IT 19 (IT 14 ; IT
1
2) (invariant, variable)

IT 29 (IT 24 ; IT
1
2) (invariant, variable)

IT 39 (IT 34 ; IT
1
2) (invariant, variable)

IT 110 (IT 14 ; IT
2
1) (invariant, scenario)

IT 210 (IT 24 ; IT
2
1) (invariant, scenario)

IT 310 (IT 34 ; IT
2
1) (invariant, scenario)

Withdraw IT 31 true and amount <= ~x:balance and x:balance = operation scenario

~x:balance� amount and cash = amount

83

and type IT 23 , respectively. Since the operation scenario IT
2
1 accesses the state variable IT

1
2 that is de�ned with

type IT 23 , the inspection target (IT
2
1 , IT

2
3) should be included in Table 5.1 on the basis of De�nition 9. However, it

is not listed in the table since it does not present the user�s most interests. By the inspection targets that present

the user�s most interests, we mean the inspection targets that can be traced back to the user�s requirements based

on the traceability rules de�ned in the next section.

5.4 Construction of Traceability

As mentioned previously, traceability between the formal speci�cation and the informal speci�cation is a mea-

surement that describes how the corresponding parts in both speci�cations should be connected. Speci�cally, it

shows the links from inspection targets in the formal speci�cation to their original requirements in the informal

speci�cation. Each of such a connection is called a �trace link� in our inspection approach. To build the trace

link, we must understand how each requirement item can be formalized; that is, we need to build the necessary

relations between items in both speci�cations in general and then apply them as guidelines to assist the establish-

ment of speci�c relations between the given informal and formal speci�cations when doing inspection for a speci�c

speci�cation.

The general corresponding relations between items in the informal and formal speci�cations are summarized in

Table 5.2. The �rst type of requirement is function items. Ideally, each function item described in the informal

speci�cation is generally formalized and realized by one or more processes in the formal speci�cation. Consider the

informal speci�cation in Figure 2.1 and the formal speci�cation in Figures 2.2 and 2.3 as an example. The functions

in the informal speci�cation are organized in a two level hierarchy, while the processes in the formal speci�cation

are organized in only one level module. The function item F1:1 is not realized by any one of the processes

in the formal speci�cation. Actually, it is realized by a system scenario {withdraw_comm}[Receive_Command,

Check_Password, Withdraw]{cash} instead. Since the function can be formalized by a process, an operation

scenario, or a system scenario in the formal speci�cation, it can be considered as realized by a group of operation

scenarios in general.

Another type of requirement is data resource, which is usually realized by a state variable in the formal speci-

�cation. In our inspection approach, we think the state variables and their types collaborate together to present

84

Table 5.2: Relations between speci�cation items

Informal Speci�cation Formal Speci�cation

function process, operation scenario, system scenario

data resource type declaration, state variable

constraint invariant, process, operation scenario

the user�s requirements about data resources, and the inspector has to check both the state variables and their

types to make sure they satisfying the original requirements. For example, the only data resource in the informal

speci�cation is formalized by the only state variable �Account_�le�in the formal speci�cation. However, merely

the �Account_�le� is not enough for describing the data resource, its type �set of Account�must be considered

collaboratively for explaining the data resource.

The constraints in the informal speci�cation can be realized either by invariants or by part of the processes in

the formal speci�cation. In practice, the constraints on data resources are generally realized by invariants, and the

constraints on functions are usually formalized as the pre- or guard conditions for restricting the functionality of the

processes. For instance, the constraint C3.1 in the informal speci�cation requires that only two commands can be

received by the simpli�ed ATM system, and it restricts the functions F1.1.1 and F1.2.1. In the formal speci�cation,

the constraint is formalized as two guard conditions in the process �Receive_Command�. The guard conditions

de�ne the situations that can be handled by the process. Since only two guard conditions �withdraw_comm =

�withdraw�� and �balance_comm = �balance�� are de�ned, only two commands can be handled in the process.

Therefore the constraint C3.1 is appropriately formalized in the formal speci�cation.

Based on the general relations between the items in the informal and formal speci�cations, the trace links

between inspection targets and requirement items can be constructed. Table 5.3 formally de�nes seven traceability

rules. The rule link1 in the �rst row of Table 5.3 formally describes the trace links between operation scenarios

and functions. In this de�nition, power(RQ1) means the power set of RQ1. It indicates that an operation scenario

can realize one function, the combination of several functions, or a part of one function.

The rule link2 in the second row of Table 5.3 formally describes the trace link from a pair of state variable and

its type to a data resource. Since the inspector has to check both the state variable and its type to make sure a

85

Table 5.3: Traceability rules between inspection targets and requirement items

ID Inspection Target (Description) Requirement (Description) De�nition

link1 IT1 (operation scenario) RQ1 (function) link1 : IT1 ! power(RQ1)

link2 IT6 ((state variable, type)) RQ2 (data resource) link2 : IT6 ! RQ2

link3 IT4 (invariant) RQ3 (constraint) link3 : IT4 ! RQ3

link4 IT1 (operation scenario) RQ3 (constraint) link4 : IT1 ! RQ3

link5 IT5 ((state variable, RQ4 ((data resource, link5 : IT5 ! RQ4

operation scenario)) function))

link6 IT9 ((invariant, RQ5 ((constraint, link6 : IT9 ! RQ5

state variable)) data resource))

link7 IT10 ((invariant, RQ6 ((constraint, link7 : IT10 ! RQ6

operation scenario)) function))

data resource is appropriately realized in the formal speci�cation, we do not construct the trace link between a

state variable and a data resources.

The traceability rules link3 and link4 de�ne how an inspection target can be trace back to the constraint in the

informal speci�cation. The two kinds of inspection targets that can link to constraints are invariants and operation

scenarios. As explained earlier, the invariants link to the constraints that restrict data resources, and the operation

scenarios link to the constraints restricting functions.

In addition to the explicit requirement items, the three types of implicit requirements should also be formalized

in the formal speci�cation. Since the implicit requirements describe the relations between di¤erent explicit require-

ments, their formalization is usually realized in the formal speci�cation as the dependence relations between the

corresponding inspection targets. For example, one of the implicit requirements in the informal speci�cation shown

in Figure 2.1 in Chapter 2 is that function F1.1.2 access data resource D2.1. Since the two explicit requirement

items F1.1.2 and D2.1 are formalized by the inspection targets IT 21 and IT
1
2 in Table 5.1, respectively, the implicit

requirement item is realized by the dependence relation between IT 21 and IT
1
2 . If the two inspection targets are

formalized appropriately and their dependence relation does exist in the formal speci�cation, we can conclude

86

Table 5.4: The trace links between the inspection targets and the requirement items

No. Inspection Task Requirement Item Rule

1 IT 11 (operation scenario) F1:1:1 (function) link1

2 IT 21 (operation scenario) F1:1:2 (function) link1

3 IT 14 (invariant) C3:2 (constraint) link3

4 IT 24 (invariant) C3:3 (constraint) link3

5 IT 15 (state variable, operation scenario) (D2:1; F1:1:2) (data resource, function) link5

6 IT 16 (state variable, type) D2:1 (data resource) link2

7 IT 19 (invariant, state variable) (C3:2; D2:1) (constraint, data resource) link6

8 IT 29 (invariant, state variable) (C3:3; D2:1) (constraint, data resource) link6

9 IT 110 (invariant, operation scenario) (C3:2; F1:1:2) (constraint, function) link6

10 IT 310 (invariant, operation scenario) (C3:3; F1:1:2) (constraint, function) link7

11 IT 31 (operation scenario) fF1:1:3; F1:1:4g (function) link7

that the implicit requirement is appropriately formalized; otherwise, it is not appropriately formalized. The trace-

ability rules link5, link6, and link7 in Table 5.3 describe the trace links from di¤erent dependence relations to

corresponding implicit requirements.

It should be noted that according to Table 5.3, not all of the inspection targets de�ned in Chapter 5.3 can

be directly linked to a requirement item. For example, the inspection target �type declaration� is not linked to

any of the requirements. However, the dependence relations involving type declarations, such as the relations

between state variables and types, are treated as inspection targets and directly linked back to the requirements

in the formal speci�cation. When inspecting such dependence relations, the type declarations themselves can be

inspected. In the formal speci�cation, each item is de�ned for formalizing the desired requirements directly or

indirectly. In the inspection, every item de�ned in the formal speci�cation should be considered as an inspection

target and inspected for validation even if it cannot be linked to a speci�c requirement item.

Table 5.4 lists up the trace links between the inspection targets in Table 5.1 and the requirement items mentioned

in Chapter 5.2. Those inspection targets that cannot be linked to a speci�c requirement item are not listed in the

87

table.

5.5 Summary

In this Chapter, we discussed the traceability between the informal and formal speci�cations and the relations

between di¤erent items de�ned inside speci�cations. The explicit and implicit requirement items were formally

de�ned. The inspection targets of the formal speci�cation were also formally de�ned. Based on the formal

de�nitions of the requirement items and inspection targets, we proposed a group of traceability rules for building

trace links. In the next Chapter, we will explain how a checklist can be constructed based on the traceability, and

how the internal dependence relations can guide the inspector check related inspection targets.

88

Chapter 6

Formal Speci�cation Inspection using IB-

SAT
The inspection approach proposed in this dissertation is based on the animation method and the traceability

introduced in the previous chapters. In this chapter, we explain how to coordinate the animation and traceability

to inspect a speci�cation. In the �rst section, we propose four aspects for each inspection target. These aspects

should be checked in the inspection. Then we introduce how to construct checklist based on the traceability and

explain how to systematically inspect all inspection targets. We also discuss how to modify the speci�cation based

on the results of inspection. Finally, we use a case study to demonstrate the entire inspection process at the end

of this chapter.

6.1 The Four Aspects of Inspection Targets

In order to check whether a formal speci�cation accurately and appropriately formalizes the user�s requirements,

each inspection target de�ned in the formal speci�cation should be inspected from four aspects: necessity, appro-

priateness, correctness, and completeness. These four aspects are de�ned as four basic properties of the formal

speci�cation. We explain the meanings of these four aspects and why they need to be inspected. Some satisfac-

tions of the aspects can be formally de�ned and some others cannot. For the satisfactions that can be formally

de�ned, speci�c properties are de�ned as predicate expressions and the inspector can apply related information to

the speci�c properties for de�ning rigorous inspection tasks. The inspection task can give the inspector speci�c

instruction for making decision whether a speci�c property is satis�ed. For those satisfactions that cannot be

formally de�ned, questions lacking rigorous are asked and the inspector needs answer these questions to judge

89

whether the basic properties are satis�ed.

6.1.1 Necessity

De�ning unnecessary items in the formal speci�cation will a¤ect the readability and maintainability of the spec-

i�cations. Moreover, the unnecessary formal speci�cation items would confuse its user, such as the programmers

who implement the system based on the formal speci�cation.

Checking the necessity property aims to ensure that no declared type identi�er, variable, or invariant is not used

in the process or function speci�cations of each module. For example, if a declared type identi�er is never used for

declaring any variable in the speci�cation, the declaration of the type identi�er will be regarded as unnecessary.

The similar principle can be applied to variables and invariants in modules.

Take the advantage of the formalization of inspection targets, the necessity property can be formally de�ned as

follows:

De�nition 12 Property 1 All the items de�ned in the formal speci�cation are considered necessary if the following

three conditions hold:

1)8t2TF ((9os2OSF �t 2 typeofOS(os)) _ (9v2VF �t = typeofV (v)))

2)8v2VF 9os2OSF �os 2 usingV (v)

3)8i2IF 9t2TF �t = applyingI(i)

The �rst condition in the de�nition requires that all types de�ned in the formal speci�cation should be used

by at least one operation scenario or declared as the type of a state variable. The two functions �typeofOS�and

�typeofV �de�ned in Chapter 5.3 present the dependence relations of type declarations with operation scenario

and state variable, respectively. If the three conditions are satis�ed, it implies that all the type declarations, state

variables, and invariants de�ned in the formal speci�cation are necessary. Note that the necessity of processes is

not checked here. This is because the inspector cannot decide whether a process is necessary without considering

the user�s requirements described in the informal speci�cation.

If the above property is not satis�ed, we can conclude that some formal speci�cation items are de�ned inappro-

priately, and the inspector should consider why some de�ned items are not used. However, even if the property

90

is satis�ed, it does not mean that all these declarations are correct and appropriate. This property is only a

prerequisite for further inspection. In our inspection approach, we adopt this property as a guideline to check

even further on the appropriateness of the variable and type declarations as well as invariants with respect to the

informal requirements.

6.1.2 Appropriateness

Appropriateness requires that the inspection targets realize the original requirements in an appropriate manner.

The appropriateness of an inspection target usually cannot be formally de�ned. The inspector needs use his own

knowledge and experience to decide whether the inspection target is formalized appropriately. In general, we think

an inspection target is appropriate if it intuitively presents all necessary information of the original requirement.

For example, the state variable �Account_�le�is de�ned in the formal speci�cation shown in Figure 2.2 with

a type �set of Account�. This state variable and its type realize the data resource D2.1 described in the infor-

mal speci�cation shown in Figure 2.1. To check the appropriateness of the inspection target �(Account_�le, set

of Account)�, the inspector needs to answer some questions, such as �Whether the name of the state variable

�Account_�le� represents the essence of the data resource D2.1?�and �Whether the type �set of Account� of the

state variable is appropriate for the data resource D2.1?�. The answers of these questions are highly dependent on

the inspector�s judgement. Some inspector may think �Account_�le�is a good name for the state variable, some

inspector may think the name �Account_database�is more appropriate. Involving personal bias is inevitable when

an inspector answers the appropriateness questions.

Note that the original requirements of an inspection target will appear in the questions to help the inspector

understand the questions and make decisions. In previous example, the appearance of data resource D2.1 in the

questions provide the inspector with necessary information to make judgement. Comparing to a more abstract

question �Whether the name of the state variable is appropriate?� or �Whether the state variable is de�ned

appropriately?�, the questions including corresponding requirements information are more speci�c. To construct

questions containing related requirement items for inspection targets, the trace links between the formal and

informal speci�cations must be utilized. In Chapter 5.4, the rules for building trace links are formally de�ned.

However, the procedure for constructing the trace links based on these rules is not given. In our inspection

91

approach, the inspector constructs the trace links for each inspection target by answering several traceability

related questions. Then, the speci�c questions that contain related requirement items can be asked based on the

trace links for each inspection targets. The traceability related questions will be introduced in the next section.

The questions about the inspection targets whose appropriateness cannot be formally de�ned are usually asked

based on inspector�s experience. The experience generally comes from the previous development projects that the

inspector has participated in. Table 6.1 lists some typical appropriateness questions based on our experience, but

appropriateness questions are not limited to the questions listed in the table.

For the three kinds of inspection targets whose appropriateness can be formally de�ned, properties are formally

de�ned to help the inspector to make judgement. The three kinds of inspection targets are the dependence

relations that can be linked to the implicit requirement items in the informal speci�cation, namely, the inspection

targets (state variable, operation scenario), (invariant, state variable), and (invariant, operation scenario). The

corresponding implicit requirement items are (data resource, function), (constraint, data resource), and (constraint,

function), respectively.

The reason that the appropriateness of these three kinds of inspection targets can be formally de�ned is that

the corresponding implicit requirement items can be formally de�ned. Considering the three inspection targets in

Table 6.1, they are linked to the explicit requirement items, which are described by informal natural languages

in the informal speci�cation. In order to inspect the appropriateness of the three kinds of inspection targets in

Table 6.1, the inspector has to read the corresponding informal descriptions, understand the descriptions, and

then makes the judgement based on his knowledge. On the contrary, the implicit requirements in the informal

speci�cation can be formally de�ned. Checking the appropriateness of the inspection targets that formalize the

implicit requirements is equivalent to check whether the dependence relations between di¤erent inspection targets

are consistent with the relations between corresponding explicit requirements.

For example, the inspection target T 19 in Table 5.4 in Chapter 5.4 is the dependence relation between an

invariant and a state variable. To check the appropriateness of this inspection target is actually to check whether

the dependence relation is appropriate, namely, whether the invariant should be used to restrict the state variable.

This question can be addressed by considering its original requirement. Based on the trace link listed in Table 5.4,

the original requirement is an implicit requirement that represents the relation between a constraint and a data

92

Table 6.1: Typical appropriateness questions for di¤erent inspection targets

Inspection Target Requirements Questions

Whether the name of state variable represents the essential

idea of the data resource?

(state variable, type) data resource Whether the type of state variable represents the essential idea

(IT6) (D) of the data resource?

Whether the name is de�ned without ambiguity?

Whether the quanti�er used in the invariant re�ects the

essential of the constraint?

invariant constraint Whether the type restricted by the invariant complies with

(IT4) (C) the constraint?

Whether the content of the invariant represents the essential

idea of the constraint?

Whether the name of process represents the essential idea of

the function?

Whether the input variables of the operation scenario

are necessary for the function?

Whether the names of types of input variables are

de�ned appropriately?

operation scenario function Whether the output variables of the operation scenario

(IT1) (F) are necessary for the function?

Whether the names of types of output variables are

de�ned appropriately?

Whether the pre-condition of the operation scenario presents

the prerequisite of the function?

Whether the guard condition of the operation scenario precisely

de�ne the situation of the function?

93

resource. If the dependence relation represented by the inspection target is consistent with the relation presented

by the original implicit requirement, the inspection target can be considered appropriate. Therefore, the inspector

should check whether the invariant and state variable in the inspection target formalize the constraint and data

resource in the implicit requirement, respectively. If the answer is �yes�, that means the two relations are consistent

and the inspection target is appropriate. Otherwise, the inspection target is de�ned inappropriately.

The appropriateness of inspection target (invariant, state variable) is formally de�ned as follows:

De�nition 13 Property 2 If the dependence relation of IT5 is appropriate, the following predicate must hold:

8v2VF ;os2OSF ;d2DI ;f2FI �(d; f) = link5((v; os)))

9t2TF �(t = typeofV (v) ^ d = link2((v; t)))^

f 2 link1(os) ^ os 2 usingV (v) ^ f 2 usingD(d)

The property states that if there is a trace link linking inspection target (v, os) to requirement (d, f), the state

variable v must realize data resource d and the operation scenario os must realize function f.

Similarly, the dependence relations of inspection targets (state variable, operation scenario) and (invariant,

operation scenario) should satisfy the following two properties for their appropriateness.

De�nition 14 Property 3 If the dependence relation of IT9 is appropriate, the following predicate must hold:

8i2IF ;v2VF ;c2CI ;d2DI
�(c; d) = link6((i; v)))

c 2 link3(i) ^ 9t2TF �(t = typeofV (v) ^ d = link2((v; t)))^

v 2 applyingtoV (i) ^ d 2 applyingtoD(c)

De�nition 15 Property 4 If the dependence relation of IT10 is appropriate, the following condition must hold:

8i2IF ;os2OSF ;c2CI ;d2DI
�(c; f) = link5((i; os))) c 2 link3(i)

^f 2 link1(os) ^ os 2 applyingtoOS(i) ^ f 2 applyingtoF (c)

The formally de�ned properties may make automation of the inspection for appropriateness becomes possible.

For example, the Property 2, 3, and 4 can be checked automatically by program as longs as the related trace

links between inspection targets and explicit requirement items are built. However, the automation is based on

the assumption that the trace links between related inspection targets and explicit requirements are constructed

94

correctly. For instance, in previous example, the appropriateness of inspection target T 19 is judged by applying

the property de�ned in De�nition 13. But, the conclusion is correct if and only if the trace links of the invariant

and state variable are constructed correctly. If the invariant is linked to an incorrect constraint, the conclusion

would be that the inspection target T 19 is de�ned inappropriately, even it does re�ect the original requirement.

Actually, whether the trace link between an explicit de�ned inspection target and its corresponding requirement

item is constructed correctly can be veri�ed by answering related appropriateness questions. Since the questions

are raised based on the trace link, the negative answers of the appropriateness questions may reveal that the trace

link is built incorrectly. The details can be found in the following sections.

6.1.3 Correctness

We use �correctness�as a property of an inspection target, requiring that the target satis�es both the syntax of

the formal speci�cation language and the two properties given in De�nitions 16 and 17 below.

De�nition 16 Property 5 Let Ppre ^ Ci ^ Di be an operation scenario, where Ppre is the pre-condition, Ci is

guard condition, and Di is de�ning condition. Then the following two predicates must hold:

1)8x;�s �Ppre(x;�s)) 9i �Ci(x;�s)

2)8x;�s �(Ppre(x;�s) ^ Ci(x;�s))) 9y;s �Di(x; y;�s; s)

In this de�nition, x and y are the set of input and output variables respectively. The decorated state variable

�s denotes the value of s before the execution of the operation scenario. The property states that for every input

satisfying the pre-condition of the process P , there must exist a guard condition Ci satis�ed by the same input and

for every input satisfying both the pre-condition and the guard condition Ci, there must exist an output satisfying

the corresponding de�ning condition Di.

This property is also known as satis�ability proof obligation in the literature and it is used to check the internal

consistency of an operation scenario. In the inspection, each operation scenario must be inspected to ensure

the internal consistency. For example, the inspection target T 31 in Table 5.1 is an operation scenario of process

�Withdraw�. By applying Property 5 to this operation scenario, the following two predicate expressions can be

generated:

1) true) amount <= ~x:balance

95

2) true ^ amount <= ~x:balance) x:balance = ~x:balance� amount ^ cash = amount

The above predicates can be automatically formed with tool support, but its formal proof is usually challenging.

In our approach, such a property is checked by means of inspection.

De�nition 17 Property 6 Let one of the related invariants on type T be It = 8t2T �Q(t; w). Then the following

predicates must hold:

1)Ppre(v)) Q(t; w)[v=t]

2)~Ppre(v) ^ Ci(v) ^Di(v)) Q(t; w)[v=t]

Since the invariant and the operation scenario are de�ned separately, only performing the syntax checking may

not ensure that the relevant variables in the operation scenario comply with the related invariant. Abstractly,

this property states that the type invariant must hold before and after the execution of the operation scenario

~Ppre(v)^Ci(v)^Di(v). Speci�cally, it requires two things. One is that when the pre-condition involving variable

v of type T holds before the execution of the operation scenario, the invariant predicate Q(t; w) must also be

satis�ed by variable v after substituting v for variable t in the predicate. The other is that if the conjunction of the

guard condition and the de�ning condition involving variable v holds, it must guarantee the invariant predicate

Q(t; w) to be true after the variable substitution.

For example, the inspection target T 21 in Table 5.1 is an operation scenario of process �Check_Password�and

inspection target T 14 is an invariant of type �Account�. By applying Property 6, the following two predicates can

be constructed:

1) true) forall[a : Account_file] j len(a:id) = 4

2) true and (exists[x : Account_file] j x:id = id and x:password = pass)

and sel = true and acc1 = x) len(x:id) = 4

Note that the invariant is de�ned as a restriction to a speci�c type, in Property 6, it is equivalent to the

restrictions to all the variables that are de�ned with the speci�c type. The bound variable x in above predicate is

with type �Account�and therefore restricted by the invariant. Since variable x is explicitly used in the operation

scenario, it can be directly used in the invariant. For those restricted variables that are implicitly used in the

operation scenario as a part of compound variables, they must be extracted �rst before they can be used in the

96

Table 6.2: Extracting restricted variables from the variables with compound type

Compound Type De�nition Expression

Set var: set of T forall[x : var] j Q(x)

Sequence var: seq of T forall[x : inds(var)] j Q(var(x))

Composed var = composed of Q(var:x)

x: T

......

......

end

Product var: T * T1 * T2 ... Q(var(1))

Map var: map T to T1 forall[x : dom(var)] j Q(x)

Union var = T j T1 j T2 j ... j Tn forall[x : var:is_T (x)] j Q(x)

Class class A Q(var:x)

x: T

......

......

end_class

var: A

invariant. By compound variable, we mean the variables de�ned with compound types. The compound types in

SOFL formal speci�cation are some kinds of integration of basic types for presenting more complex data structures.

For variables with di¤erent compound types, di¤erent methods are used for extracting restricted variables.

Table 6.2 shows some possible ways to extract restricted variables from compound type variables [93]. In this

table, var is the name of the compound type variable, T is the type restricted by invariant, Q(v) is a predicate

that presents the invariant of variable v. In addition, inds is an operator of sequence type, it returns the set of

indexes of the sequence operand; dom is an operator of map type, and it returns domain of the map type variable;

is_T (x) is a method of type union, and it is used to check whether the parameter x is in type T .

97

Moreover, the correctness requires the inspection targets comply with customized standards or criteria. For

example, a development team or software company may ask the external variables in the formal speci�cation to

be named in Pascal style and the local variables to be named in Camel style. The correctness of an inspection

target requires such standard must be satis�ed. Since the inspection targets are formally de�ned in our approach,

inspector can use templates to easily construct speci�c questions. The customized questions will signi�cantly extent

the capability of our inspection approach.

6.1.4 Completeness

Checking the completeness of the formal speci�cation is to examine whether every user�s requirement written in

the informal speci�cation is de�ned properly in the formal speci�cation. Since there is no restriction that each

requirement item in the informal speci�cation must be formalized by one speci�c formal speci�cation item, the

relations between requirement items and inspection targets may not be one-to-one relation. Some requirement

items (e.g., data resources or constraints) in the informal speci�cation may be represented by one item in the

formal speci�cation, while other requirement items (e.g., functions) may be realized by more than one item in the

formal speci�cation.

For the requirement item that can be formalized by one speci�c inspection target, its completeness can be

determined by considering the appropriateness and correctness of the related inspection target. For the requirement

item that may be realized by more than one inspection target, the inspector can hardly make any judgement of

completeness by merely inspecting each related inspection target independently. All related inspection targets

must be inspected as a whole to ensure the requirement item is formalized properly.

As indicated by the traceability rules in Table 5.3 in Chapter 5.4, the only requirement item that may be

formalized by more than one inspection target is the function item. This situation may be caused by two reasons.

One is that the function is a high level function in the informal speci�cation, and it is decomposed into several

related lower level functions. In the formal speci�cation, the lower level functions are realized by di¤erent operation

scenarios, therefore, the high level function is realized by the combination of a group of operation scenarios. The

other reason is that an independent lower level function in the informal speci�cation is decomposed in the process of

formalization for re�nement, so that the functionality of this lower level function is formalized by several operation

98

scenarios in the formal speci�cation.

To check the completeness of the functions that realized by more than one operation scenario, the operation

scenarios realizing the same function item should be well organized for inspection. The following disjunctive normal

form presents the appropriate form to organize the related operation scenarios of a speci�c function:

(os11 ^ os12 ^ ::: ^ os1x) _ (os21 ^ os22 ^ ::: ^ os2y)

_::: _ (osm1 ^ osm2 ^ ::: ^ osmz)

In this disjunction, all of the operation scenarios, ospq , can be traced to the same function item in the informal

speci�cation. The operation scenarios in each conjunction clause belong to the same system scenario because

the operation scenarios in the same system scenario work together to describe the functionality. The conjunction

clauses are connected disjunctively since di¤erent system scenarios are mutually exclusive. By inspecting the

disjunction as a whole, the inspector can judge whether a function item is realized completely.

For instance, the function F1.1.2, �Check password�, is an independent lower level function in the informal spec-

i�cation shown in Figure 2.1 in Chapter 2. It decomposed into two operation scenarios in the formal speci�cation.

To check whether the function F1.1.2 is formalized completely, the two operation scenarios must be reorganized

into the format mentioned above for inspection. The reorganized disjunction is shown as follows:

true and exists![x: Account_�le] j (x.id = id and x.password = pass and sel = true and acc1 = x)

_

true and not(exists![x: Account_�le] j (x.id = id and x.password = pass)) and err1 = �Reenter your password or

insert the correct card�

These two operation scenarios are connected disjunctively since they belong to two di¤erent system scenarios.

The inspector should use his own experience and skill to determine whether the above disjunction completely

describes the function �Check password�.

The function F1.1, �Withdraw�, is a high level function in the informal speci�cation, and it is decomposed into

four lower level functions. In the formal speci�cation, the function F1.1 is not formalized by a speci�c operation

scenario. Instead, it is realized by the group of operation scenarios that formalize its four lower level functions.

The following disjunction should be inspected to ensure that the function �Withdraw�is completely formalized.

99

true and withdraw_comm = �withdraw�and sel = true ^

true and exists![x: Account_�le] j (x.id = id and x.password = pass and sel = true and acc1 = x)

^ true and amount <= ~x.balance and x.balance = ~x.balance - amount and cash = amount

_

true and withdraw_comm = �withdraw�and sel = true ^ true and not(exists![x: Account_�le] j (x.id = id and

x.password = pass)) and err1 = �Reenter your password or insert the correct card�

The two conjunction clauses in above disjunction present two di¤erent system scenarios: {withdraw_comm} [Re-

ceive_Command, Check_Password, Withdraw] {cash} and {withdraw_comm} [Receive_Command, Check_Password]

{err1}. That means the function �Withdraw�is actually formalized by two system scenarios in the formal speci-

�cation.

6.2 Checklist and Inspection Procedure

As indicated in Figure 4.13 in Chapter 4, when the inspector reads through the formal speci�cation by following

the animation steps, he can focus on inspecting a group of inspection targets related to a speci�c process. The

basic inspection target to be checked in the inspection of a speci�c process is operation scenario, which de�nes

the unique functionality of the process involved in the system scenario. Other inspection targets related to the

operation scenario can be checked by following the dependence chain shown in Figure 5.1 in Chapter 5.3.

To inspect each inspection target, the inspector should answer several questions raised from the traceability

aspect and the four aspects mentioned in the previous section. Answering the traceability related questions not

only checks the inconsistency between the informal and formal speci�cations, but also helps the inspector build

the trace links between inspection targets and corresponding requirement items. The constructed trace links will

contribute to raise other questions, e.g. the questions based on the properties de�ned in De�nition 13, 14, or 15.

Table 6.3 lists up the typical traceability related questions for each explicitly de�ned inspection target.

In addition to the questions related to the traceability, the inspector also needs to answer the questions raised

from the four aspects of the inspection targets to ensure that every property is satis�ed. For example, according

to the property de�ned in De�nition 12, the inspector should answer the question �Whether is it necessary?�for

checking the necessity of each explicitly de�ned formal speci�cation item. If an item is used somewhere else in the

100

Table 6.3: Checklist for inspection

Items Questions

type declaration Does this type declaration de�ne a type for any data resource?

What is the data resource?

variable declaration Does this state variable realize any data resource? What is the data resource?

Whether the variable and its type properly formalize the data resource?

invariant de�nition Does this invariant realize any constraint? What is the constraint?

operation scenario Does this operation scenario realize any function? What is the function?

Does the function use any data resource?

Does this operation scenario use the variable that formalizes the data resource?

Does the function comply with any constraint?

Does the operation scenario satisfy the invariant that formalizes the constraint or

does this operation scenario realize the constraint itself?

formal speci�cation, then the answer is �Yes�, otherwise, the answer is �No�. In the program, de�ning an item

that is never used may not be an error as long as the program can be executed correctly. However, a never used

item may indicate some potential errors contained in the formal speci�cation. The errors may be the incorrect

de�nition of the item, or the incorrect usage of an item that is de�ned correctly. The inspector should carry out

further inspection to reveal the reason that causes the situation.

Based on the trace links, the questions asked from appropriateness can be speci�c. By speci�c, we mean that

each appropriateness related question contains speci�c inspection target and corresponding requirement item. For

example, an abstract appropriateness related question may be �Whether the name of each process represents the

essence of the user�s requirements?�. This question is suitable for the inspection of the entire formal speci�cation.

However, when answering this question, the inspector may ask himself �Where is the process?�, �Where is the

corresponding user�s requirements?�, etc. In our inspection approach, animation will guide the inspector to each

process, and the trace links can be adopted to ask a speci�c question for each process. Assuming a process named

�P�contains an operation scenario �OS�that formalizes a function called �F�in the informal speci�cation. Based

101

on the trace link between �OS�and �F�, a speci�c question can be constructed: �Whether the name of process

�P�that contains operation scenario �OS�represents the essence of function �F�?�. Obviously, the speci�c question

provides the inspector with more information for making judgement. Since the inspection targets, requirement

items, and trace links are formally de�ned, automatically constructing speci�c questions for each explicit de�ned

inspection target is possible with tool support.

Moreover, the appropriateness about the inspection targets that presents the dependence relations between

di¤erent formal speci�cation items can be automatically checked based on the properties de�ned in De�nition 13,

14, and 15. But the correctness of the results is highly dependent on whether the related trace links between the

explicitly de�ned inspection targets and requirement items can be constructed correctly. For instance, if the trace

links between operation scenarios and functions can not be constructed correctly, the appropriateness of inspection

targets IT5 ((state variable, operation scenario)) and IT10 ((invariant, operation scenario)) cannot be correctly

checked.

Actually, the appropriateness and correctness related questions will impel the inspector to verify the trace links

built by answering the traceability related questions. After the inspection, the correct trace links between formal

speci�cation items and the requirement items can be constructed. As indicated by existing research [94] [95], the

trace link itself is considered as an important approach for ensuring the quality of the requirement speci�cations.

To check the correctness of each inspection targets, the inspector should ensure that each of them complies with

the syntax of SOFL and the properties de�ned in De�nition 16 and 17 are satis�ed. Therefore, for each operation

scenario, the question �Whether the operation scenario is de�ned complying with the SOFL syntax?�, �Whether

the operation scenario satis�es the Property 5?�, and �Whether the operation scenario satis�es the Property 6?�

will be asked. As demonstrated in the previous section, answering the later two questions is actually checking the

predicates that are generated by applying the corresponding properties to the operation scenario. In our inspection

method, the inspector can use test suites to evaluate the predicates rather than to formally prove them. A test suite

for an operation scenario contains the test case and expected result. By applying the test case and expected result

to the predicates, the inspector can evaluate each predicate to be true or false. If the result of evaluation is false,

it indicates that the corresponding property cannot be satis�ed and the inspector needs to modify and re�ne the

formal speci�cation to keep its internal consistency. This is because the test suite presents a speci�c circumstance

102

that the property cannot be satis�ed. Note that evaluating a predicate using test suites is not equivalent to a

formal proof; it can only tell whether the predicate is satis�ed or not on the sample data provided by the test

suite. In spite of this inferiority, testing-based evaluation can enjoy advantage over formal proof in providing full

automation.

The completeness related questions will be asked after all inspection targets are inspected. As explained pre-

viously, all the inspection targets that formalize the same requirement item must be inspected as a whole to

ensure the completeness of the requirement item. The trace links constructed in the inspection of each individual

inspection target will be used to raise the questions.

6.3 Feedback

The feedback of the inspection is actually the answers to the questions on the checklist. The designer should

modify the formal speci�cation based on the feedback. According to the feedback of di¤erent question categories,

the designer may modify the speci�cation from di¤erent aspects. For example, two kinds feedback of traceability-

related questions will lead to modi�cations. One is that a requirement item is not formalized in the formal

speci�cation, and the other is that a formal speci�cation item de�nes what is not described in the informal

speci�cation. For the former, the designer needs to consider whether a new formal speci�cation item should be

de�ned to formalize the requirement item. For the latter, the designer should consider whether the de�nition of

the formal speci�cation item is necessary.

One of the possible actions to respond to the feedback of necessity-related question is to delete the formal

speci�cation item that is not used anywhere else in the formal speci�cation. However, the designer should not

delete it directly since merely referring to the feedback of necessity-related question may not indicate precisely

whether the item is unnecessary or forgotten to be used. The designer should not make any action to modify the

formal speci�cation until all the concerns in the feedback are addressed.

The designer should consider more when responding to the feedback of the appropriate-related questions. Since

the appropriateness of the explicitly de�ned inspection targets cannot be formally de�ned as properties, whether

the inspection targets are appropriate is judge by the inspector based on his own experience. Before the designer

does any modi�cation, he needs �rst discuss with the inspector who thinks an inspection target is inappropriate.

103

The inspector should explain the reason why he makes such result to the designer. If the designer is in agreement

with the inspector, he can make the modi�cations based on the discussion. Otherwise, they should make further

discussion until all the disagreements have been eliminated. For the inspection targets whose appropriateness can

be formally de�ned as properties, if the related properties cannot be satis�ed, the designer needs make modi�cations

to ensure that all these properties are satis�ed.

The feedback of a correctness-related question can be �correct�or �incorrect�. In our de�nition, the incorrect

result indicates that the de�nition of the inspection target is syntactical incorrect or contains internal inconsistency.

The speci�cation must be corrected before further inspection can be carried out. Even there is no other problem

indicated by the feedback of the inspection, a formal speci�cation containing incorrect item is useless in practice.

The feedback of completeness-related questions may reveal that a speci�c requirement item is not formalized

completely in the formal speci�cation. In this situation, the designer needs to consider what kind of formal

speci�cation items should be added to the speci�cation so that the formalization of the requirement item can be

complete.

6.4 Case Study

This section presents a case study we have conducted to demonstrate how our inspection method works in

practice. Our focus is on the explanation of how the inspection approach can be applied to a concrete formal

speci�cation for validation and veri�cation rather than on its systematic evaluation.

We choose the simpli�ed ATM software system as the target system for this case study. Figures 2.2 and 2.3 in

Chapter 2 show the selected formal speci�cation in our case study. The corresponding requirements are documented

in the informal speci�cation as shown in Figure 2.1.

To inspect the formal speci�cation, a checklist is constructed based on both the general rules for trace links of

the traceability between the formal and informal speci�cations and the general de�nitions of the four aspects of

formal speci�cations. Based on the characteristics of each category of questions, the entire inspection process is

separated into three stages. In the �rst stage, the inspector examines the formal speci�cation to check whether all

of the de�ned items are used anywhere else in the speci�cation, which is required by the demand for inspecting

the �necessity�property de�ned previously. The second stage is to inspect the formal speci�cation by following

104

Table 6.4: The results of inspecting the necessity property

Formal Spec Item Category Used By Category Condition

Account Type #Account_�le Variable 1

Check_Password Process 1

Withdraw Process 1

Show_Balance Process 1

#Account_�le Variable Check_Password Process 2

Withdraw Process 2

forall[a: Account] j len(a.id) = 4 Invariant Account Type 3

forall[a: Account] j len(a.password) = 4 Invariant Account Type 3

forall[a, b: Account] j a <> b => a.id Invariant Account Type 3

<> b.id

the animation process. At this stage, the inspector should answer the questions raised based on the traceability,

appropriateness, and correctness. Finally, in the third stage, the inspector needs to check the informal speci�cation

to ensure that the user�s requirements are formalized completely.

According to the requirement for checking the �necessity�property in the �rst stage, all of the type declarations,

variable declarations, and invariants are checked. Table 6.4 shows the items to be checked and the inspection results.

The �rst two columns in this table give the formal speci�cation items needed to check and their categories. The

third and forth columns list the corresponding items that use the items in the �rst column. The last column

indicates the number of conditions of the property given in De�nition 12 that describes the relation between the

item in the �rst and third columns. The result of this inspection shows that all the items de�ned in the formal

speci�cation are properly used, and therefore the necessity property is satis�ed.

At the second stage of the inspection, the inspector carefully reads the formal speci�cation and answers the

questions based on traceability, appropriateness, and correctness. The animation guides the inspector to read

the system scenarios de�ned in the speci�cation. As mentioned in the previous example, more than one system

scenario are de�ned in the target formal speci�cation. Since the inspection of each system functional scenario is

105

Table 6.5: Operation scenarios of the related processes involved in the system scenario

Process Operation Scenario

Receive_Command withdraw_comm = \withdraw�̂ sel = true

Check_Password true and (exists[x : Account_file] j x:id = id and x:password = pass and

sel = true and acc1 = x)

Withdraw amount <= ~x:balance and x:balance = ~x:balance� amount and

cash = amount

very similar, we only demonstrate the inspection process of one system scenario to avoid the duplication. It is

su¢ cient to allow us to explain all of the major aspects of interest. The inspection of other system scenarios can

be understood in the same way.

Suppose the system scenario {withdraw_comm} [Receive_Command, Check_Password, Withdraw]{cash} is

selected for inspection. The relevant operation scenarios of each process that are given in Table 6.5 are extracted

for animation. Since the system scenario contains three operation scenarios derived from the three processes,

the inspection of this system scenario is divided into three steps. In each step, the inspector focuses on a speci�c

operation scenario and the related formal speci�cation items. Table 6.6 and 6.7 display the questions for inspecting

the selected system scenarios. Since it is impossible to put all of the inspected items and results in the table for

the sake of space, we only show one or two cases of inspecting each kind of item in the table and omit the details

of other similar cases.

The total 27 questions in Tables 6.6 and 6.7 are asked in the step two of the animation to facilitate the inspection

of the second process, Check_Password, of the system scenario. The �rst 13 questions mainly focus on checking

whether all the related formal speci�cation items have corresponding requirements. The next 10 questions are

concerned with whether the type declarations, variables, invariants, and processes are de�ned appropriately and

correctly. The last 4 questions help the inspector exam whether the implicit requirements are speci�ed correctly.

As a result of this stage, the following errors are found:

1. The invariant �forall[a; b : Account]ja <> b) a:id <> b:id�does not realize any constraint in the informal

speci�cation.

106

Table 6.6: The inspection results of the system scenario

NO Question Answer

1 Does operation scenario �true and (exists![x : Account_file] j x:id = id Yes

and x:password = pass and sel = true and acc1 = x)�realize a function?

2 What is the function? F1.1.2

3 Does this operation scenario realize constraint? No

4 What variable is used in this operational scenario? �x�, �sel�, �id�, �pass�

and �Account_�le�

5 Whether variable �x�, �sel�, �id�, �pass�and �Account_�le�realize any Yes

data store?

6 Which variable realizes which data resource? �Account_�le�realizes D2.1

7 What type is used in this scenario? �string�, �bool�, �Account�,

and �set of Account�

8 Are type �string�, �bool�, �Account�, and �set of Account�de�ned Yes

by designer?

9 What type is de�ned by the designer? �Account�and �set of Account�

10 Is there any invariant should be applied to this operation scenario? Yes

11 What is the invariant? �forall[a : Account] j

len(a:id) = 4�

12 Does invariant �forall[a : Account] j len(a:id) = 4�realize constraint? Yes

13 What is the constraint? C3.2

14 Is variable �Account_�le�de�ned complying with SOFL? Yes

15 Does combination of variable �Account_�le�and type �set of Account� Yes

appropriately realize the data resource D2.1?

16 Are variable �x�, �sel�, �id�, �pass�and �Account_�le�used Yes

appropriately?

107

Table 6.7: The inspection results of the system scenario (continue)

NO Question Answer

17 Is invariant �forall[a : Account] j len(a:id) = 4�de�ned complying Yes

with SOFL?

18 Does invariant �forall[a : Account] j len(a:id) = 4�appropriately realize Yes

the constraint C3.2?

19 Is invariant �forall[a : Account] j len(a:id) = 4�used appropriately? Yes

20 Is the operation scenario speci�ed complying with SOFL? Yes

21 Can pre-condition �true�implies guard condition �(exists![x : Yes

Account_file] j x:id = id and x:password = pass) and sel = true�?

22 Can pre and guard conditions �true and (exists![x : Account_file] j x:id Yes

= id and x:password = pass) and sel = true�imply de�ning condition

�acc1 = x�?

23 Does this operation scenario appropriately realize function F1.1.2? Yes

24 Does the function F1.1.2 use data resource? Yes, D2.1

25 Does this operation scenario use the state variable that realizes the Yes,

data resource? �Account_�le�

26 Does the function F1.1.2 comply with constraint? Yes, C3.2, and C3.3

27 Does this operation scenario satisfy the invariant that realizes the Yes

constraint or does this operation scenario realize the

constraint itself?

108

2. The constraint �C3:4�is not formalized in the formal speci�cation.

3. The implicit requirement that function �F1:1:4� complies with constraint �C3:4� is not formalized in the

formal speci�cation.

4. The implicit requirement that function �F1:1:4�uses data resource �D2:1�is not formalized in the formal

speci�cation.

Taking the same approach, all of the other system scenarios are also inspected at the second stage. As required

by our inspection method, the �nal stage of inspection must devote to the examination of whether the function

items in the informal speci�cation are formalized completely in the formal speci�cation. For example, to check

the completeness of function �F1:1�, the inspector forms the conjunction of all the operation scenarios that

formalize function items �F1:1:1�, �F1:1:2�, �F1:1:3�, and �F1:1:4�, and then analyzes whether the conjunction

completely formalizes function �F1:1�. The analysis of such a conjunction can be supported by Inspection Task

Tree established in [96]. Inspection task tree can decompose a conjunction into a tree structure in which each

leaf node presents an atomic predicate. It is a useful technique to help the inspector analyze each part of a

conjunction. Since this technique has already made available in the literature, we omit further discussion here for

brevity.

6.5 Summary

In this Chapter, we �rst introduced the four aspects that should be checked in the inspection and formally

de�ned several speci�c properties for these aspects. Then, we explained how the questions on the checklist are

raised based on the four aspects and traceability of the speci�cations. We also illustrated how to systematically

inspect an operation scenario and all related inspection targets. We discussed how to handle the feedback of the

inspection and used a case study to demonstrate the entire process of formal speci�cation inspection.

In the next Chapter, we will introduce the supporting tool for our inspection approach. We will explain the

architecture of the tool and all the functions it provides. We will also discuss its �exibility in integrating with

other functions.

109

Chapter 7

Tool Support for SOFL Speci�cation Con-

struction and Veri�cation
In this chapter, we present a prototype software tool we have developed to support the entire procedure of our

formal speci�cation inspection approach. The tool is actually developed not only for supporting the inspection

method, but for providing a framework to support the entire SOFL three-step modeling approach and related

techniques.

The framework is implemented in C# programming language under the environment of Microsoft Visual Studio

2008. The current version of the framework supports the construction of SOFL speci�cations and formal speci�ca-

tion inspection. The procedures of inspection that can be supported include system functional scenario generation,

animation, checklist construction, and inspection results documentation. Moreover, our framework is designed as

a platform to easily integrate other functions. For now, a pattern system for formal speci�cation construction [97]

and a prototype parser [98] have been integrated into this framework.

In the rest of this chapter, we �rst introduce the design and architecture of the support framework. Then, we

will explain the functions it provides in detail. We will also discuss how to use these functions to support the

inspection.

7.1 Design and Implementation

Since this framework is designed to support the SOFL three-step approach and related techniques, the functions

provided by the supporting framework can be roughly separated into two major parts. Figure 7.1 shows the major

functions of the framework. The functions in the upper part of Figure 7.1 are used to support the construction

110

of SOFL speci�cations, including informal, semiformal, formal, and class speci�cations. To allow the user to

construct the SOFL formal speci�cation, the supporting framework provides both an editor for writing formal

module speci�cation and a draw board for drawing CDFD. The CDFD draw board is designed especially for

drawing CDFD, and all kinds of components in the CDFD can be easily controlled. Moreover, to facilitate the

designer, we provide a convenient function to automatically keep the consistency between the CDFD and the

associated module speci�cation.

The functions in the lower part of Figure 7.1 are used to support the SOFL formal speci�cations inspection.

Firstly, the constructed CDFD is used to extract possible system functional scenarios, and the generated system

functional scenarios will be used to perform the animation. Then, in the animation process, the information of

the informal and formal speci�cations is used to construct checklist to instruct the inspector carry out inspection.

Finally, an inspected formal speci�cation can be delivered to the programmer for implementation.

Except the �Informal Spec. Editor�, the other functions shown in Figure 7.1 are implemented by the author

of this dissertation himself. More than 40,000 lines of code have been implemented. The details of each function

shown in Figure 7.1 is introduced in the next section.

As shown in Figure 7.2, the architecture of the tool can be divided into three layers. The bottom layer is �XML

File�. It is where the speci�cations are saved. In our framework, all the speci�cations, including informal and

formal speci�cations as well as CDFDs, are saved in XML �les. The XML �les are adopted as bridges to share

information between di¤erent functions in the �Behavior�layer.

The �Behavior� layer includes two categories of functions for manipulating the XML �les. The �rst category

contains the functions that are used to write speci�cations and draw CDFDs, and the other category includes the

functions related to inspection of the formal speci�cation. The user invokes these functions through the interaction

with di¤erent �explorers�in the �Appearance�layer. An �explorer�is a small window in our tool, which displays

speci�c information to the user. To �nish di¤erent tasks, explorers are organized together into di¤erent �Viewers�.

Each �Viewer�provides necessary information and functions for a speci�c task.

Using an uni�ed �le system to save all the speci�cations can make functions be implemented independently.

All the functions use the speci�cation information saved in the same �le format. The developer does not need

to consider the implementation of other functions, as long as he implements the function complying with the

111

Designer

Specification
Organization

Class

Informal

Semiformal

Formal

Formal
Specification
Inspection

Programmer
Inspected Formal

System
Scenarios
Generation

Formal
Specification

Animation

Informal Spec.
Editor

Semiformal
Spec. Editor

Formal Spec.
Editor

Formal CDFD
Draw Board

Class Spec.
Editor

Keeping
Consistency

CDFD

Figure 7.1: The major functions provided by the supporting framework

112

Appearance

Behavior

XML File

……

……

CDFD Files

……

Hierarchy
Explorer

Informal
Editor

Formal
Editor

CDFD Draw
Board

Animation
Dash Board

Questions
Explorer

Creating
SOFL Project

Constructing
Formal Spec.

Drawing
CDFD

Generating
System Scenarios

Animating
Scenario

Project File
Informal
Spec. File

Semiformal
Spec. File

Formal
Spec. File

CDFD
File

Specification Construction Analysis

Figure 7.2: The architecture of the framework

pre-de�ned XML �le format. Such a design is also �exible for integrating other functions in the future.

7.2 Functions Provided in the Framework

As mentioned in the previous section, the user �nishes a task through a speci�c �Viewer�in our framework. In

this section, we introduce the major functions provided in the framework and corresponding �Viewers�.

7.2.1 Speci�cation Organization

According to the development process, a speci�cation for the software system under development is �rst con-

structed, and then veri�ed and validated before it is delivered to the programmer for implementation. In the

SOFL three-step development approach, four kinds of speci�cations will be constructed, including informal, semi-

formal, formal speci�cations, and class speci�cations. Each semiformal or formal speci�cation contains a text

module speci�cation and an associated CDFD representing the architecture of the system. The class speci�cations

are used to de�ne necessary classes used in the formal speci�cation.

113

SOFL Project
(.soflpro)

Class
(.class)

Informal
(.ifSpec)

Formal
(.fModule)

Semiformal
(.sfModule)

CDFD
(.sfCDFD)

CDFD
(.cdfd)

Figure 7.3: The structure of �le system used in the framework

In our framework, all the speci�cations related to the same software system are organized into a SOFL project

as shown in Figure 7.3. We use an independent XML �le with su¢ x �.so�pro� to record the information of the

XML �les used to save speci�cations.

In the framework, the designer can manipulate the SOFL project through the �Hierarchy Explorer�, as shown

in Figure 7.4. This explorer is used to present the hierarchy of the speci�cations contained in a SOFL project.

Di¤erent kinds of speci�cations are organized under corresponding tags. User can create a SOFL project and add

new speci�cations to the current project through context menu. When adding a formal module, two tags will be

created under the �Formal�tag. The tag with su¢ x �.fModule�represents the text module speci�cation, and the

tag with su¢ x �.cdfd� represents the corresponding CDFD of the module. The semiformal module has similar

structure. The user can also rename or delete a speci�cation. All modi�cations in the �Hierarchy Explorer�will

lead to the update of the XML �le used to record the project information.

114

Figure 7.4: The �Hierarchy Explorer�used to manipulate the SOFL project

7.2.2 Informal Speci�cation Editor

The �rst step of the development process is the construction of an informal speci�cation. In our framework, only

one informal speci�cation is written in a SOFL project. The corresponding XML �le will be created in the creation

of a SOFL project. The explorer �Informal Editor�is used to edit the informal speci�cation. It can be opened by

double clicking the corresponding tag in the �Hierarchy Explorer�.

Figure 7.5 shows the �Viewer� for specifying informal speci�cation. The explorer on the left-hand side is the

�Hierarchy Explorer�introduced in the previous section, and the explorer on the right-hand side is the �Informal

Editor�. The structure of the informal speci�cation is �xed in the �Informal Editor�. The three key words

�Functions�, �Data Resources�, and �Constraints�are automatically created for the informal speci�cation. The

number of each requirement item is also automatically maintained. By pressing the �enter�key, the user can create

a new line to specify a new requirement item. The sequence number of this new item will be created automatically

and follows the previous item. The �tab�key and �shift + tab�combined key can move a requirement item to a

lower level and higher level, respectively.

For example, if the user press the �enter�key at the end of the requirement item �F1.1�, the editor will create a

115

Figure 7.5: The user interface for constructing informal speci�cation

new line starting with �F1.2�. The user can specify a new function in this new line. If the user wants to decompose

the function �F1.1�, he can press �tab� key to move the new item to lower level and the sequence number will

become �F1.1.1�automatically. The informal speci�cation is saved in the XML �le using the same structure.

7.2.3 Semiformal and Formal Speci�cations Editor

The semiformal and formal speci�cations can be constructed on the basis of the informal speci�cation. Since the

structures of these two kinds of speci�cations are very similar, our framework provides similar functions to support

the construction of both kinds of speci�cations. Here we only introduce the user interface and related functions

for constructing formal speci�cation to avoid duplication.

As mentioned before, a formal speci�cation in SOFL includes a CDFD and the associated module. In principle,

the CDFD is �rst drawn and the associated module is then completed. Figure 7.6 shows the snapshot of the

interface for editing a formal speci�cation. The center of this interface is an explorer called �CDFD Draw Board�.

The tool bar on the top of this explorer lists the components designed speci�cally for SOFL CDFD, user can add

116

Figure 7.6: The user interface for constructing formal speci�cation

a component to the CDFD by clicking corresponding icon.

The attributes of each component can be modi�ed in the �Property Explorer�, which is at the bottom of the

snapshot shown in Figure 7.6. If the user wants to change some attributes of a component in the CDFD, he �rst

needs to select the component in the �CDFD Draw Board�, and all attributes of this component will be listed up

in the �Property Explorer�. Any modi�cation made in the �Property Explorer�will be re�ected in the �CDFD

Draw Board�directly.

For example, a process named �Check_Password�is selected in Figure 7.6. The attributes of the process �Check

_Password�are listed in the �Property Explorer�, which include �Name�, �Input Port Number�, �Output Port

Number�, and �Color of Shape�. As mentioned in Section 2, in the CDFD, the small rectangles on the left and

right sides of a process represent its input and output ports respectively. The �Input Port Number�and �Output

Port Number� indicate the number of input and output ports. As shown in the �Property Explorer�, the value

of �Input Port Number� is 1 and the value of �Output Port Number� is 3. Correspondingly, the process in the

CDFD contains one small rectangle on the left side and three small rectangles on the right side. If the user changes

117

Figure 7.7: Creating new module by decomposing a process

the value of �Input Port Number�or �Output Port Number�, the number of the small rectangles will be changed

automatically. The attribute �Name�is the text displayed in the center of the rectangle that represents the process,

and the user can change the color of the rectangle by changing the attribute �Color of Shape�.

Moreover, in the �CDFD Draw Board�we provide an alternative way to create a new module. The user can

decompose a process in the CDFD directly to create a lower level module. As shown in Figure 7.7, by clicking the

�Decompose Process� item in the context menu, the dialog used to create new module will be popped up. The

highlighted parts of this dialog is automatically �lled, and it indicates that the new module is decomposed from

process �Check_Password�in module �ATM�. Using this approach to create new module is more straightforward

and complying with the essential idea of SOFL formal speci�cations.

The other explorer shown in Figure 7.6 is the �Formal Editor�that is used to specify the text module speci�ca-

tion. In this explorer, the user is not allowed to edit the entire formal speci�cation directly. Instead, the user edits

a speci�c part of the speci�cation each time. On the top of this explorer, there is a drop-down list that includes

all possible parts of a module speci�cation that can be edited. As shown in Figure 7.8, the formal speci�cation is

divided into several declaration parts and processes. The declaration parts include the constant identi�er, type,

and other declarations introduced in Chapter 2. The user can select a speci�c declaration part or a process to edit.

118

Figure 7.8: The drop-down list in the �Formal Editor�

For instance, in the �Formal Editor�in Figure 7.6, the process �Check_Password�is selected for editing. The

text box under the drop-down list presents the input and output variable lists of the process �Check_Password�.

The user can edit the contents of the process in the rich text box under the variable lists. At the bottom of the

explorer, the entire formal speci�cation is displayed. Any change to the content of the speci�cation will be re�ected

here immediately.

We design the �Formal Editor�like this rather than a plain text editor since it can facilitate us to provide the

function that always keeps the consistency between the CDFD and the module. In our framework, whenever the

CDFD is changed, the module will also be properly updated automatically. Separating a formal speci�cation into

di¤erent editable parts can make this process easier. The formal speci�cation contents that correspond to the

change of the CDFD can be easily located without parsing the speci�cation.

7.2.4 Keeping Consistency between the CDFD and the Module

In a SOFL formal speci�cation, the CDFD is the graphical presentation of a module: it shows how di¤erent

processes are connected and the signature of each process. The signature of a process is similar to the concept in

the programming language, it includes the name of the process, the input and output ports number, and the input

and output variable lists. In the CDFD, a process is represented as a rectangle and its name is displayed in the

center of the rectangle. The small rectangles on the two sides of the process represent the input and output ports,

and the data�ows that connect to each port indicate the input or output variables.

In the construction of SOFL formal speci�cation, drawing CDFD and specifying module are two actions. If

119

the speci�cation needs to be changed, the designer should change both the CDFD and the module. Keeping the

consistency between the CDFD and the module will cost the designer a lot of time and e¤ort, especially when the

formal speci�cation is frequently changed. In order to facilitate the designer to construct the formal speci�cation,

our framework provides a signi�cant function to automatically keep the consistency.

In the framework, we use the following strategy to keep the consistency between the CDFD and the module:

1. If a content in the formal speci�cation can be changed in the CDFD, it should be changed in the CDFD.

That means the change of the contents that are shared by the CDFD and the module should be made in the

CDFD.

2. The same content in the formal speci�cation can only be changed in one place. It means the same information

can be changed either in the CDFD or in the module. If a content is changed in the CDFD, the change

should be automatically re�ected in the module.

Using this strategy to keep the consistency is reasonable. In principle, the CDFD should be drawn before

the associated module is speci�ed. Therefore, if some contents in the formal speci�cation need to be changed,

they should be changed in the CDFD. It is consistent to the procedure of constructing a formal speci�cation.

Furthermore, asking the designer to change a content in one place and using the program to change the content in

the other place can avoid the mistakes made by human.

As mentioned earlier, the intersection between the CDFD and the module is the signature of processes. Based on

our strategy, the signature of the processes should be modi�ed in the �CDFD Draw Board�through the �Property

Explorer�, and any modi�cation will be automatically re�ected in the �Formal Editor�. For example, if the designer

wants to change the name of process �Check_Password�, he should �rst selected the process in the �CDFD Draw

Board�, and then change the value of attribute �Name�in the �Property Explorer�. The new name of the process

will be used to replace the old name of the process in the �Formal Editor�.

A data �ow in the CDFD represents a variable in the module. Each data �ow has two attributes �Name�and

�Type�, and its name is displayed in the CDFD. The designer can change these two attributes in the �Property

Explorer� like other CDFD components. A data �ow in the �CDFD Draw Board� can connect to a process by

docking to one of its port. By docking, we mean the data �ow is �stuck�on the port of the process. When the

120

Table 7.1: The changes that may a¤ect the consistency

NO Event Responding Action

1 Change process�s name Change the process�s name in the module

2 Change process�s input port Disconnect the data �ows connecting to the input port of

number this process, and erase the input variables list in the module

3 Change process�s output port Disconnect the data �ows connecting to the output port of

number this process, and erase the output variables list in the module

4 Add a new process Add a new process to the module

5 Delete a process Disconnect all the data �ows connecting to this process, and

delete the process from the module

6 Change data �ow�s name If the data �ow connects to processes, change the variable�s

name in the variable list of the processes in the module

7 Change data �ow�s type If the data �ow connect to processes, change the variable�s

name in the variable lists of the processes in the module

8 Add a new data �ow If the data �ow connects to processes, add the new variable

to the variable list of the processes

9 Delete a data �ow If the data �ow connects to processes, delete the variable

from the variable list of the processes

10 Connect a data �ow to a process Add the new variable to the variable list of this process

11 Disconnect a data �ow from a Delete the variable from the variable list of this process

process

121

end of a data �ow is close to a port in a certain range, this data �ow will be automatically �stuck� to the port.

If the designer moves the process, the data �ow will be moved accordingly. A data �ow that does not connect to

any process in the CDFD is not re�ected in the associate module. The corresponding variable of a data �ow will

not be listed in the variable list of a process until the data �ow connects to the process.

Table 7.1 lists up the events that may lead to the modi�cation of the associate module. The second column

is the modi�cation made to the CDFD, and the third column describes what will be done by our framework to

keep the consistency. For example, the modi�cation in the sixth line is to change the name of a data �ow. The

program will �rst check whether the data �ow connects to any process. If the data �ow does not connect to any

process, the modi�cation does not a¤ect the module since the data �ow is not re�ected in the module. If the data

�ow does connect to a process, the program needs determine which port of the process it connects to. Finally, the

program will update the variable list of the process in the module, and all the modi�cation will be re�ect in the

�Formal Editor�automatically.

7.2.5 System Functional Scenarios Generation

Generating possible system functional scenarios from a formal speci�cation is a major step to perform our inspection

approach. The algorithm explained in Chapter 4 has been implemented in our framework. After a CDFD is drawn

and all the relevant processes are de�ned in the associated module, all possible system functional scenarios can be

derived based on the topology of the CDFD automatically. The user can use the context menu in the �Hierarchy

Explorer�to derive system scenarios from the selected module or CDFD.

Figure 7.9 shows the snapshot of generating system scenarios. The explorer in the center of Figure 7.9 is �CDFD

Displayer�. Unlike the �CDFD Draw Board�, the user is not allowed to manipulate the CDFD in this explorer.

Since the system scenario generation function is an independent function, any change of the CDFD in the �CDFD

Draw Board�will not be re�ected in the �CDFD Displayer�.

The explorer �Scenario Explorer�at the bottom of the snapshot lists all possible system scenarios derived from

the CDFD. Although some derived scenarios may not be meaningful in representing desired behaviors due to the

fact that the derivation is done merely based on the topology of CDFD without analyzing the semantics of the

processes involved, they can be easily detected during an inspection.

122

Figure 7.9: The snapshot of generating system scenarios

7.2.6 Animation

After all possible system scenarios are generated, the inspector can select one of the system scenarios for inspec-

tion. For example, if the scenario {withdraw_comm} [Receive_Command, Check_Password, Withdraw] {cash} is

selected, the inspector can click the �Animation� item in the context menu to animate the scenario. Figure 7.10

shows the interface for animating a speci�c system scenario.

The structure of the snapshot in Figure 7.10 is similar to the snapshot shown in Figure 7.9, the only di¤erence

is that at the bottom of the snapshot the explorer �Animation Dash Board� overlaps the explorer �Scenario

Explorer�. This new explorer provides a spreadsheet for displaying all of the related variables and their types

automatically derived from the speci�cation, and corresponding values of the variables are inputted by the user

of the tool. These values are actually the test suites introduced in Chapter 4, and they will be displayed in the

CDFD in the animation.

At the top of the explorer �Animation Dash Board�is a tool bar that contains several buttons for controlling the

123

Figure 7.10: The snapshot of formal speci�cation animation

animation process. The buttons allow the user to control the animation step by step or play the entire animation

continuously. In each step of the animation, the input data �ow, output data �ow, and the graphical representation

of the process involved in the animation will be highlighted. The test suites will replace the names of corresponding

data �ows on the CDFD.

7.2.7 Inspection

In our inspection approach, the inspector checks each process involved by following the animation procedure.

Figure 7.11 shows the interface for inspection. To inspect a system scenario, the inspector control the animation

step by step. In each step, a process is animated, then, an explorer known as �Question Explorer�will be popped

up. The �Question Explorer� displays the questions mentioned in Chapter 6 to facilitate the inspection of the

operation scenario and the related inspection targets.

The questions are asked in an interactive manner in the �Question Explorer�. That means only one question

is displayed each time, and the inspector can press the �Next�button to proceed to the next question. As shown

124

Figure 7.11: The snapshot of formal speci�cation inspection

in Figure 7.11, a speci�c question is displayed on the right side of the �Question Explorer�, and all the questions

and their answers are displayed on the left side of the explorer.

We make such design for two reasons. One reason is that the interactive manner can help the inspector to

focus on the current question. If all the questions are lists together, the inspector may have chance to miss some

important questions by carelessness. The other reason is that the later questions on the checklist may need the

answers of the previous questions. Using the interactive manner can ensure the necessary answers are available to

the later questions. After answering all the questions on the checklist, the inspection for one operation scenario is

completed. The animation will proceed to the next operation scenario occurring in the current system functional

scenario and the same inspection procedure will be repeated.

Note that, our framework uses a built-in question template to automatically generate speci�c questions for each

inspection target. The speci�c question can remind the inspection what exactly should be checked. However,

the speci�c checklist cannot be created if the related inspection targets cannot be extracted from the formal

speci�cation. Since the lack of a powerful parser for the formal speci�cation, the current version of our framework

asks the user to input the inspection targets for each system scenario.

125

Figure 7.12: The �evaluator�for operation scenarios

7.2.8 Integrated Functions

The framework introduced in this chapter is not built for the formal speci�cation inspection exclusively. It is

designed for the entire SOFL develop process and related techniques. The well de�ned �le system and interface

make the framework �exible and easy to integrate other functions. In addition to the built-in functions, the current

version of the framework also integrates the functions developed by other researchers.

The �evaluator�provided in the framework is used to evaluate the operation scenarios based on test suites. The

interface of the �evaluator�is shown in Figure 7.12. It is implemented in Java programming language by a master

student in our research team and has been integrated in our framework. In the �evaluator�, the operation scenario

is �rst transformed into a Reverse Polish expression, then the test suite will be used to replace the corresponding

variables for evaluating the expression.

Another integrated function is an pattern system [97] that is used to help the designer easily construct the

formal speci�cation. As shown in Figure 7.13, the user can call this pattern system by using the context menu

in the editable area of the �Formal Editor�. The pattern system will insert the constructed formal speci�cation

segment to the place where the cursor is.

126

Figure 7.13: Invoking the integrated pattern system function

Figure 7.14: Invoking the integrated parser function

127

P1

P2

P4

P3

Figure 7.15: System scenario generation from a CDFD with single loop

The other integrated function is a lightweight parser [98] for the formal speci�cation, which can only do simple

syntax checking. The user can call the parser by using the context menu in the display area of �Formal Editor�.

Figure 7.14 shows the explorer used to display the parsing result.

7.3 Evaluation of System Scenario Generation Function

As discussed in Chapter 4.2.5, the number of combinations between process input ports and output ports

will increase rapidly with the increasing complexity of the CDFD. In this section, we �rst use two examples to

demonstrate the loop structures that can be handled by our supporting tool, then, we use a more complex CDFD

to evaluate the combinatorial explosion problem.

7.3.1 Loop Structures

The CDFDs used in the two demonstrations are the CDFDs shown in Figure 4.5 and 4.9 in Chapter 4. Figure

7.15 shows the system scenarios generated from the CDFD shown in Figure 4.5. The upper left part of Figure

128

A B C D

Loop A Loop B

Figure 7.16: System scenario generation from a CDFD with sequential loops

7.15 presents the original CDFD. Since the current version of the supporting tool provides only straight line for

drawing CDFDs, the data �ow that cases the loop cannot be seen clearly in Figure 7.15. Some part of this data

�ow is coved by process �P1�and �P3�and therefore only part of the data �ow can be seen at the center of the

CDFD.

By using the system scenario generation function of the supporting tool, four system sceanrios are derived from

the CDFD, as explained in Chapter 4.

The second example is deriving system scenarios from the CDFD shown in Figure 4.9. In this CDFD, two loops

are connected sequentially. Figure 7.16 shows the generation results. As mentioned in Chapter 4.2.4, four system

scenarios are generated from the CDFD.

7.3.2 Evaluation of Combinatorial Explosion

In order to evaluate the combinatorial explosion scale of the CDFD with complex structure, we use the supporting

tool to generate system scenarios from a CDFD containing 30 processes. Each process in the CDFD has three

129

Figure 7.17: System scenario generation from a CDFD with 30 processes and no loop structure

Figure 7.18: The main memory usage of generating system scenarios from a CDFD with 30 processes and no loop

structure

130

Figure 7.19: System scenario generation from a CDFD with 30 processes and one loop structure

input ports and three output ports. We �rst generate system scenarios form the CDFD with only sequence and

parallel structures, as shown in Figure 7.17. The supporting tool uses around 1 minute to generate 156246 system

scenarios. The usage of main memory is shown in Figure 7.18. We use the �Windows Task Manage�provided by

Windows 7 Operating System to monitor the usage of the main memory. As shown in Figure 7.18, the supporting

tool uses 330,872K of memory to generate 156,246 system scenarios from the CDFD.

Since the loop structure may increase the complexity of a CDFD, we also use the supporting tool to test the case

of generating system scenarios from a CDFD with loop structure. As shown in Figure 7.19, the CDFD contains

one loop from the third output port node of process �process5� to the third input port of process �process0�,

which are highlighted. The other part of the CDFD is the same as the CDFD in Figure 7.17. The supporting tool

uses around 3 minutes to generate 680,427 system scenarios from the CDFD, which is 435% of the number in the

previous CDFD. This means the one loop contained in the CDFD increases the number of system scenarios by

4.35 times. By monitoring the usage of memory, we found that the supporting tool uses 1,840,344K of memory to

generate the system scenarios, which is the 556% of the memory cost in the previous example. Moreover, there is

131

Figure 7.20: System scenario generation from a CDFD with 10 processes and two loop structures

no inspector willing to inspect the entire 680,427 system scenarios.

In addition to the previous extreme cases, we also use the supporting tool to generate system scenarios from a

CDFD with normal scale. As shown in Figure 7.20, the CDFD contains 10 processes and each process has three

input ports and three output ports. Two loop structures exist in the CDFD. One is from the third output port of

process �process9�to the third input port of process �process2�, and the other is from the third output port of

process �process4�to the third input port of process �process1�. The processes involved in the loop structures are

highlighted in Figure 7.20. The supporting tool uses 46,944k of memory to generate 1,640 system scenarios from

the CDFD.

As indicated by the above examples, the CDFDs with complex structures contain huge amounts of possible

system scenarios and the supporting tool costs too much memory to generate system scenarios from a complex

CDFD. Although the last example indicates that the performance of the supporting tool is good enough to handle

the most common cases in our normal research, we plan to improve both the algorithm and the implementation of

the system scenario generation function to make it more e¢ cient.

132

7.4 Experience of Using the Tool

The functionality of our framework can be separated into two parts. The �rst part is to help designer to

construct SOFL speci�cations. This part of the framework has been used in the teaching of SOFL for at least two

years. Over one hundred students have used the functions of the informal and formal speci�cation editors to build

speci�cations for many applications. This practice allows us to have improved the quality of the tool signi�cantly

in both functions and the GUI structure.

The other part of the framework includes the functions to manipulate and analyze the formal speci�cation,

namely the scenario generation function, the animation function, and the inspection function. The scenario gen-

eration function and animation function have been widely used in public presentations to demonstrate SOFL

approach and related concepts. Since the inspection targets of the formal speci�cation cannot be extracted au-

tomatically at present and have to be inputted by the user, the inspection function has not been widely used.

However, the function has been well tested for evaluating its usability and stability. The experience shows that the

framework is of high quality, stable, and e¢ cient in supporting both speci�cation construction and speci�cation

animation-based inspection.

7.5 Summary

In this Chapter, we introduced a framework for supporting the SOFL speci�cation construction and the entire

speci�cation inspection procedure. This framework is also an platform to integrate third-party functions. The three-

layer structure and the well designed interface make the framework �exible for further extension. We introduced

the functions provided by the framework, and we also indicated how to use these functions to support the formal

speci�cation inspection.

133

Chapter 8

Experiment
In this chapter, we present an experiment on the performance of our formal speci�cation inspection method.

Since the inspection is mainly conducted by human, we invited 55 subjects to join the experiment to avoid the bias

made by individual inspector. The subjects are divided into three groups to inspect the same formal speci�cation

by using two di¤erent inspection methods.

In order to create an experimental environment similar to the practice, we choose students as the subjects of our

experiment. This is because the students have experience in both requirement formalization and programming,

and they are similar to practitioners in industry.

In this experiment, we intend to evaluate our inspection approach from the following aspects:

1. Whether our inspection approach can perform better than other inspection method if the experience of the

inspectors are at the same level.

2. Whether the facility provided by our inspection approach can o¤set the di¤erence on the experience of

di¤erent inspectors.

3. Whether the domain knowledge of inspector a¤ects the performance of our inspection approach.

4. Whether the traceability related questions adopted in our inspection approach can help inspector detect

more defects that a¤ect the consistency between the informal and formal speci�cations than other inspection

method.

In the following of this Chapter, we �rst introduce the experimental environment, then we explain how the

experiment is conducted, and �nally we analyze the results of the experiment and point out the �ndings we found

in this experiment.

134

8.1 Experiment Settings

In this section, we introduce the environment of our experiment. The background of the target formal speci�ca-

tion is �rst explained brie�y. Then, we discuss how the subjects are selected and the approach we used to conduct

the experiment.

8.1.1 Background of the Target Speci�cations

The target formal speci�cation in our experiment describes a security transaction system. Similar to the investor

in the real stock market, each user of this system has two accounts, one is a security account and the other is

a bank account. By security, we mean tradable �nancial asset, such as bond, stock, or future, etc. Since the

security account is not allowed to save money, it must be combined with a bank account which provides the money

to support the transactions. The user can use the security account to buy and sell securities, and use the bank

account to �nish the normal banking transactions. When a user tries to buy a security, the system will check

whether the combined bank account has enough balance to support this transaction. If the balance is enough,

the system will deduct the necessary amount from the bank account and �nish the transaction. Otherwise, the

system will deny this transaction. In the sell transaction, the system will credit the amount gained from selling

the security to the combined bank account.

We constructed both the informal and formal speci�cations of the system. In the informal speci�cation, we

described �ve �rst-level functions of the system, including �Deposit�, �Withdraw�, �Show Balance�, �Buy�, and

�Sell�. Each of these �ve functions is decomposed to several lower level functions. In addition to the functions,

four data resources and twelve constraints are speci�ed.

The informal speci�cation was formalized into a formal speci�cation containing nine processes, as shown in

Figure 8.1. In order to evaluate the performance of our inspection approach, we inserted 70 bugs into the formal

speci�cation. The subjects of our experiment are required to inspect the formal speci�cation against the informal

speci�cation to �nd as many bugs as they can. Table 8.1 summarizes the requirement items and the inspection

targets in the informal and formal speci�cations, respectively.

135

Figure 8.1: CDFD of the traget formal speci�cation

Table 8.1: The requirement items and inspection targets in the experiment

Informal Formal

Requirement Item Number Inspection Target Number

function 28 system scenario 11

data resource 4 operation scenario 22

constraint 12 (state variable, type) 3

(function, data resource) 22 invariant 14

(function, constraint) 26 (operation scenario, state variable) 74

(data resource, constraint) 8 (operation scenario, invariant) 23

(state variable, invariant) 8

136

Table 8.2: The three groups in the experiment

Group Person Number Experience in SOFL Inspection Method

Group A 19 Good experience Traditional checklist based inspection

Group B 18 Good experience Our proposed animation based inspection

Group C 18 Normal experience Our proposed animation based inspection

8.1.2 Subjects

All of the subjects who are invited to our experiment have studied the SOFL three-step development approach, but

have di¤erent experience in writing SOFL formal speci�cations. For example, some of the subjects have studied

the SOFL for two to three years. These students can understand the SOFL formal speci�cation and the process

to develop software system using SOFL. They have written several SOFL formal speci�cations in related lectures

and projects. There is a group of subjects who do not have much experience in SOFL. In the SOFL class in this

semester, they have been taught the SOFL development approach and required to construct SOFL informal and

formal speci�cations for two di¤erent systems. Moreover, all the subjects who join the SOFL class have been

taught the inspection technique and have done some class exercise to inspect the speci�cations of each other.

In our experiment, the subjects are divided into three groups based on their experience on SOFL. Every group

is required to inspect the same formal speci�cation described in the previous section but using di¤erent inspection

methods. One inspection method used in the experiment is the inspection method proposed in this dissertation,

which using animation as reading technique and utilizing traceability to build speci�c checklist for each inspection

target. The other inspection method is the traditional checklist-based inspection method. In this method, the

checklist is the only guidance to guide the inspector to check the formal speci�cation, and the abstract questions

on the checklist is suitable for the entire speci�cation.

Table 8.2 shows how the subjects are divided and the number of subjects in each group. As shown in the

table, the students with good experience in SOFL are divided into �Group A�and �Group B�, where by �good

experience�we mean the experience in using the SOFL language more than one year. These two groups are required

to use the two di¤erent inspection methods to inspect the formal speci�cation. We make such arrangement since

we want to compare the performance of our inspection method with the other method to evaluate its e¤ectiveness.

137

As mentioned previously, the inspection mainly conducted by human, di¤erent inspection methods can provide

di¤erent guidance to the inspector but cannot make decision for him. In order to compare the performance of the

two di¤erent inspection methods, the inspectors who use the di¤erent methods should be at the same level. They

must have similar experience in using SOFL formal speci�cations; otherwise, the credibility of the comparison will

be a¤ected. The reason we choose the traditional checklist-based inspection method is that it is the most frequently

used inspection method in industry [99] [100].

The subjects with normal experience in SOFL (i.e., experienced using SOFL less than half year) are divided into

�Group C�and they are required to inspect the formal speci�cation by using our inspection approach. This will

allow us to compare the result of Group C and that of Group A to see whether the systematic guidance provided

by our inspection method can help o¤set the subjects�lack of experience in SOFL and to what extent.

8.1.3 Categories of Bugs

Since the major concern of our inspection approach is to check the consistency between the informal and formal

speci�cations, we roughly divide the 70 inserted bugs into two categories: consistency and inside. By consistency,

we mean the consistency between the informal and formal speci�cations. If a bug breaks the consistency between

the two speci�cations, it will be included in the �Consistency�category. Note that whether a bug is a �Consistency�

bug cannot be formally de�ned. In principle, if a bug violates the informal speci�cation directly, it is considered

as a �Consistency�bug. If a bug cannot be categorized as �Consistency�bug, it is realized as an �Inside� bug

which only a¤ect the correctness and internal consistency of the formal speci�cation. We separate the bugs in

this dimension since the traceability between the informal and formal speci�cations is adopted in our inspection

method and we intend to verify whether the traceability related questions can help the inspector detect more bugs

that a¤ect the consistency between these two speci�cations.

As shown in Table 8.3, the bugs in each category are further separated into more detailed classi�cations. Here

we use speci�c bugs as examples to introduce each bug classi�cation respectively

1. Unde�ned state variable (USV) (Number of bugs: 1)

Since four data resources are described in the informal speci�cation, four state variables should be de�ned in

the formal speci�cation to formalizes the data resources. In the target formal speci�cation, we deleted one

138

Table 8.3: The detailed classi�cations of bugs

Category Classi�cation Number Total

Unde�ned state variable (USV) 1

Inappropriate invariant de�nition (IID) 3

Consistency Undeclared state variable (UDSV) 4 30

Inappropriate state variable declaration (ISVD) 4

Inappropriate process de�nition (IPD) 18

Declaring with inappropriate type (DWIT) 11

SOFL-speci�c bugs (syntax, or logical expressions) (SSB) 10

Inside Using inconsistent variable (UIV) 10 40

Using unde�ned items of types (UUIT) 7

Using incorrect state variable name (UISVN) 2

process Deposit(acc1: Bank_Account, d_amount: real)msg_2: string

pre true

post acc1.balance = acc1.balance + deposit_amount or msg_2 = “Deposit Success!”

end_process

Figure 8.2: The process �Deposit�in the target formal speci�cation with bugs

process Withdraw(acc2: Bank_Account, w_amount: real) cash: real | msg_3: string
ext rd #Bank_Account_Flle
pre true
post acc2.balance <= withdraw_amount and acc2.balance = acc2.balance + w_amount

and cash = w_amount or acc2.balance <= withdraw_amount and msg_2 = “Balance
Is Not Enough!”

end_process

Figure 8.3: The process �Withdraw�in the target formal speci�cation with bugs

139

process Receive_Bank_Comm(input1: string | input2: string | input3: string) comm_info:
Security_Comm_Info
pre true
post input1 = “deposite” and comm_info = <deposite> or input2 = “withdraw” and

comm_info = <withdraw> or input3 = “show_balance” and comm_info =
<show_balance>

end_process

Figure 8.4: The process �Receive_Bank_Comm�in the target formal speci�cation with bugs

of the state variables, therefore the unde�ned state variable is one bug in the speci�cation.

2. Inappropriate invariant de�nition (IID) (Number of bugs: 3)

The invariants are de�ned to formalize the constraints described in the informal speci�cation, in the target

formal speci�cation, we de�ned three inappropriate invariants. For example, the constraint �C3.2 �requires

that �ID number of each bank account should be 7 digital numbers�, but in the formal speci�cation, we de�ne

the corresponding invariant as �forall[a: Bank Account] j len(a.id) = 4�. The invariant contains a bug since

it does not satisfy the requirement.

3. Undeclared state variable (UDSV) (Number of bugs: 4)

The state variables used in a process must be declared in front of the pre-condition of the process. Whether a

state variable should be used by the process should be decided according to the informal speci�cation. If the

process realizes a function that uses a data resource, the process must use the state variable that formalizes

the data resource. If the necessary state variable is not declared in the process speci�cation, there is a

bug. For example, according to the informal speci�cation, the process �Deposit�shown in Figure 8.2 should

use the state variable �Bank_Account_File�, which presents the database of all bank accounts. But in the

target formal speci�cation, we remove the declaration of �Bank_Account_File�from the process �Deposit�.

Therefore, a bug exists in the �Deposit�process speci�cation.

4. Inappropriate state variable declaration (ISVD) (Number of bugs: 4)

140

In the declaration of a state variable, the key words �wr�and �rd�are used to indicate whether the state

variable will be changed by the process or read only by the process, respectively. In the target formal

speci�cation, we insert some inappropriate state variable declarations to the process speci�cations. For

example, the process �Withdraw� shown in Figure 8.3 de�nes the function to allow the user to withdraw

money from his bank account. The state variable �Bank_Account_File� is used in the process. Since the

process needs to change the state variable after the withdraw being successfully �nished, the state variable

should be declared with key word �wr�. But in the target speci�cation, the state variable is declared with

key word �rd�. That means the declaration of the state variable is inappropriate.

5. Inappropriate process de�nition (IPD) (Number of bugs: 18)

The inappropriate de�nitions are the bugs that a¤ect the functionality of the processes. This kind of bug

can be caused by using inappropriate logical operators. For example, based on the functionality of process

�Deposit� shown in Figure 8.2, the two predicates �acc1.balance = acc1.balance + deposite_amount�and

�msg_2 = �Deposit Success!��should be conjunctively connected by using key word �and�. But in the target

formal speci�cation, these two predicates are disjunctively connected by using key word �or�, and therefore

the desired functionality of process �Deposit�is not appropriately de�ned. In addition to using inappropriate

operators, the IPD bugs can also be caused by missing important functionality. For example, the constraint

�C3.4 � in the informal speci�cation requires that �Maximum withdraw amount is 300,000�. But in the

de�nition of process �Withdraw�shown in Figure 8.3, this constraint is not formalized, and therefore a bug

exists in the process speci�cation.

6. Declaring with inappropriate type (DWIT) (Bugs number: 11)

This kind of bugs declare the variables with inappropriate types in the variable lists of processes. For

example, as shown in Figure 8.4, the output variable of process �Reveive_Bank_Comm�is �comm_info�,

which is used to transfer the command information to the succeeding process �Bank_Account_Authorize�.

The correct type of �comm_info�should be �Bank_Comm_Info�, but in the target formal speci�cation, we

declare the variable �comm_info�with inappropriate type �Security_Comm_Info�.

7. SOFL-speci�c bugs (SSB) (Bugs number: 10)

141

In the SOFL formal speci�cation, all the variables are transferred as values and there is no reference variable.

Moreover, the predicates in pre- and post-conditions only describe the conditions that need to be satis�ed

and cannot be executed. For example, the predicate �acc1.balance = acc1.balance + deposit_amount�in the

post-condition of process �Deposit�is trying to state that the �balance�of �acc1�should be updated after

the execution of �Deposit�, and the updated value should equal to �acc1.balance + deposit_amount�. If the

predicate is a statement in the programming languages, like Java or C#, it is de�ned correctly and the value

of the �balance�will be changed after the execution of the statement. But in the SOFL formal speci�cation,

the predicate is de�ned incorrectly, the value of �balance�cannot be updated by using the predicate, instead,

the designer should use SOFL built-in method �modify�to update the value of �balance�.

8. Using inconsistent variable (UIV) (Bugs number: 10)

By using inconsistent variables, we mean the variables used in the pre- and post-conditions are not consis-

tent with the variables declared in the variable list of the process. For example, the variable �w_amount�

is declared in the input variable list of process �Withdraw� shown in Figure 8.3, however, both the vari-

able �w_amount�and �withdraw_amount�are used in the post-condition. Althought the variable �with-

draw_amount�is not declared in the variable list, it represents the same meaning as the variable �w_amount�.

We consider the variables that have features like �withdraw_amount�as inconsistent variables.

9. Using unde�ned items of types (UUIT) (Bugs number: 7)

The types de�ned in the SOFL formal speci�cation may have more than one items. For example, the

type �Bank_Comm_Info� is de�ned as a �enumeration� type and contains three values: �<deposit>�,

�<withdraw>�, and �<balance>�. In the process �Reveive_Bank_Comm�, the variable �comm_info�should

be declared with type �Bank_Comm_Info�and have one of its three values, However, the last predicate in

the post-condition of the process is �comm info = <show_balance>�, and the value �<show_balance>�is

not one of the values of the type �Bank_Comm_Info�.

10. Using incorrect state variable name (UISVN) (Bugs number: 2)

As mentioned above, if a state variable needs to be used in a process, it must be declared in front of the

precondition of the process. In the declaration, the name of the state variable must be used correctly,

142

Table 8.4: The categroies of bugs

Dimension Category Number of Bugs Total Number of Bugs

From domain point of view Bank 33 70

Security 37

otherwise the declaration is considered incorrect. In the target formal speci�cation, we declared two state

variables with incorrect names.

In addition to dividing the inserted bugs in the consistency dimension, we also separate the 70 bugs in the

domain dimension. Table 8.4 shows the further division of the domain dimension into two categories and the

number of bugs in each category.

As introduced in the previous section, the system described in the formal speci�cation includes two parts. One

part is used to support the security transaction, and the other part is used to support the banking transaction.

As shown in Table 8.4, we separate the bugs that belong to di¤erent domains. We divide the bugs in this

dimension because we believe that whether the inspector has the domain knowledge of the system described in

the formal speci�cation can signi�cantly a¤ect the inspection results. Since the subjects of this experiment are

all students, they must have domain knowledge in banking transaction but may not have domain knowledge in

security transaction. The number of bugs in each category that can be found in the inspection can reveal the

extent of e¤ect caused by domain knowledge.

8.2 Experiment Implementation

In the experiment, each subject is given two hours to do the inspection. Di¤erent documents are distributed to

the subjects based on the inspection method they use. The details of the documents distributed to each group are

described as follows.

8.2.1 The Documents for Traditional Checklist-based Inspection

Since the subjects in Group A are asked to use the traditional checklist-based inspection method to check the

formal speci�cation, three kinds of documents are distributed, including the informal speci�cation, the formal

143

speci�cation, and a checklist. The formal speci�cation includes the CDFD and associated module speci�cation.

The questions on the distributed checklist are abstract questions. For instance, one of the questions on the

checklist is �Whether function is appropriately formalized in the formal speci�cation?�. This question reminds

the inspector to check whether the function described in the informal speci�cation is appropriately realized in

the formal speci�cation, but it does not contain any information to indicate what part of the formal speci�cation

should be checked to answer this question. We built the checklist in this way based on the following three major

concerns:

1. The traditional checklist-based inspection method is usually used to check informal speci�cations, therefore,

the questions on the checklist provided to Group A are asked from the informal speci�cation perspective.

2. The questions used in the traditional checklist-based inspection method are abstract questions, therefore, we

did not provide any information of the formal speci�cation in the checklist.

3. In this experiment, the traditional checklist-based inspection method is used to compare with our inspection

method. Since the traceability-based checklist is one of the major portions of our inspection method, the

checklist used in the traditional checklist-based inspection should not overlap with our traceability-based

checklist.

In the inspection, the subjects are required to mark the place where they think there is a bug. The subjects are

asked to �nd as many bugs as they can, and we calculate how many bugs they have found after the experiment.

8.2.2 The Documents for IBSAT

The subjects in Group B and C are asked to use our inspection approach to inspect the formal speci�cation and

two documents are distributed. One is the informal speci�cation and the other is a document that combines the

formal speci�cation and the checklist. The informal speci�cation distributed to Group B and Group C is the same

informal speci�cation we distributed to Group A. The formal speci�cation that we provide to Group B and Group

C is prepared based on the procedure of our inspection method and the functions provided by our framework.

In our inspection approach, the inspector reads through the formal speci�cation by following the animation

process, therefore, the formal process speci�cations provided to Group B and Group C are reorganized according

144

1.	Questions	for	process	“Receive_Bank_Comm”
process Receive_Bank_Comm(input1: string) comm_info: Security_Comm_info
pre true
post input1 = “deposit” and comm_info = <deposit>
end_process

Q1: Whether the name “Receive_Bank_Comm” is appropriate?

Q2: Whether the name and type of input variable “input1” are appropriate?

Q3: Whether the name and type of output variable “comm_info” are appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre­ and post­condition?

Q7: Whether the variables and their types in the pre­ and post­condition are used appropriately?
Variable Type
input1 string
comm_info Security_Comm_Info

Q8: Whether the invariants related to process "Receive_Bank_Comm" are defined correctly?

Q9: What constraints in the informal specification are formalized by these invariant?

Receive_Bank_Co
mm

Bank_Account_Au
thorize

input1

comm_info

bank_id

bank_pas
s

Bank_Account_File

msg_1

Figure 8.5: The document used in the experiment

145

2.	Questions	for	process	“Bank_Account_Authorize”
process Bank_Account_Authorize(bank_id: string, bank_pass: string, comm_info: Security_Comm_info) msg_1: string
pre true
post exists![x: Bank_Account_File] | (x.id = bank_id) and msg_1 = "Error!"
end_process

Q1: Whether the name “Bank_Account_Authorize” is appropriate?

Q2: Whether the name and type of input variables “bank_id”, “bank_pass”, and “comm_info” are appropriate?

Q3: Whether the name and type of output variable “msg_1” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre­ and post­condition?

Q7: Whether the variables and their types in the pre­ and post­condition are used appropriately?
Variable Type
Bank_Account_File Bank_Accounts
x.id nat0
bank_id string

Q8: Whether the data store “Bank_Account_File” is declared appropriately with “wr” or “rd”?

Q9: What data resources in the formal specification is formalized by the data store “Bank_Account_File”?

Q10: Whether the invariants related to process “Bank_Account_Authorize” are defined correctly?
forall[a: Bank_Account] | len(a.id) = 4;
forall[a: Bank_Account] | len(a.password) = 7;
forall[a, b: Bank_Account] | a <> b => a.id <> b.id;

Q11: What constraints in the informal specification are formalized by these invariant?

Figure 8.6: The document used in the experiment (contiune)

to the animation process. We �rst use the supporting tool to generate the system scenarios from the CDFD shown

in Figure 8.1. Then, we prepare the checklist for each derived system scenario. For example, Figure 8.5 and 8.6

show the document used in the experiment for inspecting the �rst system scenario in the CDFD.

The system scenario that needs to be checked is {input1}[Receive_Bank_Comm11, Bank_Account_Authorize11]

{msg_1}, and two processes are involved in this system scenario. According to our inspection method, the

inspector should check the process speci�cations of �Receive_Bank_Comm11�and �Bank_Account_Authorize11�

sequentially. Therefore, we provide two independent checklists for the two processes respectively. The checklist

shown in Figure 8.5 is used to inspect the process �Receive_Bank_Comm11�, and the checklist shown in Figure

8.6 is used to examine the process �Bank_Account_Authorize11�. In each checklist, we �rst provide the formal

speci�cation related to the process, and then give a list of questions for inspecting the process. The subjects in

the experiment are asked to answer each question and mark the place where they think there is a bug.

146

The questions in the checklist are modi�ed to be suitable to be done on the paper document. The modi�cation

is made based on the following principles:

1. The questions should be independent to each other.

By independent, we mean that a question should not be formed based on the answers of the previous

questions. In the supporting tool, the answers of the previous questions will be recorded and reused to

construct the following questions based on the built-in question templates. However, in the paper document,

the questions are provided in advance, and the answers of the previous questions cannot be reused to construct

new questions. For example, one of the questions in the original checklist is �What functions in the informal

speci�cation are formalized by this process?�. If the answer is �f�, then the answer �f�will be reused to

form the question �Whether the name of the process re�ects the essential idea of the function �f �?�. But in

the paper document, the answer �f � is only a reminder to the subjects that the functions �f� should be

considered when answering other questions.

2. The questions should be easily understood by the subjects.

Science the subjects in our experiment are students, they do not have much experience in analyzing formal

speci�cations. Therefore, the questions in the checklist should be formed to be easily understood. For

example, we avoid to use the term �operation functional scenario� to form the questions since it is the

concept used to analyze the formal speci�cation. Instead, we use the term �process�to form the questions

to help the subject understand the checklist.

3. The scale of the checklist should be limited.

According to [53], the questions in a checklist should not be more than one single page. We compress the

number of the questions and only raise the typical questions from traceability and the four aspects introduced

in Chapter 6. Moreover, we eliminate some long and complicated questions since they a¤ect the readability

of the checklist. For example, in the supporting tool, the question �In the formal speci�cation, function �f �

uses the data resource �d�, whether the process uses the state variable that formalizes the data resource �d�?�

can be formed based on the answers of the previous questions. But in the paper document, the same question

needs to be asked as �Whether the process uses the state variable that formalizes the data resource used by

147

its original requirement function described in the informal speci�cation?�Obviously, the latter question is

ambiguity and will a¤ect the readability of the checklist.

The paper document distributed to Group B and C is prepared by complying with the underlying

principle of our inspection approach. As mentioned in Chapter 3, the two major portions of our inspection

approach are the animation-based reading technique and the traceability-based checklist. Although the animation

cannot be performed on the paper document, we reorganize the formal speci�cation so that the subjects in the

experiment can read the speci�cation by following the animation procedure. We also provide checklists to each

process involved in the animation, and the questions are raised based on the traceability and the four aspects,

according to the proposed inspection approach. Because the purpose of this experiment is to evaluate the

performance of our inspection method, using paper document to conduct the experiment does not

a¤ect the experiment results and their analysis.

The major reason we use paper document rather than the supporting tool to conduct the experiment is that

using paper document is easy for the subjects marking the bugs. And the marks on the paper document can help us

to further analyze our inspection approach. For example, a subject may write something or mark on the question

when he tries to answer the question. Such kind of information can be used to help us improve the questions

used in the inspection. Note that using paper document does not mean the framework is not important. Actually,

the framework is extremely important since it provides the functions to automatically prepare the contents and

information included in the paper document, and it saves a lot of e¤ort.

Another reason we do not use the supporting tool is that the subjects in the experiment are not familiar with

the animation and inspection functions provided by the tool. The inspection function of the tool provides an

interactive manner to raise questions, and it is di¢ cult for the subjects to adapt to the tool in the limited time.

Using paper document to perform the experiment can make it more e¢ cient.

8.3 Results Analysis

Based on the marks made by the subjects, we count the bugs found by each subject. In addition to the bugs

we inserted to the formal speci�cation, we �nd that the subjects also discovered some bugs contained in the target

formal speci�cation but not inserted by us. The new discovered bugs are all security-related inside bugs, including

148

2 DWIT bugs, 1 UUIT bug, and 10 UIV bugs. To distinguish with the inserted bugs, the new discovered bugs are

called �inherited bugs�. Table 8.5, 8.6, and 8.7 list up the inspection results of each subject in di¤erent groups,

respectively, the number of bugs detected by each subject includes both the inserted bugs and inherited bugs.

We include the inherited bugs found by each subject in the �nal result because the detected inherited bugs took

the opportunity cost of the subject to detect inserted bugs. This means that the subject used his time and e¤ort

that can be used to detect the inserted bugs for detecting the inherited bugs. Therefore, using both the inserted

and inherited bugs to calculate the results is more appropriate.

Since Table 8.5, 8.6, and 8.7 have the same structure, we only explain the data in Table 8.5 and the data in 8.6,

and 8.7 can be understood in the same way.

Totally 19 raws of data are included in Table 8.5, each raw represents one subject in Group A. The second

column in the table is the total number of bugs found by each subject, including both inserted and inherited

bugs. The number �83�in the head of this column indicates that totally 83 bugs are included in the target formal

speci�cations (70 inserted bugs and 13 inherited bugs found by the subjects). From the third column to the twelfth

column list the number of bugs found by the subjects based on the bug classi�cations explained in the previous

section. Each bug classi�cation is indicated by its abbreviation as introduced in Table 8.3. The number under

each abbreviation is the total number of the bugs of each classi�cation. Note that the total numbers of the bugs of

the classi�cations DWIT, UUIT, and UIV are di¤erent from the numbers introduced in Table 8.3. This is because

the number of inherited bugs that belong to these three classi�cations are included. For example, we inserted 11

DWIT bugs into the target formal speci�cation, and 2 inherited DWIT bugs are found by the subjects, therefore,

the total number of DWIT bugs is 13 (11 + 2), as shown in the eighth column in the table.

In this section, we �rst analyze the experiment results from macrolevel, namely, comparing the average results

between di¤erent groups, and then analyze why some bugs are not found by using our inspection approach.

8.3.1 Comparison between Di¤erent Groups

Table 8.8 summarizes the inspection results and relevant statistics for each group. The second column in Table

8.8 lists the average number of bugs that have been found by the subjects in each group. The third column

indicates the percentage of the bugs found by each group. The forth and �fth columns in the table are the

149

Table 8.5: The detailed results made by the subjects in Group A

No Total Consistency Inside

USV IID UDSV ISVD IPD DWIT SSB UIV UUIT UISVN

(83) (1) (3) (4) (4) (18) (13) (10) (20) (8) (2)

1 30 0 2 2 2 5 5 0 8 6 0

2 25 0 3 1 3 2 3 0 11 2 0

3 13 0 2 1 2 0 2 0 5 1 0

4 37 0 3 3 2 6 9 0 11 2 1

5 35 0 0 4 4 5 3 0 18 1 0

6 4 0 0 0 0 2 0 0 2 0 0

7 34 0 3 1 4 7 6 0 10 3 0

8 30 0 0 0 4 2 4 0 15 4 1

9 39 0 3 2 3 6 9 0 14 2 0

10 26 0 3 0 0 3 7 0 13 0 0

11 20 0 3 1 2 3 0 0 9 2 0

12 8 0 0 0 0 2 2 0 4 0 0

13 16 0 3 0 4 4 2 0 3 0 0

14 6 0 1 1 0 1 0 0 3 0 0

15 30 0 0 0 0 5 4 0 15 6 0

16 32 0 2 1 4 3 12 0 8 2 0

17 14 0 0 0 0 3 4 0 6 1 0

18 20 0 0 1 4 5 4 0 5 1 0

19 15 0 0 1 2 5 5 0 1 1 0

150

Table 8.6: The detailed results made by the subjects in Group B

No Total Consistency Inside

USV IID UDSV ISVD IPD DWIT SSB UIV UUIT UISVN

(83) (1) (3) (4) (4) (18) (13) (10) (20) (8) (2)

1 39 0 3 4 4 8 7 0 12 1 0

2 25 0 0 2 4 5 5 0 7 2 0

3 25 0 2 3 1 4 6 0 7 2 0

4 30 0 3 4 4 7 6 0 6 0 0

5 45 0 1 2 4 6 9 0 16 7 0

6 42 0 3 4 4 7 9 0 10 5 0

7 43 0 3 2 4 7 8 0 12 7 0

8 28 0 2 2 4 4 6 0 6 4 0

9 48 0 3 4 2 11 6 0 15 6 1

10 32 0 3 3 2 6 5 0 10 3 0

11 31 0 2 3 4 5 7 0 9 1 0

12 28 0 2 2 4 2 2 0 12 4 0

13 44 0 3 4 4 6 6 0 16 5 0

14 28 0 3 2 3 3 5 0 10 2 0

15 48 0 3 2 4 8 9 0 17 5 0

16 23 0 3 2 4 4 2 0 7 1 0

17 39 0 3 4 4 6 8 0 9 5 0

18 30 0 3 1 4 4 4 0 10 4 0

151

Table 8.7: The detailed results made by the subjects in Group C

No Total Consistency Inside

USV IID UDSV ISVD IPD DWIT SSB UIV UUIT UISVN

(83) (1) (3) (4) (4) (18) (13) (10) (20) (8) (2)

1 13 0 2 1 3 2 2 0 3 0 0

2 21 0 2 3 2 4 3 0 6 1 0

3 14 0 2 1 1 1 2 0 7 0 0

4 16 0 2 2 0 1 4 0 6 1 0

5 15 0 2 2 1 2 3 0 5 0 0

6 17 0 2 2 1 3 3 0 6 0 0

7 16 0 2 0 0 3 5 0 6 0 0

8 16 0 2 2 2 1 4 0 5 0 0

9 30 0 2 2 1 5 6 0 12 2 0

10 8 0 2 1 3 1 0 0 1 0 0

11 13 0 0 2 3 0 4 0 4 0 0

12 22 0 3 1 3 3 1 0 9 2 0

13 21 0 1 2 2 1 5 0 9 1 0

14 22 0 1 1 1 5 4 0 8 2 0

15 16 0 0 2 1 3 3 0 7 0 0

16 11 0 2 0 1 3 2 0 3 0 0

17 16 0 0 1 2 0 7 0 4 2 0

18 12 0 0 1 0 2 6 0 3 0 0

152

Table 8.8: The inspection results of each group and revelant statistics

Group Average Number Percentage of Bugs Variance Standard Deviation

of Bugs (A) (A / 83 � 100%)

Group A 22.8 27.5% 112.9 10.6

Group B 34.9 42% 68.3 8.3

Group C 16.6 20% 24.5 4.9

variance and standard deviation each group, which are used to measure the variation or dispersion of the number

of bugs found by di¤erent subjects in the same group. The higher the value of these two measurements, the larger

the di¤erence between two results in the same group.

For instance, the subjects in Group A found 22.8 bugs on average. These bugs are 27.5 percentage of the 83

total bugs (70 inserted bugs + 13 inherited bugs). The variance of the number of bugs found by the subjects in

Group A is 112.9, and the standard deviation is 10.6.

Comparing the numbers in the second column of Table 8.8, we can �nd the subjects in Group B found 53.1%

((34.9 - 22.8) / 22.8 � 100%) more bugs than the subjects in Group A on average. Since the subjects in these

two groups are at the same level, we believe that our inspection method is more e¤ective than the traditional

checklist-based inspection method. This advantage may result from the fact that our inspection method provides a

systematic and practical reading technique and a traceability-based checklist with speci�c questions. The reading

technique and the checklist are combined together to provide the inspector with speci�c instructions and necessary

information that can help them to make judgement. In contrast, the traditional checklist-based inspection method

only provides a checklist with abstract questions and does not provide any guidance to instruct the inspector to

read through the speci�cation or use the checklist. Therefore, we make the following conclusion:

Conclusion 1 Our inspection method is more e¤ective than the traditional checklist-based inspection method to

help the inspector to detect the defects in the formal speci�cation.

The numbers in the second column of Table 8.8 also indicates that the subjects in Group B found 110.2% ((34.9

- 16.6) / 16.6 � 100%) more bugs than the subjects in Group C on average. Since the subjects in these two

groups use the same inspection method, we believe that this result is mainly caused by the di¤erence of subjects�

153

experience in SOFL formal speci�cation. As mentioned previously, the subjects in Group B have better experience

in SOFL than the subjects in Group C, therefore, we believe that the inspector with better experience will do

better in an inspection.

Another evidence also supports this conclusion. This evidence is that the subjects in Group A found 37.3%

((22.8 - 16.6) / 16.6 � 100%) more bugs than the subjects in Group C on average. In the experiment, the subjects

in Group A have better experience than the subjects in Group C, but according to Conclusion 1, the subjects in

Group C used a more e¤ective inspection method. The result indicates that the advantage in experience helps the

subjects in Group A to make better result than the subjects in Group C even the subjects in Group C used a more

e¤ective method.

Moreover, we �nd that using a more e¤ective inspection method can help to o¤set the di¤erence caused by the

lack of experience. This is because Group B found 110.2% more bugs than the subjects in Group C but Group A

found only 37.3% more bugs. Merely according to the data collected from the experiment, we believe that using

our inspection method can o¤set 66.1% of the di¤erence caused by the lack of experience, which is calculated using

the following formula:

(Bugs found by Group B � Bugs found by Group C) � (Bugs found by Group A � Bugs found by Group C)
(Bugs found by Group B � Bugs found by Group C) � 100%

Although this number is not enough to conclude in what extent our inspection method can help to o¤set the

di¤erence caused by the lack of experience, it does indicate that using our inspection method can help to o¤set

the di¤erence.

Based on the above observations, we can get the following conclusion:

Conclusion 2 The experience of an inspector can a¤ect the result of an inspection. The inspector with more

experience will make better result, but using a more e¤ective inspection method can help to o¤set the di¤erence

caused by the lack of experience.

The last two columns in Table 8.8 is the variance and standard deviation of the results of each group. Variance

and standard deviation measure the variation or dispersion of the number of bugs found by di¤erent subjects in a

group from the average number of bugs found by the group. If the variance of a group is relatively large, it means

the di¤erence between two results in this group is relatively large, and each result is far away from the average

154

result of this group. Therefore, a relatively small variance indicates that each individual subject in the group make

similar result and the result is close to the average result of the group.

As shown in Table 8.8, the variance and standard deviation of Group A are much larger than those of Group

B and C. That means comparing the Group A, the subjects in Group B and C found similar number of bugs to

other subjects in the same group. Since the subjects in the same group have similar experience in SOFL and they

are divided only based on their experience, we think the variation of subjects�abilities of each group should be

similar. By ability, we mean the capability to use knowledge and experience to �nish a speci�c task.

Therefore, we believe that the subjects in Group B and C used a more systematic inspection method that leads

to the result that the subjects in the same group �nd similar number of bugs. This is reasonable because our

inspection method provides more detailed instructions than the traditional method. For example, we �nd that

some subjects in Group A ignored the bugs inserted to invariants. But in our inspection method, the invariants are

considered as inspection targets. The subjects in Group B and C rarely ignored these bugs since speci�c questions

about each invariant are asked in the checklist.

Based on the reasons discussed above, we make the following conclusion:

Conclusion 3 Regardless of the variation of the abilities of the individual inspectors with similar experience,

using our inspection method can ensure that the inspection results of di¤erent inspectors are closer than using the

traditional checklist-based inspection method.

The target formal speci�cation used in our experiment contains two parts that are related to di¤erent domains.

One part describes the functions used to support banking transactions and the other describes the functions for

supporting security transactions. Table 8.9 summarizes the inspection results that are related to these two domains.

The second column in the table lists the number of bugs related to the banking transactions that have been found,

and the third column presents the percentage of the found bugs. The forth and �fth columns record the number

of bugs related to security domain that have been found and the percentage of the found bugs, respectively. Note

that the total number of the security-related bugs is 50, this is because we inserted 37 security-related bugs to the

target formal speci�cation and all 13 inherited bugs are security-related.

As indicated by the data in Table 8.9, the subjects found more banking related bugs than security related bugs,

155

Table 8.9: The number of bugs found in domain dimension

Group Average Number of Percentage of Bugs Average Number of Percentage of Bugs

Bugs of Bank (B) (B / 33 � 100%) Bugs of Security (S) (S / 50 � 100%)

Group A 11 33.3% 11.8 23.7%

Group B 19.72 59.8% 15.2 30.34%

Group C 13.28 40.2% 3.3 6.67%

Table 8.10: The number of bugs found in consistency dimension

Group Average Number of Percentage of Bugs Average Number Percentage of Bugs

Bugs of Consistency(C) (C / 30 � 100%) of Bugs of Inside (I) (I / 53 � 100%)

Group A 8.2 27.4% 14.6 27.5%

Group B 14.6 48.5% 20.3 38.3%

Group C 6.7 22.2% 9.9 18.7%

no matter what inspection method they use and what experience they have. We believe that the major cause of this

situation is that the subjects have better domain knowledge in banking transactions than in security transactions.

Almost all the subjects have a bank account to manage their money, but they rarely have security account to buy

and sell security in the stock exchange. Therefore, we make the following conclusion:

Conclusion 4 An inspector can make better result in an inspection if the target formal speci�cation describes a

system in a domain he is familiar with, regardless of what inspection method he uses.

As mentioned previously, we also divide the bugs within the consistency dimension. In this dimension, bugs are

separated into two categories: consistency and inside. The consistency bugs are the bugs that directly a¤ect the

consistency between informal and formal speci�cations, and the inside bugs are the bugs that merely a¤ect the

formal speci�cation itself. Table 8.10 summarizes the inspection results that are related to these two categories.

Note that the total number of the inside-related bugs is 53, this is because we inserted 40 inside-related bugs to

the target formal speci�cation and all 13 inherited bugs are inside-related.

As we can see from Table 8.10, the subjects in Group B found 77.3% ((14.6 - 8.2) / 8.2 � 100%) more consistency

156

Table 8.11: The summary of Group B under detailed bug classi�cation

Total USV IID UDSV ISVD IPD DWIT SSB UIV UUIT UISVN

(83) (1) (3) (4) (4) (18) (13) (10) (20) (8) (2)

Average 34.9 0 2.5 2.8 3.6 5.7 6.1 0 10.6 3.6 0.06

Percentage 42% 0% 83% 69.5% 88.9% 31.8% 47% 0% 52.8% 44.4% 2.8%

related bugs than the subjects in Group A. Since the subjects in Group B and A have similar experience in SOFL,

we believe that using our inspection method helps the subjects in Group B �nd more consistency bugs. This is

reasonable because the checklist used in our inspection method is based on the traceability between informal and

formal speci�cations.

We also �nd that the subjects in Group C found less consistency related bugs than the subjects in Group A

even the subjects in Group C used our inspection method. We believe this is because the subjects in Group C

do not have as much experience as the subjects in Group A. According to our Conclusion 2, this situation is not

abnormal. However, we �nd that the subjects in Group A �nd 22.4% ((8.2 - 6.7) / 6.7 � 100%) more consistency

related bugs than the subjects in Group C. If we do not separate the bugs into di¤erent categories, subjects in

Group A �nd only 37.3% more bugs in total than the subjects in Group C. This also proves that our inspection

method helps the inspector �nd more consistency related bugs to some extent. Therefore, we make the following

conclusion based on our observation:

Conclusion 5 Our inspection method can help inspector �nd more consistency-related bugs than the traditional

checklist-based inspection method.

8.3.2 The Unfound Bugs

As shown in Table 8.8, the best result was made by Group B, who found 42 % of total bugs contained in the target

formal speci�cation by using our inspection approach. Table 8.11 summarizes the data in Table 8.6. The �rst raw

in Table 8.11 is the average numbers of bugs found in each bug classi�cation, and the second raw is the percentage

of the bugs that have been found. In this section, we will analyze why some bugs have not been found by using

our inspection approach based on the detailed bug classi�cations.

157

1. Unde�ned state variable (USV) (Number of bugs: 1; Found: 0; Found Percentage: 0%)

In the experiment, this bug was not found by any subject. We believe that one possible reason is that we

asked the subject to follow the animation process and checklist to inspect the formal speci�cation. However,

the type de�nitions and the state variable de�nitions of the target formal speci�cation are not provided in

the checklist directly. Instead, they are provided in an independent document. If answering a question needs

the de�nitions of state variables, the subject needs to refer to the independent document himself. Since we

did not give the direct instruction to require the subject to refer to the independent document, the subject

may not check the state variable de�nitions. In this case, the bug can not be found.

2. Inappropriate invariant de�nition (IID) (Number of bugs: 3; Found: 2.5; Found Percentage: 83%)

The inspection result indicates that most of the subjects in Group B found the 3 IID bugs. We think one

possible reason is that the invariant is considered as an inspection target in our inspection approach, and the

invariants related to each process are provided in the checklist. Such kind of checklist can help the subject

�nd IDD bugs.

3. Undeclared state variable (UDSV) (Number of bugs: 4; Found: 2.8; Found Percentage: 69.5%)

The result indicates that most of the subjects in Group B can �nd at least 2 UDSV bugs. The other 2 UDSV

bugs that have not been found by some subjects maybe because our checklist does not include the question

�Whether the process uses the state variable that formalizes the data resource used by its original requirement

function described in the informal speci�cation?�.

In the ideal procedure, the subject should refer to the informal speci�cation to answer the question �What

functions in the informal speci�cation are formalized by the process?� and then refers to the related data

resources in the informal speci�cation based on the answer of the question. The related data resources can

remind the subject whether all necessary state variables are declared. However, not all the subjects can

follow this ideal procedure because the procedure was taught to them as part of training but not provided

in the checklist. If a subject cannot follow the ideal procedure, he has to make the judgement based on his

knowledge and experience. But there are 2 UDSV bugs related to the security domain, which is an unfamiliar

domain to the subjects, the subjects may not be able to �nd the bugs. The following case provides an example

158

process Buy(acc4: Security_Account, buy_code: string, buy_price: real, buy_number: nat)
msg_6:
ext rd #Bank_Account_File

wr #Security_Account_File
wr #Securities_File

pre true
post exist![x: Security_Account_File and y: Bank_Account_File and z: Securities_File] |

(x.id = acc4.id and y.security_account_id = acc4.id and z.code = buy_code and
buy_price < z.bid and msg_6 = “The Offered Price is Too Cheap!”)

end_process

Figure 8.7: Part of the process �Buy�in the target formal spceci�cation with bugs

of the UDSV bug that has not been found.

Case 1: The process �Buy� in the formal speci�cation describes the function to allow the user to buy a

security. According to the informal speci�cation, the information of a �buy� transaction should be

recorded after the transaction is successfully executed. Therefore, the process �Buy� should use the

state variable �Transactions_File�, which is used to record all transactions. However, the state variable

�Transaction_File�was not declared in the process speci�cation of �Buy�. Some subjects failed to �nd

this bug since they are not familiar with the security transactions.

4. Inappropriate state variable declaration (ISVD) (Number of bugs: 4; Found: 3.6; Found Percentage: 88.9%)

Since we provide an question in the checklist to ask the subject to check whether the state variables are

declared with appropriate key word �wr�or �rd�, most of the subjects found all 4 ISVD bugs. One possible

reason that some subjects missed the ISVD bugs is that they are not careful enough. Since the question is

only a reminder to the subjects to help them to �nd bugs, the subjects need to be careful enough to answer

each question and make decisions.

5. Inappropriate process de�nition (IPD) (Number of bugs: 18; Found: 5.7; Found Percentage: 31.8%)

Finding IPD bugs is the most di¢ cult. The subject needs to fully understand the functionality of each

process to make judgement. The inappropriate de�nition can be caused by many reasons, such as using

159

inappropriate operators, or using inappropriate variables. The following case presents an IPD bug caused by

using inappropriate operator and not found by some subjects.

Case 2: In the process �Withdraw�shown in Figure 8.3 provides the function to allow the user to withdraw

money from his bank account. After the withdraw transaction is successfully �nished, the balance in

the bank account is deducted by the amount that the user just withdrew. In the process �Withdraw�,

the predicate �acc2.balance = acc2.balance + w_amount�is de�ned to describe the function of updating

the bank account. In this predicate, the variable �acc2 � refers to the bank account and the variable

�w_amount� presents the desired amount the user wants to withdraw. Since a success withdraw trans-

action should deduct money from the bank account, the operator �+� is used inappropriately. In the

experiment, some subjects failed to �nd this bug. One possible reason is that these subjects did not read

the process speci�cation carefully. All the subjects must be familiar with the withdraw transaction, if

they can read the speci�cation carefully enough, they would �nd this obvious bug.

Another kind of IPD bug that is rarely found by the subjects is missing functionality. The following case

illustrates an IPD bug that is rarely found.

Case 3: The constraint �C3.4 � in the informal speci�cation requires that �Maximum withdraw amount

is 300,000�. But in the de�nition of process �Withdraw� shown in Figure 8.3, this constraint is not

formalized, and therefore the de�nition of process �Withdraw� is inappropriate. Actually, this bug can

be detected by answering the question asked for checking the relations between functions and constraints

described in the informal speci�cation. But we eliminated such question due to the readability concern.

In order to detect this bug, the subjects must notice the constraint �C3.4 �in the informal speci�cation,

otherwise, this bug cannot be detected.

Compared to the above two cases that are related to banking transaction, �nding the IPD bugs that related

to security transaction is more di¢ cult. The following case gives an example of an unfounded IPD bug that

is related to security transactions.

Case 4: The target formal speci�cation describes a security transaction system that allows its user to buy or

160

process Bank_Account_Authorize(comm_info: Security_Comm_Info, bank_id: string,
bank_pass: string)msg_1: string | acc1: Bank_Account | acc2: Account | acc3: Account
pre true
post (exists![x: Bank_Account_File] | (x.id = bank_id) and (bank_comm_info = <deposite>

and acc1 = x or bank_comm_info = <withdraw> and acc1 = x and bank_comm_info =
<show_balance> and acc3 = x)) or (exists![x: Bank_Account_File] | (x.id = bank_id)
and msg_1 = "Error!")

end_process

Figure 8.8: The process �Bank_Account_Authorize�in the target formal speci�cation with bugs

sell securities to a broker. The broker maintains two prices of a security, one is the price (�bid�price)

to buy the security from the user and the other is the price (�ask�price) to sell the security to the user,

respectively. The price that the broker uses to sell the security is called �ask�price, and the �ask�price

is the cheapest price that an user can buy the security from the broker. If a user want to buy a security,

he needs �rst o¤er a price to the broker. The system will check whether the o¤ered price is lower than

the �ask� price. If the o¤ered price is lower, the buy transaction cannot be executed. The portion of

process �Buy�shown in Figure 8.7 describes the situation that the o¤ered price is lower than the �ask�

price. However, as shown in Figure 8.7, the variable �buy_price�, which presents the o¤ered price, is

compared to the variable �z.bid �. It is a bug since the o¤ered price is compared to an inappropriate

price. There may be two reasons that the subjects did not �nd the bug. One is that the subjects need to

read the informal speci�cation, including the functions, data resources, and constraints to understand

the functionality described in process �Buy�. The other reason is that the subjects do not have related

domain knowledge to help them make judgement.

The other unfounded IPD bugs have similar features as the above three cases, and the reasons that they are

not found can be explained in the same way.

6. Declaring with inappropriate type (DWIT) (Bugs number: 13; Found: 6.1; Found Percentage: 47%)

In our checklist, questions are raised to ask the subjects to check whether the types of the input and output

variables of a process are appropriate. To check whether a DWIT bug exists, the subjects need to understand

161

the functionality of the process and refer to the type de�nitions. Since the type de�nitions are provided as

an independent document in the experiment, the subjects need to refer to the type de�nitions by themselves.

Based on our analysis of the inspection results, the most possible reason that some DWIT are not found is

that the subjects did not refer to the type de�nitions. For example, the process �Bank_Account_Authorize�

shown in Figure 8.8 contains 2 DWIT bugs. The output variable �acc2�and �acc3�of the process are declared

with inappropriate types because the type �Account�is not de�ned in the target formal speci�cation. In the

experiment, some subjects failed to �nd these 2 DWIT bugs. We believe the possible reason is that they did

not refer to the type de�nitions.

7. SOFL-speci�c bugs (SSB) (Bugs number: 10; Found: 0; Found Percentage: 0%)

The reason that no SOFL-speci�c bug was found in the experiment is that the subjects are not familiar with

the grammar of SOFL. The subjects used the grammar of programming languages to understand the SOFL

formal speci�cation in the experiment. For example, the �equality symbol� in the programming language

means assignment, but in SOFL formal speci�cation, the �equality symbol�is a logical operator. The sentence

in the program that contains �equality symbol�is an assignment sentence, and it can be executed to change

the value of the variable on the left side of the �equality symbol�. But in the SOFL formal speci�cation, a

logical expression containing �equality symbol�can not be executed and it only describes a condition that the

value of the variables on the two sides of the �equality symbol�operator should be equal. If a designer wants

to change the value of a compound type variable, he should use the built-in functions such as �modify�.

8. Using inconsistent variable (UIV) (Bugs number: 20; Found: 10.6; Found Percentage: 52.8%)

Using inconsistent variables is the most frequently made mistake in writing formal speci�cations. However,

we did not provide a question to ask the subjects to check whether all variables used in the process are

consistent with the declared variables in the variable list. The subjects are expected to detect the UIV bugs

when they read the formal speci�cation. In the experiment, we found that whether an UIV bug can be

found is dependent on the individual subject, and some UIV bugs will be ignored without intention if they

do no a¤ect the understanding of the process. For example, the variable �w_amount� is declared in the

input variable list of process �Withdraw�shown in Figure 8.3, however, both the variable �w_amount�and

162

�withdraw_amount�are used in the post-condition. Since the inconsistent variable �withdraw_amount�is

used twice in the post-condition, there are two UIV bugs existed in the process �Withdraw�. If a subject

can �nd one of the two UIV bugs, that means he has the ability to �nd the other one since the two bugs are

caused by the same reason. However, we found that some subjects detected only one of the two UIV bugs.

Based on the observation, we cannot conclude that the subjects cannot �nd the UIV bugs. One possible

explanation is that the subjects ignored some UIV bugs without intention.

9. Using unde�ned items of types (UUIT) (Bugs number: 8; Found: 3.6; Found Percentage: 44.4%)

The subjects need to refer to the type de�nitions to detect a potential UUIT bug. Usually, detecting UUIT

bugs are relatively easy. As long as the subjects refer to the original type de�nitions, the UUIT bugs can

be detected. One possible reason that more than half of the UUIT bugs were not found is that we did not

provide an explicit instruction to ask the subjects refer to the type de�nitions and therefore they did not do

so for detecting UUIT bugs.

10. Using incorrect state variable name (UISVN) (Bugs number: 2; Found: 0.06; Found Percentage: 2.8%)

Although our checklist provides questions to check whether the state variables are declared with appropriate

key words, there is no question to ask the subjects to check the names of state variables. The subjects may

ignore the UISVN bugs if there is no instruction to ask them to do so.

8.3.3 Possible Improvements

Based on the analysis in the previous section, the following possible improvements can be adopted to make our

inspection approach more e¤ective.

1. Integrating defect-based questions to the checklist

Defect-based questions can help the inspector detect the bugs based on their categories. For example, as

explained previously, the IPD bugs can caused by many kinds of defects and are very di¢ cult to be detected.

Using defect-based questions can help the inspector to �nd a speci�c kind of defect that causes the IPD bugs.

For example, the question �Whether all operators used in the pre- and post-conditions are used appropriately?�

163

can be asked. This question provides very detailed instruction to ask the inspector to check each operator in

the process.

Using defect-based questions to perform inspection is usually called defect-based reading [75]. The questions

are formed based on well de�ned defect categories. Since the classi�cations of defects in SOFL formal spec-

i�cation have not been well studied, to systematically integrate the defect-based question into our checklist

is impossible in the current stage, but it will be our future work.

2. Building a type checker

A type checker is very important for constructing high quality formal speci�cations. It can be used to

automatically detect the UIV bugs, UUIT bugs, UISVN bugs, and part of the DWIT bugs. In that case,

the inspector can pay more attention to the detection of consistency-related bugs contained in the formal

speci�cations.

3. Using supporting tool to perform the inspection

In our inspection approach, using questions to check the relations between di¤erent requirement items is an

important feature. But we eliminated such questions in the checklist due to the readability concern. The

elimination of such questions makes the detection of some kinds of bugs to be di¢ cult. For example, the bugs

in Case 1 presented in the previous section may be found by checking the relation between the process and

the state variable, and the bug in Case 3 may be detected by examining the relation between the function

and the constraint. By using the supporting tool, questions for checking relations between two di¤erent

requirement items can be formed automatically based on the constructed trace links. Therefore, we believe

that using supporting tool to perform the inspection can make better results.

4. Asking the inspector checking the formal speci�cation from the SOFL perspective

Since the formal speci�cation is not program, the inspector should not understand the formal speci�cation

in the same way he understands the program. In order to detect the formal speci�cation language related

defects, the inspector must read the speci�cation from the formal speci�cation perspective.

164

Although we can improve our inspection approach by integrating defect-based questions and other techniques,

we should notice that the questions in the inspection are only reminders to the inspector, whether the inspector

can be patient and careful enough to answer each question on the checklist can signi�cantly a¤ect the inspection

result.

8.4 Findings in the Experiment

In addition to the conclusions made in the previous section, we also �nd some points based on the experience

of the experiment. The major �ndings as listed as follows:

1. Our inspection method does provide a good reading technique for inspection.

The interview of some subjects after the experiment indicates that we provide a good reading technique in our

inspection method. The animation can guide the inspector to read through the entire formal speci�cation and it

can make inspection targets in each step very clear.

2. Some questions are asked several times.

In our method, the inspection is carried out by following the animation process. Since the same processes may

be animated for several times in the animation, the related inspection targets of these processes may be inspected

for several times. For example, there are two system scenarios in the experiment contain same processes:

{input2}[Receive_Bank_Comm21, Bank_Account_Authorize13, Withdraw11]{cash}

{input2}[Receive_Bank_Comm21, Bank_Account_Authorize13, Withdraw12]{msg_3}

To inspect the above system scenario, the inspection targets related to �Receive_ Bank_ Comm21� and

�Bank_Account_Authorize13� need to be inspected twice. Answering the same questions will take more time

in inspection. However, we �nd an advantage of such duplication. That is if a subject cannot �nd the bugs when

he �rst inspect an inspection targets, he may �nd the bugs in the second time when he inspects the same inspection

target.

3. Inviting the inspector to join the speci�cation construction process is likely to bene�t the inspection.

165

Whether the inspector understands the contents and structure of the speci�cation a¤ects the inspection result.

Therefore, inviting the inspector to join the speci�cation construction process or asking the designer who writes

the speci�cation to conduct the inspection is an cost-e¤ective way to improve the performance of an inspection.

We list four major �ndings we have found from this experiment, and all of them should be considered in our

future research and in future inspection practice.

8.5 Threats

The major threats that have potential to a¤ect the validity of the experiment are listed as follows:

1. Lack of su¢ cient training

Lack of su¢ cient training may a¤ect the e¤ectiveness of the inspection. Although we have taught the students

about the inspection technique in the class, the training may not be su¢ cient to allow them to have enough

experience and skills as the industrial professionals in using inspection methods to detect defects in the formal

speci�cation. This threat can however be mitigated by extending the training time to let them gain more experience.

2. Lack of experience

The experience of students in using SOFL to write formal speci�cations for software systems is not comparable

to experienced professionals in industry. Lack of experience will restrict the students in understanding the structure

and contents of the formal speci�cation. This may a¤ect the result of the inspection. An advantage of using students

is that we can assess whether our inspection method can be used by inexperienced practitioners in industry. This

threat can be compensated by conducting a larger experiment involving industrial practitioners in the future.

3. Lack of understanding of our inspection method

Since the students may not have enough experience in constructing SOFL speci�cations, understanding our

inspection method may be di¢ cult for them. The major concept in our method that may confuse the students

is the traceability between informal and formal speci�cations. To understand the traceability, the students must

clearly understand how the informal speci�cation is evolved to the formal speci�cation. For example, we build a

trace link between a function to a group of operation scenarios, but the students usually formalize a function into

166

one process. They need more experience to understand why the function is formalized as a group of operation

scenarios. Without a clear understanding of the traceability, the students may be confused by the questions on

the checklist and therefore may not �nd bugs based on the questions.

In spite of the threats mentioned above, the experiment reported in this chapter has helped us evaluate our

inspection method to a certain extent. We are interested in using more realistic and large scale formal speci�cations

to rigorously assess our inspection method in the future.

8.6 Summary

In this Chapter, we presented an experiment for evaluating the performance of our inspection method. The

results of the experiment indicated that our inspection method can help the inspector �nd more bugs in the formal

speci�cation than the traditional checklist-based inspection method, especially the bugs related to the consistency

between the informal and formal speci�cations. We also pointed out some �ndings we have found in this experiment,

and these �ndings should be paid more attention in inspection practice. In the next Chapter, we will discuss the

work related to our research and compare the di¤erences.

167

Chapter 9

Related Work
The inspection approach presented in this dissertation is proposed for formal speci�cation validation. It contains

an animation-based reading technique and a checklist of questions raised based on the traceability between informal

and formal speci�cations. In this chapter, we discuss the related work in the relevant research areas and indicate

the di¤erence and contribution of our inspection approach.

9.1 Animation

Animation is a technique to dynamically present the behaviors of formal speci�cations. It gives the user and

expert a chance to observe the operational behaviors of the speci�cation and enhance their con�dence before the

speci�cation is implemented. After extensively studying of the literature, we �nd that several techniques have

been developed for animating or dynamically presenting formal speci�cations, however, no work has explored the

same approach as we propose in this dissertation to utilize speci�cation animation as a reading technique to assist

speci�cation inspection.

As far as speci�cation animation is concerned, most of the existing work we have discovered take the approach

that �rst transforms the formal speci�cation into executable code written in a programming language and then

animate the speci�cation by executing the code. PiZA [101] is an animator for Z formal speci�cation. It translates

Z speci�cations into Prolog to generate outputs. Similarly, an animation approach for Object-Z speci�cation is

described in [102], which translates the Z speci�cation into C++ code for execution. Morrey et al. developed

a tool called �wiZe� to support the construction of model-based speci�cation language, in particular Z, and the

animation of an executable subset of Z speci�cation language [103]. The subtool for animation of speci�cations

is called ZAL. The wiZe is responsible for making a syntactically correct speci�cation and transforming it into

168

an executable representation in an extended LISP, and then passes the executable representation to ZAL. ZAL

animates the speci�cation by executing the speci�cation with test cases.

PVS (Prototype Veri�cation System) [45] is a speci�cation and veri�cation system including an expressive

speci�cation language and interactive theorem prover. It includes a ground evaluator [104] that can translate

an executable subset of PVS to Common Lisp and provides a read-eval-print loop for testing the translated Lisp

program. In [105], the PVS is enhanced from two points for evaluation and animation purposes. One enhancement is

the extension of the ability of executing PVS speci�cation. A technique called �semantic attachment�is introduced.

It allows the user to provide their own executable program segments to di¤erent PVS functions, therefore some

PVS speci�cation that cannot be translated by the ground evaluator can be executed. And another enhancement

is to animate the PVS speci�cation by displaying the results of ground evaluator in the Graphical User Interfaces

(GUIs) created by Tcl/Tk.

In [68], Liu and Wang introduced an animation tool called SOFL Animator for SOFL speci�cation animation.

It can be used to perform syntactic and semantic analysis of a speci�cation. When performing an animation, the

tool will automatically translate the executable subset of SOFL speci�cation into Java program segments, and then

use some test case to execute the program. In order to provide a graphic presentation of the operational behaviors

of speci�cation, SOFL Animator uses Message Sequence Chart (MSC) to present the execution of the translated

Java program.

MSC is also adopted in other animation approach as a framework to provide a graphical user interface to

represent animation. Stepien and Logrippo built a toolset to translate LOTOS traces to MSC and provide a

graphic animator [106]. The translation is based on the mappings between the elements of LOTOS and MSC.

Combes and his colleagues described an open animation tool for telecommunication systems in [107]. The tool is

named as ANGOR, and it o¤ers an environment based on a �exible architecture. It allows animating di¤erent

animation sources, such as formal and executable language like SDL and scenario languages like MSC.

VDMTools is an industry-strength toolset supporting the analysis of system models expressed in VDM [70] and

has been successfully used in several industrial projects [108] [109] [110]. The interpreter inside the VDMTools can

execute a large executable subset of VDM speci�cation. User can test the VDM speci�cation by providing test

cases and observe the system behavior by setting breakpoints or stepping. Moreover, the interpreter in VDMTools

169

can automatically create an external log�le recording all the events happened during an execution. In this log�le,

each event is tagged by the time at which it occurs, this information can be used to graphically display all the events

on a time-axis. Overture [111] provides functions similar to VDMTools and is built on an open and extensible

platform based on the Eclipse framework. By using the combinatorial testing function [112], a large collection of

test cases can be executed to detect the run-time errors caused by forgotten pre-condition or violation of invariant

and post-condition.

ProB [69] [113] is a validation toolset for B-Method. It can automatically check the consistency of B speci�cation

via model checking. The model checker in ProB explores the state space of a speci�cation and determine whether

a state violate an invariant. It can graphically display the path from an initial state to a counter-examples when

a violation of invariant is discovered. However, in order to perform the exhaustive model checking, the given sets

must be �nite, and the integer variables must be restricted to a small range. The animation of B speci�cation is

carried out by separating the model checking process. Start from the initial state, in each step of the animation,

the user can choose an action to proceed to the next state.

Another tool that adopts model checking for presenting the dynamic behavior of systems is UPPAAL [72] [114],

which allows user to model the system behavior in terms of states and transitions between states. Unlike Z, B, or

VDM, there is no article speci�cation in UPPAAL. User can set invariants to each state, and set guards and action

to each transition. The invariants describe the condition that should be satis�ed by the state; the guards restrict

the possible state changes by disabling transitions; and the actions change the value of variables. To animate the

model, the simulator of UPPAAL can explore the state space of the model in a step-by-step fashion.

Time Miller and Paul Strooper introduced a framework for animating model-based speci�cations by using

testgraphs [67]. The framework provides a testgraph editor for users to edit testgraphs, and then derive sequences

for animation by traversing the testgraph. Gargantini and Riccobene proposed an automatically driven approach

to animating formal speci�cations in Parnas�SCR tabular notation [115]. One important feature of this work is

the adoption of a model checker to help �nd counter-examples that contain a state not satisfying the property to

be established by animation. The advantage of this work is that the formal speci�cation can be checked by means

of model checking in the animation.

Some of the existing studies, like PVS ground evaluator, wiZe, and SOFL Animator, require an automatic

170

translation of the formal speci�cation into an executable programming language. This will inevitably limit the

capability of animation because speci�cations using pre- and post-conditions may not be automatically transformed

into code in general. Therefore, what these animation tools can do is only to deal with a subset of the formal

notations mentioned above. In contrast to this situation, our animation approach described in this dissertation does

not require any translation of the speci�cation into code; it can directly perform animation by evaluating the pre-

and post-conditions of the processes involved in the target system scenarios for the selected test cases and expected

results. This is much easier to implement technically and capable of dealing with all pre-post style speci�cations.

VDMTools and Overture also evaluate the pre- and post-conditions but in the run-time of executing test cases.

However, only a large subset of VDM speci�cation can be executed and explicit speci�cation must be constructed

for execution. The explicit speci�cation is an algorithm solution of an operation in VDM. The speci�cation

contains only pre- and post-conditions cannot be executed. The animation tools based on model checking, like

ProB and UPPAAL, have inherent challenge of state explosion, the states of the system must be �nite. Although

our animation approach has similarities with some exiting studies, no exiting work adopts animation as a reading

technique to guide the user read through the speci�cation for inspection purpose.

9.2 Inspection

Inspection is a static analysis technique used to verify and validate any artifacts produced in di¤erence software

development phase including requirement analysis, design, and code. The concept of inspection was �rst introduced

by Fagan at IBM [17]. Fagan�s inspection is performed by a team following a well de�ned process. The inspection

team is organized by a moderator who manages the team and coordinates the inspection process. Other team

members include author, reader, and tester. The author is the person who produced the target artifact in the

inspection; the reader paraphrases the artifact during the team meeting; the tester reviews the artifact from testing

point of view. Fagan required the inspection team follow a six-step process: planning, overview, preparation,

inspection meeting, rework, and follow-up. In the preparation step, each team member should inspect the target

material independently. During the inspection meeting, the team members discuss the record all the defects.

Although the original Fagan inspection method provided a well organized framework for carrying out inspection,

it did not indicate a speci�c technique for the individual inspector to review and detect faults from the target

171

artifact. The inspection approach proposed in this dissertation is mainly designed to indicate inspector to read

through the artifact and �nd defects.

The inspection meeting is emphasized in Fagan�s inspection method, however, some researchers indicated that

most of the defects are detected by the inspector individually in the preparation step rather than the team meeting

[116] [117] [118]. Several techniques have been developed to help reviewers to accomplish their job in the preparation

step. These techniques are called reading techniques and they play signi�cant a¤ects to the �nal result of inspection.

Since the reading techniques are used to help the inspector to detect defects, we use �reading technique� and

�inspection method� interchangeably in the following of this section. Aurum et al. summarized and listed the

following reading techniques in [75].

� Ad hoc reading

In Ad hoc reading, there is no instruction or guidance is provided. The target software artifact is simply

given to each inspector who has to use (s)he own knowledge and experience to detect faults.

� Checklist-based reading

In checklist-based reading, a list of questions is provided to the inspector. The questions on the checklist

specify the problems and properties of the target artifact that need to be checked. It is expected that the

checklist will guide the inspector throughout the preparation step. The inspection procedure proposed by

Fagan in [17] included the use of checklist.

� Defect-based reading

In defect-based reading, defects of a target artifact are classi�ed and a set of questions is prepared for each

defect class. In the meanwhile, scenarios are provided. Each scenario is a procedure aiming at detecting a

speci�c class of defects. Therefore, the defect-based reading is also referred as scenario-based reading.

� Perspective-based reading

The perspective-based reading is an enhanced version of defect-based reading. It focuses on di¤erent point

of view or needs of stakeholders. Procedures are developed based on the viewpoint of stakeholders. In the

preparation step, inspectors read the target artifact from a particular viewpoint and detect relevant defects.

172

Checklist-based reading technique is usually discussed in requirements engineering books as a representative, and

some checklists are also provided [119] [14]. Loosely speaking, the questions in a checklist are only reminders for

inspector and often limited to the types of defect that have been detected before. Furthermore, as point in [120],

the checklist-based reading technique usually does not provide any instruction about how to use the checklist.

There is no guidance for the inspector to indicate when to use what kind of information to answer the questions

on the checklist.

Several comparisons have been made between di¤erent reading techniques. For example, the perspective-based

reading technique was compared with checklist-based reading technique in [121]. The results of individual inspectors

indicated that the e¤ectiveness of defect detection using both inspection techniques is similar. L. He et al did a

similar comparison in [122]. Their results showed that perspective-based reading was signi�cantly more e¤ective

than checklist-based reading. However, the comparison in [123] concluded that there is no clear positive e¤ect of

perspective-based reading. It was more e¤ective than ad-hoc approaches, but was less e¤ective when compared to

checklists.

In the industry, Ad hoc reading and checklist-based reading are used more frequently than other reading tech-

niques. A survey conducted by Sulehri [100] ask the requirement engineers in six software company in Sweden to

choose the best requirement validation techniques. Concerning the requirement inspection, the six companies used

either the Ad hoc reading or the checklist-based reading. The survey conducted by Saqi [99] about six companies

from two countries also indicated that the Ad hoc reading and checklist-based reading are frequently used compared

to other reading techniques.

We believe every inspector should answer some questions in the inspection to detect defects. The di¤erence

among di¤erent inspection methods is that whether the these questions are speci�ed explicitly as a checklist. In our

inspection approach, we construct an explicit checklist, similar to the checklist-based reading, to remind inspector

what should be checked in the inspection. However, the traditional checklist-based reading only provides a checklist

to the inspector without any instruction on how to perform the inspection [124]. In our inspection approach, we

provide not only the checklist but also the instructions to help the inspector to read the artifact and carry out the

inspection.

The defect-based reading can be realized as a re�nement of checklist-based reading since it provides scenarios

173

to help inspector to implement the items on the checklist [65]. Namely, scenarios are designed as procedures that

describe the steps to be accomplished to answer particular questions on the checklist. Even the defect-based reading

provides some guidance to guide the inspector read the artifact, it does not contain a systematic instruction to guide

the inspector read through the entire artifact. Some contents of target artifact may be missed if the scenarios are

not well designed. In our inspection method, the animation-based reading technique are used to guide the inspector

read through the entire artifact, every content of artifact would be inspected by following the animation process.

Some researchers proposed other reading techniques. For example, stepwise-abstraction reading requires an

inspector to read a fragment of code and then abstract the functions implemented by the fragment [125]. Usage-

based reading in [126] asks the inspector to focus on the most important aspects of software artifact from a

point of view of user. An inspection method called �combined-reading technique�is introduced in [66] to inspect

requirements speci�cation. The method categorizes the defects of speci�cation and proposes a set of corresponding

questions. It requires all the speci�cation should be checked, but it does not indicate a speci�c technique to easily

read through the speci�cation.

As far as formal speci�cation inspection is concerned, there are few researchers who have explored inspection

techniques for formal speci�cations validation. Guido et al. [127] introduce an automatic approach to validate

pre/postcondition-based speci�cations, which automatically constructs abstractions in the form of behavior models

from the speci�cation. The reviewer validates the behavior model rather than the formal speci�cation itself. Liu

et al. proposed a rigorous inspection method called RIM in [96]. The focus of this inspection method is the

internal consistency of formal speci�cation. RIM de�nes a group of consistency properties and requires all these

properties be satis�ed. Compared to the inspection approach put forward in this dissertation, RIM focuses on

the veri�cation of internal consistency of formal speci�cations rather than their validation as our approach aims

to deal with. Further, our inspection technique is characterized by adopting speci�cation animation as a reading

technique, which is a novel contribution to the �eld.

9.3 Traceability

The importance of requirement traceability for ensuring system quality is broadly recognized [94] [95] It aims at

de�ning relationships between stakeholder requirements and artifacts produced during the software development

174

life-cycle [128]. Although we build some traceability rules to clarify the relations between informal and formal

speci�cations, we do not focus on the methodology of constructing traceability. In our inspection approach, the

traceability of speci�cations is used to guide inspector verify and validate the formal speci�cation.

Several researches focus on methodology of building requirement traceability. Pinherio et al. [129] proposed

a quite formal approach focusing on context requirement tracing, which states that traceability problem caused

both by technical and social factors. They built a network to trace dependencies and transitive rules among

di¤erent factors. Easterbrook et al. [130] introduced an AND/OR table as an intermediate to connect textual

requirements and SCR model. However, they did not provide a concrete process to generate trace information.

George in [131] proposed an approach to automatically detect traceability relations between requirement artifacts

and object models using heuristic traceability rules. These rules de�ne how to match requirements in the textual

artifacts with the items in object models, which have syntactical relation with the requirements. The syntactic

relations are de�ned as patterns of words which have speci�c grammatical roles in a piece of text.

In [132], Peraldi-Frati et al. divide the requirement traceability into two groups. One is called horizontal trace-

ability, which identi�es the relationships across workgroups or components. The other one is vertical traceability,

which identi�es the connections between the items in di¤erent levels of artifacts. Di¤erent components in the re-

quirement can be linked by relationships decompose, derive, or copy etc. and the connections between requirement

and its solution model (i.e. design or implementation) can be described by the relationships satisfy. Moreover, the

verify relation allows user to link validation and veri�cation elements (such as test cases) to requirements.

Alexander et al. in [128] introduce a tool-supported technique to automatically construct the traceability

between requirement and code. The authors require user to provide some test scenarios, which are described as an

artifact or a group of artifacts. By testing the scenarios on the program, related implementation classes, methods,

and statements of code can be observed. The trace dependencies can be built between the artifacts and related

code segment.

A traceability model is proposed in [133]. In this model, the requirements are �rst imported into a database,

and a component of the model called Traceability Viewer Component (TVC) makes requirements available to

developer as a background service. Developer writes a module or function based on the requirements and insert

the related requirements to the module through the TVC. This model also provides a mechanism to validate and

175

verify whether the requirements are actually being met. A quality assurance specialist can use a component called

Quality Assurance Interface (QAI) to exam if the code being checked does meet the corresponding requirement.

Jayeeta et al. introduced a method to construct traceability between UML diagrams in [134]. Since UML lacks

the rigor of formal modeling language, ensuring traceability within UML models becomes di¢ cult. The authors

�rst propose a formal grammar for three UML diagrams: use case diagram, activity diagram, and class diagram.

Then, some traceability rules are formally de�ned for constructing trace links within the three kinds of UML

diagrams. However, the authors do not indicate a detailed procedure to build the traceability.

9.4 Summary

In this Chapter, we introduced the existing research related to our work and compared the their di¤erence. The

introduction included the three important techniques used in our method: animation, inspection, and traceability.

In next Chapter, we will conclude this dissertation and point out the future work.

176

Chapter 10

Conclusion and Future Work

10.1 Conclusion

Since the quality of requirements speci�cations can signi�cantly a¤ects the quality of �nal software products,

the techniques used to verify and validate the requirements speci�cations have become one of the most important

topics in software engineering. In this dissertation, we present a novel inspection approach based on speci�cation

animation and traceability for formal speci�cation veri�cation and validation.

To guide the inspector reading through a formal speci�cation, an animation method called system functional

scenario-based animation method is proposed. A system scenario in the animation presents an independent behavior

de�ned in the formal speci�cation. It consists of a sequence of operation scenarios. When animating a speci�c

system scenario, the inspector can inspect each operation scenario involved in turn.

The operation scenarios and related formal speci�cation items that need to be checked are called inspection

targets in our approach. We prepare a checklist for each inspection target to remind the inspector what should

be checked. Each checklist contains a group of speci�c questions which are constructed based on trace links. The

trace links are the relations between the requirements in the informal speci�cation and the corresponding items in

the formal speci�cation. In order to build the trace links, we �rst formally de�ned all the requirement items and

the inspection targets. Then, we formally de�ned the traceability rules for building trace links.

For veri�cation and validation purpose, we designed the questions for each inspection target to address four

aspects: necessity, appropriateness, correctness, and completeness. We proposed several properties for each aspect

to formally de�ne the conditions that should be satis�ed by the inspection targets. In the checklist, traceability-

related questions are asked �rst for building the trace links, then, the speci�c questions raised for these four aspects

can be constructed based on the trace links.

177

To facilitate the inspector, a tool that can support the entire inspection process has been built. The tool

not only supports our inspection method, but provides a �exible framework to support the entire SOFL three-

step development approach and related techniques, such as pattern-based formal speci�cation construction and

automatic predicate evaluation. The tool has been used widely by students in the classes of teaching the SOFL

speci�cation language and the related development techniques.

Moreover, we have conducted an experiment to evaluate the performance of our inspection method. The results

of the experiment indicate that our approach is a systematic approach and can help the inspector �nd more bugs

than the traditional checklist based inspection method. We also found some �ndings in inspection practice and

weakness of our inspection, which will be the focus of our future research.

10.2 Future work

The future work can be divided into two parts: one is on the inspection method and the other is on the

supporting tool.

10.2.1 Research on Inspection Method

According to the experiment results, many questions are asked repeatedly in the inspection process and it makes

the entire inspection process time consuming. In order to solve this problem, we intend to optimize the inspection

process, namely to dynamically organize the checklist for each inspection target. The questions that have been

answered should not appear on the checklist for the rest of the inspection.

The experiment results also indicate that the inspector can �nd more bugs in the speci�cation that describes a

system in their familiar domain. We believe this is because their domain knowledge can help them to understand

the functionality of the speci�cation better. Therefore, if we can provide more explanations to the system they

are not familiar with, the e¤ectiveness of our inspection method can be improved. For example, we can adopt

the visualization technique [135] [136] to graphically present the physical environment and functionality of the

system. However, the e¤ectiveness of adopting this technique and other potential techniques needs to be carefully

investigated.

The traceability-based checklist in our inspection approach is designed for inspecting the consistency between

178

informal and formal speci�cations. However, if a user wants to inspect the formal speci�cation from a di¤erent

point of view, a new checklist should be designed. Although the questions asked in the inspection may be di¤erent,

the user can still take the advantage of our reading technique and well de�ned inspection targets. To this end, we

should build a question base to manage the questions proposed by di¤erent users. In order to reuse the proposed

questions, the question base should allow the user to easily search the questions he interests and automatically

construct checklist based on the selected questions.

The traceability-related checklist in our inspection approach helps inspectors examine the formal speci�cation

against the informal speci�cation. If the traceability between the formal speci�cation and the implemented program

can be constructed, the principle underlying our inspection approach can be used to check the program against the

formal speci�cation. In order to extend the current approach for inspecting program, we need to �nd the general

relations between formal speci�cation items and di¤erent components in the program. We also need to �nd the

factors that can a¤ect the consistency between the formal speci�cation and the program and design checklist for

checking these factors.

The experiment conducted in this dissertation compared our inspection method with the traditional checklist-

based inspection method. In the future, we should compare our inspection method to more defect detection

methods. Moreover, we plan to invite industry people to evaluate our inspection method in industry settings.

Since industry people are usually have di¤erent point of view than students, they can provide us with more

practical comments. The cost-e¤ectiveness of our inspection method also needs to be checked.

10.2.2 Research on Supporting Framework

At present, our supporting framework has been used in teaching SOFL, and many SOFL projects have been

successfully built with its support. During this process, many bugs have been found and �xed, and the usability

problems are also solved. Although the current version of framework can provide stable functions to support our

research, enhancing its fault tolerance is always the most important task for us. Our �nal goal is to make this

framework mature su¢ ciently to be used by industry people. To achieve this goal, a lot of testing must be done.

Considering the functionality of the framework, the most urgent function we want is a powerful parser. Although

we have integrated a parser built by former master student in our laboratory, it is not powerful enough to satisfy

179

our requirement. It can only provide simple syntax checking, but we need a parser that can extract necessary

information from the formal speci�cation. Fortunately, a student in our laboratory has already started to develop

such a powerful parser. In the future, we plan to integrate the parser smoothly into the current framework.

The experiment conducted in this dissertation only evaluates the performance of our inspection method, the us-

ability of the function of the framework used to support the inspection process have not been evaluated. Therefore,

another important future research is to invite some students and industry people to evaluate our tool support for-

mal speci�cation inspection method. However, before any experiment or survey can be conducted, the participants

must be well trained. Any comments from them will help us to improve the usability of our framework.

180

References
[1] IEEE Guide for Software Requirements Speci�cations. IEEE Std 830-1984, pages 1�26, Feb 1984.

[2] R. N. Charette. Why software fails [software failure]. Spectrum, IEEE, 42(9):42�49, 2005.

[3] J. C. Knight. Safety Critical Systems: Challenges and Directions. In Software Engineering, 2002. ICSE 2002.

Proceedings of the 24rd International Conference on, pages 547�550, May 2002.

[4] C. F. Fan, S. Yih, W. H. Tseng, and W. C. Chen. Empirical Analysis of Software-induced Failure Events in

the Nuclear Industry. Safety science, 57:118�128, 2013.

[5] R. S. Pressman. Software Engineering: A Practitionerâ¼AŹs Approach. 2005.

[6] W. W. Royce. Managing the Development of Large Software Systems. In Proceedings of IEEE WESCON,

volume 26. Los Angeles, 1970.

[7] W. M. Wilson. Writing E¤ective Natural Language Requirements Speci�cations. Naval Research Laboratory,

1999.

[8] A. Aurum and C. Wohlin. Engineering and Managing Software Requirements, volume 1. Springer, 2005.

[9] J. Verner, J. Sampson, and N. Cerpa. What Factors Lead to Software Project Failure? In Research Challenges

in Information Science, 2008. RCIS 2008. Second International Conference on, pages 71�80, June 2008.

[10] R. L. Glass. Facts and Fallacies of Software Engineering. Addison-Wesley Professional, 2002.

[11] B. W. Boehm. Verifying and Validating Software Requirements and Design Speci�cations. In IEEE software.

Citeseer, 1984.

[12] D.R. Wallace and R.U. Fujii. Software Veri�cation and Validation: An Overview. Software, IEEE, 6(3):10�17,

May 1989.

[13] J. Radatz, A. Geraci, and F. Katki. IEEE standard glossary of software engineering terminology. IEEE Std,

610121990:121990, 1990.

[14] K. E. Wiegers. Software Requirements. Microsoft press, 2003.

181

[15] W. C. Hetzel and B. Hetzel. The Complete Guide to Software Testing. QED Information Sciences Wellesley,

MA, 1988.

[16] I. Bashir and A. L. Goel. Testing Object-Oriented Software: Life Cicle Solutionss. Springer, 2000.

[17] M. E. Fagan. Design and code inspections to reduce errors in program development. IBM Systems Journal,

15(3):182�211, 1976.

[18] L. Judith, J. D. Cyrus, and P. D. Harry. Formal Speci�cation and Structured Design in Software Development.

Hewlett-Packard Journal, December 1991.

[19] M. Verhoef, P. G. Larsen, and J. Hooman. Modeling and Validating Distributed Embedded Real-Time

Systems with VDM++. In FM 2006: Formal Methods, pages 147�162. LNCS, Springer, 2006.

[20] P. G. Larsen, J. Fitzgerald, S. Wol¤, N. Battle, K. Lausdahl, A. Ribeiro, and K. Pierce. Tutorial for Over-

ture/VDM++. Technical report, 2010.

[21] J. R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin. Rodin: An Open Toolset for

Modelling and Reasoning in Event-B. International Journal on Software Tools for Technology Transfer,

12(6):447�466, 2010.

[22] J. B. Almeida, M. J. Frade, J. S. Pinto, and S. M. de Sousa. Rigorous Software Development: An Introduction

to Program Veri�cation. Springer, 2011.

[23] C. B. Jones. Systematic Software Development using VDM, volume 2. Prentice-Hall Englewood Cli¤s, NJ,

1986.

[24] J. M. Spivey and J. R. Abrial. The Z notation. Prentice Hall Hemel Hempstead, 1992.

[25] S. Schneider. The B-method: An Introduction. Palgrave Oxford, 2001.

[26] P. Behm, P. Benoit, A. Faivre, and J. A. Meynadier. METEOR: A Successful Application of B in a Large

Project. In FMâ¼AŹ99â¼AµTFormal Methods, pages 369�387. Springer, 1999.

[27] P. R. Smith and P. G. Larsen. Applications of VDM in Banknote Processing. In VDM in Practice: Proc.

First VDM Workshop, page 45, 1999.

182

[28] P. G. Larsen, P. Mukherjee, and K. Sunesen. Using VDMTools to Model and Validate the Cash Dispenser

Example. Formal aspects of computing, 12(4):216�217, 2000.

[29] I. Houston and S. King. CICS Project Report Experiences and Results From the Use of Z in IBM. In VDM�91

Formal Software Development Methods, pages 588�596. Springer, 1991.

[30] E. M. Clarke and J. M. Wing. Formal Methods: State of the Art and Future Direction. ACM Computing

Surveys, 28(4):626�643, 1996.

[31] J. C. Knight, C. L. DeJong, M. S. Gibble, and L. G. Nakano. Why Are Formal Methods Not Used More

Widely? In C. M. Holloway and K. J. Hayhurst, editors, Fourth NASA Langley Formal Methods Work-

shop, 3356, pages 1�12, Hampton, Viginia, 1997.

[32] D. L. Parnas. Really Rethinking Formal Methods. Computer, 43(1):28�34, January 2010.

[33] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal Methods: Practice and Experience.

ACM Computing Surveys, 41(4):1�39, 2009.

[34] S. Liu and R. Adams. Limitations of Formal Methods and An Approach to Improvement. In Proceedings

of 1995 Asia-Paci�c Software Engineering Conference (APSEC�95), pages 498�507, Brisbane, Australia,

Dec 1995. IEEE Computer Society Press.

[35] S. Liu, A. J. O¤utt, C. Ho-Stuart, Y. Sun, and M. Ohba. SOFL: A Formal Engineering Methodology

for Industrial Applications. IEEE Transactions on Software Engineering, 24(1):337�344, January 1998.

Special Issue on Formal Methods.

[36] S. Liu. Formal Engineering for Industrial Software Development Using the SOFL Method. Springer-Verlag,

ISBN 3-540-20602-7, 2004.

[37] S. Liu, Y. Chen, F. Nagoya, and J. A. McDermid. Formal Speci�cation-Based Inspection for Veri�cation of

Programs. Software Engineering, IEEE Transactions on, 38(5):1100�1122, Sept 2012.

[38] W. Miao and S. Liu. A Formal Engineering Framework for Service-Based Software Modeling. Services Com-

puting, IEEE Transactions on, 6(4):536�550, Oct 2013.

[39] S. Liu and W. Shen. A Formal Approach to Testing Programs in Practice. In Systems and Informatics

183

(ICSAI), 2012 International Conference on, pages 2509�2515. IEEE, 2012.

[40] C. Tian, S. Liu, and S. Nakajima. Utilizing Model Checking for Automatic Test Case Generation from

Conjunctions of Predicates. In Software Testing, Veri�cation and Validation Workshops (ICSTW), 2011

IEEE Fourth International Conference on, pages 304�309, March 2011.

[41] X. Wang, S. Liu, and H. Miao. A Pattern System to Support Re�ning Informal Ideas into Formal Expressions.

In JinSong Dong and Huibiao Zhu, editors, Formal Methods and Software Engineering, volume 6447 of

Lecture Notes in Computer Science, pages 662�677. Springer Berlin Heidelberg, 2010.

[42] S. Liu, T. Tamai, and S. Nakajima. Integration of Formal Speci�cation, Review, and Testing for Software

Component Quality Assurance. In Proceedings of the 2009 ACM Symposium on Applied Computing, SAC

�09, pages 415�421, New York, NY, USA, 2009. ACM.

[43] S. Liu. Utilizing Formalization to Test Programs without Available Source Code. In Quality Software, 2008.

QSIC �08. The Eighth International Conference on, pages 216�221, Aug 2008.

[44] J. Dawes and J. Dawes. The VDM-SL Reference Guide, volume 12. Pitman London, 1991.

[45] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Veri�cation System. In Automated

Deductionâ¼AµTCADE-11, pages 748�752. Springer, 1992.

[46] S. Owre, J. M. Rushby, N. Shankar, and F. Von Henke. Formal Veri�cation of Fault-Tolerant Architectures:

Prolegomena to the Design of PVS. IEEE Transactions on Software Engineering, 21(2):107�125, 1995.

[47] S. Liu, M. Asuka, K. Komaya, and Y. Nakamura. An Approach to Specifying and Verifying Safety-Critical

Systems with the Practical Formal Method SOFL. In Proceedings of the Fourth IEEE International

Conference on Engineering of Complex Computer Systems (ICECCS�98), pages 100�114, Monterey, Cal-

ifornia, USA, August 10-14 1998. IEEE Computer Society Press.

[48] H. Hussmann, B. Demuth, and F. Finger. Modular Architecture for a Toolset Supporting OCL. Science of

Computer Programming, 44(1):51�69, 2002.

[49] A. Hall. Realising the Bene�ts of Formal Methods. In Proceedings of 7th International Conference on Formal

Engineering Methods, pages 1�4. LNCS 3785, Springer-Verlag, November 1-4 2005.

184

[50] N. G. Leveson. Safeware Engineering: Engineering for a Safe World. Technical description,

http://www.safeware-eng.com/index.php/white-papers/veri�cation.

[51] J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.

[52] ORA Canada. Z/EVES. Z/eves homepage, http://www.ora.on.ca/z-eves/.

[53] T. Gilb and D. Graham. Software Inspection. Addison Wesley, 1993.

[54] NASA. Software Formal Inspections Standard. Technical report, NASA-STD-2202-93, 1993.

[55] D. L. Parnas and M. Lawford. The Role of Inspection in Software Quality Assurance. IEEE Transactions on

Software Engineering, 29(8):674�676, August 2003.

[56] R. H. Thayer. Software Reviews, Inspections and Audits: A Standards-based Guide. Software Engineering

Standards Series. IEEE CS Press, June 2010.

[57] D. A. Wheeler, B. Brykczynski, and R. N. Meeson. Software Inspection: An Industry Best Practice for Defect

Detection and Removal. IEEE Computer Society Press, 1996.

[58] K. E. Wiegers. Peer Reviews in Software: A Practical Guide. Addison-Wesley, 2001.

[59] S. Misra, L. Fernández, and R. Colomo-Palacios. A simpli�ed Model for Software Inspection. Journal of

Software: Evolution and Process, 26(12):1297�1315, 2014.

[60] J.C. Knight and E.A. Myers. Phased Inspections and Their Implementation. ACM SIGSOFT Software En-

gineering Notes, 16(3):29�35, 1991.

[61] S. Kollanus and J. Koskinen. Survey of Software Inspection Research: 1991-2005. Computer science and

information systems reports working papers wp-40, University of Jyvaskyla, Finland, 2007.

[62] O. Laitenberger. A Survey of Software Inspection Technologies. In Handbook of Software Engineering and

Knowledge Engineering, pages 517�556. World Scienti�c Publishing, 2002.

[63] D. Winkler. Improvement of Defect Detection with Software Inspection Variants: A Large-Scale Empirical

Study on Reading Techniques and Experience. VDM Verlag, May 2008.

[64] A. A. Porter, H. Siy, C.A. Toman, and L.G. Votta. An Experiment to Assess the Cost-Bene�ts of Code

Inspections in Large Scale Software Development. IEEE Transactions on Software Engineering, 23(6),

185

June 1997.

[65] A. A. Porter, L. G. Votta, and V. R. Basili. Comparing Detection Methods for Software Requirements

Inspections: A Replicated Experiment. IEEE Trans. Softw. Eng., 21(6):563�575, June 1995.

[66] A. A. Alshazly, A. M. Elfatatry, and M. S. Abougabal. Detecting Defects in Software Requirements Speci�-

cation. Alexandria Engineering Journal, 53(3):513 �527, 2014.

[67] T. Miller and P. Strooper. A Framework and Tool Support for the Systematic Testing of Model-Based

Speci�cations. ACM Transactions on Software Engineering and Methodology, 12(4):409�439, 2003.

[68] S. Liu and H. Wang. An Automated Approach to Speci�cation Animation for Validation. Journal of Systems

and Software, (80):1271�1285, 2007.

[69] M. Leuschel and M. Butler. ProB: A Model Checker for B. In FME 2003: FORMAL METHODS, LNCS

2805, pages 855�874. Springer-Verlag, 2003.

[70] J. Fitzgerald, P. G. Larsen, and S. Sahara. VDMTools: Advances in Support for Formal Modeling in VDM.

ACM Sigplan Notices, 43(2):3, 2008.

[71] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press, 1999.

[72] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on UPPAAL. In Formal methods for the design of

real-time systems, pages 200�236. Springer, 2004.

[73] K. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. Kluwer Academic

Publisher, 1993.

[74] Z. Duan, C. Tian, and L. Zhang. A Decision Procedure for Propositional Projection Temporal Logic with

In�nite Models. Acta Informatica, 45(1):43�78, Feb. 2008.

[75] A. Aurum, H. Petersson, and C. Wohlin. State-of-the-art: Software Inspections after 25 Years. Software

Testing, Veri�cation and Reliability, 12(3):133�154, 2002.

[76] M. Li and S. Liu. Automated Functional Scenarios-Based Formal Speci�cation Animation. In Software En-

gineering Conference (APSEC), 2012 19th Asia-Paci�c, volume 1, pages 107�115, Dec 2012.

186

[77] M. Li and S. Liu. Traceability-Based Formal Speci�cation Inspection. In Software Security and Reliability

(SERE), 2014 Eighth International Conference on, pages 167�176, June 2014.

[78] M. Li and S. Liu. Reviewing Formal Speci�cation for Validation Using Animation and Trace Links. In

Software Engineering Conference (APSEC), 2014 21st Asia-Paci�c, volume 1, pages 286�293, Dec 2014.

[79] M. Li and S. Liu. Design and Implementation of a Tool for Specifying Speci�cation in SOFL. In Shaoying

Liu, editor, Structured Object-Oriented Formal Language and Method, volume 7787 of Lecture Notes in

Computer Science, pages 44�55. Springer Berlin Heidelberg, 2013.

[80] M. Li and S. Liu. SOFL Speci�cation Animation with Tool Support. In Shaoying Liu and Zhenhua Duan,

editors, Structured Object-Oriented Formal Language and Method, Lecture Notes in Computer Science,

pages 118�131. Springer International Publishing, 2014.

[81] S. Liu, M. Asuka, K. Komaya, and Y. Nakamura. Applying SOFL to Specify a Railway Crossing Controller for

Industry. In Proceedings of 1998 IEEE Workshop on Industrial-Strength Formal Speci�cation Techniques

(WIFT�98), Boca Raton, Florida USA, October 20-23, 1998. IEEE Computer Society Press.

[82] C. L. Ling, W. Shen, and D. Kountanis. Applying SOFL to a Generic Insulin Pump Software Design. In

Structured Object-Oriented Formal Language and Method, 2nd International Workshop SOFL 2012, pages

116�132. LNCS 7787, Springer, November 2012.

[83] Y. Wang and H. Chen. Extension on Transactional Remote Services in SOFL. In Structured Object-Oriented

Formal Language and Method, 2nd International Workshop SOFL 2012, pages 133�147. LNCS 7787,

Springer, November 2012.

[84] J. Wang, S. Liu, Y. Qi, and D. Hou. Developing an Insulin Pump System using the SOFL Method. In

Software Engineering Conference, 2007. APSEC 2007. 14th Asia-Paci�c, pages 334�341. IEEE, 2007.

[85] W. Miao and S. Liu. Service-oriented Modeling using the SOFL Formal Engineering Method. In Services

Computing Conference, 2009. APSCC 2009. IEEE Asia-Paci�c, pages 187�192. IEEE, 2009.

[86] S. Liu and Y. Sun. Structured Methodology+Object-oriented Methodology+Formal Methods: Methodology

of SOFL. In Engineering of Complex Computer Systems, 1995. Held jointly with 5th CSESAW, 3rd IEEE

187

RTAW and 20th IFAC/IFIP WRTP, Proceedings., First IEEE International Conference on, pages 137�

144, Nov 1995.

[87] M. Fowler and K. Scott. UML Distilled: a Brief Guide to the Standard Object Modeling Language (2nd

Edition). Addison-Wesley, 2002.

[88] URL: http://www.wpcentral.com/ie9-windows-phone-7-adobe-�ash-demos-and-development-videos.

[89] URL: http://codereview.stackexchange.com/questions/55767/�nding-all-paths-from-a-given-graph.

[90] F. E. Allen. Control Flow Analysis. In Proceedings of a Symposium on Compiler Optimization, pages 1�19,

New York, NY, USA, 1970. ACM.

[91] T. J. McCabe. A complexity measure. Software Engineering, IEEE Transactions on, SE-2(4):308�320, Dec

1976.

[92] S. Liu and S. Nakajima. A Decompositional Approach to Automatic Test Case Generation Based on Formal

Speci�cations. In Secure Software Integration and Reliability Improvement (SSIRI), 2010 Fourth Inter-

national Conference on, pages 147�155, June 2010.

[93] M. Li and S. Liu. Tool Support for Rigorous Formal Speci�cation Inspection. In Computational Science and

Engineering (CSE), 2014 IEEE 17th International Conference on, pages 729�734, Dec 2014.

[94] B. Ramesh. Factors In�uencing Requirements Traceability Practice. Communications of the ACM, 41(12):37�

44, 1998.

[95] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou. Utilizing Supporting Evidence to Improve Dynamic

Requirements Traceability. In Requirements Engineering, 2005. Proceedings. 13th IEEE International

Conference on, pages 135�144. IEEE, 2005.

[96] S. Liu, J. A. McDermid, and Y. Chen. A Rigorous Method for Inspection of Model-Based Formal Speci�ca-

tions. IEEE Transactions on Reliability, 59(4):667�684, December 2010.

[97] X. Wang and S. Liu. Computer-Aided Formalization of Requirements Based on Patterns. IEICE TRANS-

ACTIONS on Information and Systems, 97(2):198�212, 2014.

[98] S. Zhu and S. Liu. A Supporting Tool for Syntactic Analysis of SOFL Formal Speci�cations and Automatic

188

Generation of Functional Scenarios. In Shaoying Liu and Zhenhua Duan, editors, Structured Object-

Oriented Formal Language and Method, Lecture Notes in Computer Science, pages 104�117. Springer

International Publishing, 2014.

[99] S. B. Saqi and S. Ahmed. Requirements Validation Techniques Practiced in Industry: Studies of Six Com-

panies. M. Sc. Thesis, Department of System and Software Engineering, School of Engineering, Blekinge

Institute of Technology, Ronneby, Sweden, 2008.

[100] L. H. Sulehri and G. Bai. Comparative Selection of Requirements Validation Techniques Based on Industrial

Survey. M. Sc. Thesis, Department of Interaction and System Design, School of Engineering, Blekinge

Institute of Technology, Ronneby, Sweden, 2009.

[101] M. Hewitt, C. O�Halloran, and C. Sennett. Experiences with PiZA: an Animator for Z. In Proceedings of the

1997 Z User Meeting (ZUM�97), volume 1212 of LNCS, pages 37�51. Springer-Verlag, 1997.

[102] M. Naja� and H. Haghighi. An Animation Approach to Develop C++ Code from Object-Z Speci�cations.

In Computer Science and Software Engineering (CSSE), 2011 CSI International Symposium on, pages

9�16. IEEE, 2011.

[103] I. Morrey, J. Siddiqi, R. Hibberd, and G. Buckberry. A Toolset to Support the Construction and Animation

of Formal Speci�cations. Journal of Systems and Software, 41(3):147�160, June 1998.

[104] N. S. Shankar. E¢ ciently Executing PVS. Technical report, Project report, ComputerScience Laboratory,

SRI International, Menlo Park, 1999.

[105] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert. Evaluating, Testing, and Animating PVS

Speci�cations. Computer Science Laboratory, SRI International, Menlo Park, CA, Tech. Rep, 2001.

[106] B. Stepien and L. Logrippo. Graphic Visualization and Animation of LOTOS Execution Traces. Computer

Networks: The International Journal of Computer and Telecommunications Networking, 40(5):665�681,

2002.

[107] P. Combes, F. Dubois, and B. Renard. An Open Animation Tool: Application to Telecommunication Sys-

tems. Computer Networks: The International Journal of Computer and Telecommunications Networking,

40(5):599�620, 2002.

189

[108] P. G. Larsen and J. Fitzgerald. Triumphs and Challenges for the Industrial Application of Model-Oriented

Formal Methods. Technical Report Series. University of Newcastle upon Tyne, 2007.

[109] T. Kurita, M. Chiba, and Y. Nakatsugawa. Application of a Formal Speci�cation Language in the Devel-

opment of the â¼AIJMobile FeliCaâ¼A·I IC Chip Firmware for Embedding in Mobile Phone. In FM 2008:

Formal Methods, pages 425�429. Springer, 2008.

[110] T. Kurita and Y. Nakatsugawa. The Application of VDM to the Industrial Development of Firmware for a

Smart Card IC Chip. Int. J. Software and Informatics, 3(2-3):343�355, 2009.

[111] P. G. Larsen, N. Battle, M. Ferreira, J. Fitzgerald, K. Lausdahl, and M. Verhoef. The Overture Initiative

Integrating Tools for VDM. 2010. 2010; 19.

[112] P. G. Larsen, K. Lausdahl, and N. Battle. Combinatorial Testing for VDM. In Software Engineering and

Formal Methods (SEFM), 2010 8th IEEE International Conference on, pages 278�285, Sept 2010.

[113] M. Leuschel and M. Butler. ProB: An Automated Analysis Toolset for the B Method. Int. J. Softw. Tools

Technol. Transf., 10(2):185�203, February 2008.

[114] F. Vaandrager. A First Introduction to UPPAAL. Deliverable no.: D5. 12 Title of Deliverable: Industrial

Handbook, 18, 2011.

[115] A. Gargantini and E. Riccobene. Automatic Model Driven Animation of SCR Speci�cations. In Mauro

Pezzè, editor, Fundamental Approaches to Software Engineering, 6th International Conference (FASE

2003), Held as Part of the Joint European Conferences on Theory and Practice of Software (ETAPS

2003), volume 2621 of LNCS, Warsaw, Poland, April 7-11 2003. Springer-Verlag.

[116] O. Laitenberger, K. El Emam, and T. G. Harbich. An Internally Replicated Quasi-Experimental Comparison

of Checklist and Perspective-Based Reading of Code Documents. IEEE Trans. Softw. Eng., 27(5):387�421,

May 2001.

[117] P. M. Johnson and D. Tjahjono. Assessing Software Review Meetings: A Controlled Experimental Study

using CSRS. In Software Engineering, 1997., Proceedings of the 1997 International Conference on, pages

118�127, May 1997.

190

[118] P. McCarthy, A. Porter, H. Siy, and L. G. Votta. An Experiment to Assess Cost-bene�ts of Inspection

Meetings and Their Alternatives: A Pilot Study. In Software Metrics Symposium, 1996., Proceedings of

the 3rd International, pages 100�111, Mar 1996.

[119] I. Sommerville and G. Kotonya. Requirements Engineering: Processes and Techniques. John Wiley & Sons,

Inc., New York, NY, USA, 1998.

[120] O. Laitenberger and J-M DeBaud. An Encompassing Life Cycle Centric Survey of Software Inspection.

Journal of Systems and Software, 50(1):5 �31, 2000.

[121] G Sabaliauskaite, F. Matsukawa, S. Kusumoto, and K. Inoue. An Experimental Comparison of Checklist-

Based Reading and Perspective-Based Reading for UML Design Document Inspection. In Proceedings of

the 2002 International Symposium on Empirical Software Engineering, ISESE �02, pages 148�, Washing-

ton, DC, USA, 2002. IEEE Computer Society.

[122] L. He and J. Carver. PBR vs. Checklist: A Replication in the N-fold Inspection Context. In Proceedings

of the 2006 ACM/IEEE International Symposium on Empirical Software Engineering, ISESE �06, pages

95�104, New York, NY, USA, 2006. ACM.

[123] M. Ciolkowski. What Do We Know About Perspective-based Reading? An Approach for Quantitative Ag-

gregation in Software Engineering. In Proceedings of the 2009 3rd International Symposium on Empirical

Software Engineering and Measurement, ESEM �09, pages 133�144, Washington, DC, USA, 2009. IEEE

Computer Society.

[124] M. Staron, L. Kuzniarz, and C. Thurn. An Empirical Assessment of Using Stereotypes to Improve Reading

Techniques in Software Inspections. In Proceedings of the Third Workshop on Software Quality, 3-WoSQ,

pages 1�7, New York, NY, USA, 2005. ACM.

[125] A. Dunsmore, M. Roper, and M. Wood. The Development and Evaluation of Three Diverse Techniques for

Object-Oriented Code Inspection. IEEE Trans. Softw. Eng., 29(8):677�686, August 2003.

[126] T. Thelin, P. Runeson, and C. Wohlin. An Experimental Comparison of Usage-based and Checklist-based

Reading. Software Engineering, IEEE Transactions on, 29(8):687�704, Aug 2003.

191

[127] G. de Caso, V. Braberman, D. Garbervetsky, and S. Uchitel. Automated Abstractions for Contract Validation.

IEEE Transactions on Software Engineering, 38(1):141�162, 2012.

[128] A Egyed and P. Grunbacher. Automating Requirements Traceability: Beyond the Record & Replay Paradigm.

In Automated Software Engineering, 2002. Proceedings. ASE 2002. 17th IEEE International Conference

on, pages 163�171. IEEE, 2002.

[129] F. Pinheiro and J. A Goguen. An Object-oriented Tool for Tracing Requirements. In Requirements Engineer-

ing, 1996., Proceedings of the Second International Conference on, page 219. IEEE, 1996.

[130] S. Easterbrook and J. Callahan. Formal Methods for Veri�cation and Validation of Partial Speci�cations: A

Case Study. Journal of Systems and Software, 40(3):199�210, 1998.

[131] G. Spanoudakis. Plausible and Adaptive Requirement Traceability Structures. In Proceedings of the 14th

international conference on Software engineering and knowledge engineering, pages 135�142. ACM, 2002.

[132] M. A. Peraldi-Frati and A. Albinet. Requirement Traceability in Safety Critical Systems. In Proceedings of

the 1st Workshop on Critical Automotive applications: Robustness & Safety, pages 11�14. ACM, 2010.

[133] A. M. Salem. Improving Software Quality through Requirements Traceability Models. In Computer Systems

and Applications, 2006. IEEE International Conference on., pages 1159�1162. IEEE, 2006.

[134] J. Chanda, A. Kanjilal, S. Sengupta, and S. Bhattacharya. Traceability of Requirements and Consistency

Veri�cation of UML Use Case, Activity and Class Diagram: A Formal Approach. In Methods and Models

in Computer Science, 2009. ICM2CS 2009. Proceeding of International Conference on, pages 1�4. IEEE,

2009.

[135] L. Ladenberger, J. Bendisposto, and M. Leuschel. Visualising Event-B Models with B-Motion Studio. In

María Alpuente, Byron Cook, and Christophe Joubert, editors, Proceedings of FMICS 2009, volume 5825

of Lecture Notes in Computer Science, pages 202�204. Springer, 2009.

[136] D. Hansen, L. Ladenberger, H. Wiegard, J. Bendisposto, and M. Leuschel. Validation of the ABZ Landing

Gear System using ProB. In ABZ 2014: The Landing Gear Case Study, 2014.

192

Chapter 11

Appendix: Documents Used in the Ex-

periment

193

1 Functions
1.1 Deposite

1.1.1 Receive command
1.1.2 Receive cash
1.1.3 Update bank account balance

1.2 Withdraw
1.2.1 Receive command
1.2.2 Check bank account password
1.2.3 Receive withdraw amount
1.2.4 Pay cash

1.3 Check balance of bank account
1.3.1 Receive command
1.3.2 Check bank account password
1.3.3 Show balance

1.4 Buy securities
1.4.1 Receive command
1.4.2 Check securities and bank accounts password
1.4.3 Receive security code and number
1.4.4 Receive target price
1.4.5 Check security price
1.4.6 Check bank account balance
1.4.7 Make and record transaction, update the balance

1.5 Sell securities
1.5.1 Receive command
1.5.2 Check securities and bank accounts password
1.5.3 Receive security code and number
1.5.4 Receive target price
1.5.5 Check security price
1.5.6 Make and record transaction, update the balance

2 Data Resources
2.1 Bank account database. It is the database of all bank account. Each account should

include account number, password, holder's name and balance, and it should connect to a
security account for buying and selling securities.(F1.1.2, F1.1.3, F1.2.2, F1.2.3. F1.2.4,
F1.3.2, F1.3.3, F1.4.2, F1.4.6, F1.4.7, F1.5.2, F1.5.6)

2.2 Securities account database. It is the database of all security account, each account should
contain ID, password, and holder's name. The money for buying and selling securities
should be deposit in correspoding bank account(F1.4.2, F1.4.7, F1.5.2, F1.5.6, F1.6.2)

2.3 Securities database. It is the database of all securities. Each security has code, bid price
and ask price. Bid price is the most expensive price that an investor can sell the security,
and the ask price is the cheapest price that an inverstor can buy the security. Each security
also need indicate how many shares are in the stock.(F1.4.5, F1.4.7, F1.5.5, F1.5.6)

2.4 Transactions database. It is the database to record all the transaction, no matter buy or
sell.(F1.4.7, F1.5.6)

3 Constraints
3.1 Only six commands can be received: "deposite", "withdraw", "showbalance", "buy", "sell",

and "showposition".(F1.1.1, F1.2.1, F1.3.1, F1.4.1, F1.5.1)
3.2 ID number of each bank account should be 7 digital numbers.(F1.2.2, F1.3.2, F1.4.2,

F1.5.2, D2.1)
3.3 Password of each bank account should be 4 digital numbers.(F1.2.2, F1.3.2, F1.4.2, F1.5.2,

D2.1)
3.4 Maximum withdraw amount is 300,000. (F1.2.3)
3.5 ID number of each security account should be 10 digital numbers.(F1.4.2, F1.5.2, D2.2)
3.6 Password of each security account should be 6 digital numbers.(F1.4.2, F1.5.2, D2.2)

194

limo
Text Box
Informal Specification

3.7 Security code should be 8 digital numbers.(F1.4.3, F1.5.3, D2.3)
3.8 Security code must be unique.(F1.4.3, F1.5.3, D2.3)
3.9 Transaction ID should be 20 digital numbers.(F1.4.7, F1.5.6, D2.4)
3.10 Target price in buy transaction can not less than the ask price of the security. (F1.4.5)
3.11 Target price in sell transaction can not higher than the bid price of the security. (F1.5.5)
3.12 The bid price of a security must less than the ask prices.(D2.3)

195

196

limo
Text Box
CDFD

module SecurityTransactionSystem;

const
MAX_VALUE = 300000;

type
Bank_Account = composed of
 id: nat0
 name: string
 password: nat0
 balance: real
 end;

Bank_Accounts: set of Bank_Account

Hold_Security = composed of
 code: string
 price: real
 number: nat
 end;

Hold_Securities: seq of Hold_Security;

Security_Account = composed of
 id: string
 name: string
 password: string
 hold_securities: Hold_Securities
 end;

Security_Accounts: set of Security_Account

Comm_Info = {<deposite>, <withdraw>, <balance>, <buy>, <sell>, <position>}
Bank_Comm_Info = {<deposite>, <withdraw>, <balance>}
Security_Comm_Info = {<buy>, <sell>, <position>}

Action_Info = Bank_Comm_Info | Bank_Account
Transaction_info = Security_Comm_Info | Bank_Account

Security = composed of
 code: string
 bid: real
 ask: real
 end;

Securities = set of Security

Transaction = composed of
 id: string
 code: nat0
 price: real
 number: nat
 type: Transaction_Type;
 security_account: Security_Account
 end;

197

limo
Text Box
Module Specification

var
ext #Bank_Account_File: Bank_Accounts
ext #Security_Account_File: Security_Accounts
ext #Securities_File: Securities

inv
forall[a: Bank_Account] | len(a.id) = 4;
forall[a: Bank_Account] | len(a.password) = 7;
forall[a, b: Bank_Account] | a <> b => a.id <> b.id;
forall[a: Security_Account] | len(a.id) = 10;
forall[a: Security_Account] | len(a.password) = 6;
forall[a, b: Security_Account] | a <> b => a.id <> b.id;
forall[a: Security] | len(a.code) = 10;
forall[a, b: Security] | a <> b => a.id <> b.id;
forall[a: Transaction] | len(a.id) = 20;
forall[a, b: Transaction] | a <> b => a.id <> b.id;

process Receive_Bank_Comm(input1: string | input2: string | input3: string)comm_info:
Security_Comm_Info
pre true
post input1 = "deposite" and comm_info = <deposite> or input2 = "withdraw" and comm_info =
<withdraw> or input3 = "show_balance" and comm_info = <show_balance>
end_process;

process Bank_Account_Authorize(comm_info: Security_Comm_Info, bank_id: string, bank_pass:
string)msg_1: string | acc1: Bank_Account | acc2: Account | acc3: Account
pre true
post (exists![x: Bank_Account_File] | (x.id = bank_id) and (bank_comm_info = <deposite> and
acc1 = x or bank_comm_info = <withdraw> and acc1 = x and bank_comm_info =
<show_balance> and acc3 = x)) or (exists![x: Bank_Account_File] | (x.id = bank_id) and msg_1 =
"Error!")
end_process;

process Deposit(acc1: Bank_Account, d_amount: real)msg_2: string
pre true
post acc1.balance = acc1.balance + deposite_amount or msg2 = "Deposite Success!"
end_process;

process Receive_Security_Comm(buy: string | sell: string | show_position:
string)security_comm_info: Comm_Info
pre true
post buy = "buy" and security_comm_info = <buy> or sell = "sell" and bank_comm_info = <sell>
or show_position = "show_position" and bank_comm_info = <show_position>
end_process;

process Security_Account_Authorize(security_comm_info: Security_Comm_Info, security_id:
string, security_pass: string)acc4: Security_Account | acc5 : Security_Account | msg_7: string
ext wr #Security_Account
pre true
post (exists![x: Security_Account_File] | (x.id = security_id) and (security_comm_info = <deposit>
and acc1 = x or security_comm_info = <sell> and acc5 = x or security_comm_info =
<show_position> and acc6 = x)) or ((exists![x: Security_Account_File] | (x.id = security_id)) and

198

msg_2 = "Error!")
end_process;

process Buy(acc4: Security_Account, buy_code: string, buy_price: real, buy_number: nat)msg_4:
string | msg_5: msg | msg_6:
ext rd #Bank_Account_File
 wr #Security_Account_File
 wr #Securities_File
pre true
post (exists![x: Security_Account_File and y: Security_Account_File and z: Securities_File] | (x.id
= acc4.id and y.security_account_id = acc4.id and z.code = buy_code and y.balance <= buy_
number * buy_ price and y.balance = y.balance - buy_number * buy_price and x.hold_securities =
union(acc4.hold_securities, { (buy_code, buy_price, buy_number)} and z.bid = buy_share_price
and msg_4 = "Success!") or (exists![x: Security_Account_File and y: Bank_Account_File and z:
Securities] | (x.id = acc1.id and y.security_account_id = acc4.id and z.code = buy_share_code
and y.balance < buy_number * buy_price and msg_5 = "Balance Is Not Enough!") or (exists![x:
Security_Account_File and y: Bank_Account_File and z: Securities_File] | (x.id = acc4.id and
y.security_account_id = acc4.id and z.code = buy_code and buy_prince < z.bid and msg_6 =
"The Offered Price Is Too Cheap!")
end_process;

process Withdraw(acc2: Bank_Account, w_amount: real)cash: real | msg_3: string
ext rd #Bank_Account_FIle
pre true
post acc2.balance <= withdraw_amount and acc2.balance = acc2.balacen + w_amount and cash
= w_amount or acc2.balance <= withdraw_amount and msg_2 = "Balance Is Not Enough!"
end_process;

process Show_Balance(acc3: Account)balance: real
ext rd #Bank_Account_FIle
pre true
post balance = acc3.balance
end_process;

process sell(acc5: Security_Account , sell_code: nat, sell_price: real, sell_number: real)msg_8:
msg | msg_9: msg
ext rd #Bank_Account_File
 wr #Security_Account_File
 wr #Securities_File
pre true
post (exists![x: Security_Account_File and y: Security_Account_File and z: Securities_File] | (x.id
= acc5.id and y.security_account_id = acc5.id and z.code = sell_code and sell_price <= z.ask and
y.balance -> y.balance - sell_number * sell_price) and x.hold_securities ->
diff(acc1.hold_securities, { (sell_share_code, sell_share_price, sell_share_number)} and z.ask =
sell_price) and msg_4 = "Success!") or (exists![x: Security_Account_File and y:
Security_Account_File and z: Securities_File] | (x.id = acc5.id and y.security_account_id = acc1.id
and z.code = sell_code and sell_prince > z.ask and msg_5 = "The Offered Price Is Too
Expensive!")
end_process;

end_module

199

Checklist

1. Whether function "Deposit" is implemented appropriately?

2. Whether function "Receive command" is implemented appropriately?

3. Whether function "Receive cash" is implemented appropriately?

4. Whether function "Update bank account balance" is implemented appropriately?

5. Whether function "Withdraw" is implemented appropriately?

6. Whether function "Check bank account password" is implemented appropriately?

7. Whether function "Receive withdraw amount" is implemented appropriately?

8. Whether function "Pay cash" is implemented appropriately?

9. Whether function "Check balance of bank account" is implemented appropriately?

10. Whether function "Show balance" is implemented appropriately?

11. Whether function "Buy securities" is implemented appropriately?

12. Whether function "Check securities and bank accounts password" is implemented

appropriately?

13. Whether function "Receive security code and number" is implemented

appropriately?

14. Whether function "Receive target price" is implemented appropriately?

15. Whether function "Check security price" is implemented appropriately?

16. Whether function "Check bank account balance" is implemented appropriately?

17. Whether function "Make and record transaction, update the balance" is

implemented appropriately?

18. Whether function "Sell security" is implemented appropriately?

19. Whether data resource "Bank account database" is implemented appropriately?

20. Whether data resource "Security account database" is implemented

appropriately?

21. Whether data resource "Securities database" is implemented appropriately?

22. Whether data resource "Transactions database" is implemented appropriately?

23. Whether constraint C3.1 about command is implemented appropriately?

24. Whether constraint C3.2 about ID of bank account is implemented appropriately?

25. Whether constraint C3.3 about Password of bank account is implemented

appropriately?

26. Whether constraint C3.4 about maximum withdraw amount is implemented

appropriately?

27. Whether constraint C3.5 about ID of security account is implemented

appropriately?

28. Whether constraint C3.6 about Password of security account is implemented

appropriately?

200

limo
Text Box
Checklist for Checklist-based Inspection

29. Whether constraint C3.7 about code of each security is implemented

appropriately?

30. Whether constraint C3.8 about code of each security is implemented

appropriately?

31. Whether constraint C3.9 about ID of transaction is implemented appropriately?

32. Whether constraint C3.10 about target prince in buy transaction is implemented

appropriately?

33. Whether constraint C3.11 about target prince in sell transaction is implemented

appropriately?

34. Whether constraint C3.12 about bid and ask prices is implemented

appropriately?

201

Questions for system scenario 01

{input1}[Receive_Bank_Comm, Bank_Account_Authorize]{msg_1}

Receive_Bank_Co
mm

Bank_Account_Au
thorize

input1

comm_info

bank_id

bank_pas
s

Bank_Account_File

msg_1

1. Questions for process “Receive_Bank_Comm”

process Receive_Bank_Comm(input1: string) comm_info: Security_Comm_info
pre true
post input1 = “deposit” and comm_info = <deposit>
end_process

Q1: Whether the name “Receive_Bank_Comm” is appropriate?

Q2: Whether the name and type of input variable “input1” are appropriate?

Q3: Whether the name and type of output variable “comm_info” are appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

input1 string
comm_info Security_Comm_Info

Q8: Whether the invariants related to process "Receive_Bank_Comm" are defined correctly?

Q9: What constraints in the informal specification are formalized by these invariant?

202

limo
Text Box
Checklist for Proposed Inspection Approach

2. Questions for process “Bank_Account_Authorize”

process Bank_Account_Authorize(bank_id: string, bank_pass: string, comm_info:
Security_Comm_info) msg_1: string
pre true
post exists![x: Bank_Account_File] | (x.id = bank_id) and msg_1 = "Error!"
end_process

Q1: Whether the name “Bank_Account_Authorize” is appropriate?

Q2: Whether the name and type of input variables “bank_id”, “bank_pass”, and “comm_info”
are appropriate?

Q3: Whether the name and type of output variable “msg_1” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

Bank_Account_File Security_Accounts
x.id nat0
bank_id string

Q8: Whether the data store “Bank_Account_File” is declared appropriately with “wr” or “rd”?

Q9: What data resources in the formal specification is formalized by the data store

“Bank_Account_File”?

Q10: Whether the invariants related to process “Bank_Account_Authorize” are defined

correctly?

forall[a: Bank_Account] | len(a.id) = 4;
forall[a: Bank_Account] | len(a.password) = 7;
forall[a, b: Bank_Account] | a <> b => a.id <> b.id;

Q11: What constraints in the informal specification are formalized by these invariant?

203

Questions for system scenario 02

{input1}[Receive_Bank_Comm, Bank_Account_Authorize, Deposit]{msg_2}

Receive_Bank_Co
mm

Bank_Account_Au
thorize

Deposit

input1

comm_info

bank_id

bank_pas
s

acc1

d_amount

msg_2

Bank_Account_File

1. Questions for process “Bank_Account_Authorize”

process Bank_Account_Authorize (bank_id: string, bank_pass: string, comm_info:
Security_Comm_info) acc1: Bank_Account
pre true
post (exists![x: Bank_Account_File] | (x.id = bank_id) and (bank_comm_info = <deposite>))
 and acc1 = x
end_process

Q1: Whether the name “Bank_Account_Authorize” is appropriate?

Q2: Whether the name and type of input variables “bank_id”, “bank_pass”, and “comm_info”
are appropriate?

Q3: Whether the name and type of output variable “acc1” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

bank_comm_info undefined
x.id nat0
bank_id string
acc1 Bank_Account

Q8: Whether the data store “Bank_Account_File” is declared appropriately with “wr” or “rd”?

204

Q9: What data resources in the formal specification is formalized by the data store

“Bank_Account_File”?

Q10: Whether the invariants related to process “Bank_Account_Authorize” are defined

correctly?

forall[a: Bank_Account] | len(a.id) = 4;
forall[a: Bank_Account] | len(a.password) = 7;
forall[a, b: Bank_Account] | a <> b => a.id <> b.id;

Q11: What constraints in the informal specification are formalized by these invariant?

2. Questions for process “Deposit”

process Deposit (acc1: Bank_Account, d_amount: real) msg_2: string
pre true
post acc1.balance = acc1.balance + deposite_amount
end_process

Q1: Whether the name “Deposit” is appropriate?

Q2: Whether the name and type of input variables “acc1”, and “d_amount” are appropriate?

Q3: Whether the name and type of output variable “msg_2” are appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

acc1.balance real
deposite_amount undefined

Q8: Whether the data store “Bank_Account_File” is declared appropriately with “wr” or “rd”?

Q9: Whether the invariants related to process “Bank_Account_Authorize” are defined correctly?

forall[a: Bank_Account] | len(a.id) = 4;
forall[a: Bank_Account] | len(a.password) = 7;
forall[a, b: Bank_Account] | a <> b => a.id <> b.id;

Q10: What constraints in the informal specification are formalized by these invariant?

205

Questions for system scenario 03

{input2}[Receive_Bank_Comm, Bank_Account_Authorize, Withdraw]{cash}

Receive_Bank_Co
mm

Bank_Account_Au
thorize

Withdraw
input2

comm_info

bank_id

bank_pas
s

acc2

w_amount

cash

Bank_Account_File

1. Questions for process “Receive_Bank_Comm”

process Receive_Bank_Comm(input2: string) comm_info: Security_Comm_info
pre true
post input1 = “withdraw” and comm_info = <withdraw>
end_process

Q1: Whether the name “Receive_Bank_Comm” is appropriate?

Q2: Whether the name and type of input variable “input2” are appropriate?

Q3: Whether the name and type of output variable “comm_info” are appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

input2 string
comm_info Security_Comm_Info

Q8: Whether the invariants related to process "Receive_Bank_Comm" are defined correctly?

Q9: What constraints in the informal specification are formalized by these invariant?

206

2. Questions for process “Bank_Account_Authorize”

process Bank_Account_Authorize (bank_id: string, bank_pass: string, comm_info:
Security_Comm_info) acc2: Account
pre true
post exists![x: Bank_Account_File] | bank_comm_info = <withdraw> and acc1 = x
 and
 bank_comm_info = <show_balance> and acc3 = x
end_process

Q1: Whether the name “Bank_Account_Authorize” is appropriate?

Q2: Whether the name and type of input variables “bank_id”, “bank_pass”, and “comm_info”
are appropriate?

Q3: Whether the name and type of output variable “acc2” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

bank_comm_info undefined
x.id nat0
acc1 undefined
acc3 undefined

Q8: Whether the data store “Bank_Account_File” is declared appropriately with “wr” or “rd”?

Q9: What data resources in the formal specification is formalized by the data store

“Bank_Account_File”?

Q10: Whether the invariants related to process “Bank_Account_Authorize” are defined

correctly?

forall[a: Bank_Account] | len(a.id) = 4;
forall[a: Bank_Account] | len(a.password) = 7;
forall[a, b: Bank_Account] | a <> b => a.id <> b.id;

Q11: What constraints in the informal specification are formalized by these invariant?

207

3. Questions for process “Withdraw”

process Withdraw (acc2: Bank_Account, w_amount: real) cash: real
ext rd #Bank_Account_File

pre true
post acc2.balance <= withdraw_amount and
 acc2.balance = acc2.balacen + w_amount and
 cash = w_amount
end_process

Q1: Whether the name “Withdraw” is appropriate?

Q2: Whether the name and type of input variables “acc2”, and “w_amount” are appropriate?

Q3: Whether the name and type of output variable “cash” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

acc2.balance real
withdraw_amount undefined
w_amount real

Q8: Whether the data store “Bank_Account_File” is declared appropriately with “wr” or “rd”?

Q9: Whether the invariants related to process “Bank_Account_Authorize” are defined correctly?

forall[a: Bank_Account] | len(a.id) = 4;
forall[a: Bank_Account] | len(a.password) = 7;
forall[a, b: Bank_Account] | a <> b => a.id <> b.id;

Q10: What constraints in the informal specification are formalized by these invariant?

208

Questions for system scenario 04

{input2}[Receive_Bank_Comm, Bank_Account_Authorize, Withdraw]{msg_3}

Receive_Bank_Co
mm

Bank_Account_Au
thorize

Withdraw
input2

comm_info

bank_id

bank_pas
s

acc2

w_amount

msg_3

Bank_Account_File

1. Questions for process “Withdraw”

process Withdraw (acc2: Bank_Account, w_amount: real) msg_3: string
ext rd #Bank_Account_File

pre true
post acc2.balance <= withdraw_amount and msg_2 = "Balance Is Not Enough!"
end_process

Q1: Whether the name “Withdraw” is appropriate?

Q2: Whether the name and type of input variables “acc2”, and “w_amount” are appropriate?

Q3: Whether the name and type of output variable “msg_3” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

acc2.balance real
msg_2 undefined

Q8: Whether the data store “Bank_Account_File” is declared appropriately with “wr” or “rd”?

Q9: Whether the invariants related to process “Bank_Account_Authorize” are defined correctly?

forall[a: Bank_Account] | len(a.id) = 4;
forall[a: Bank_Account] | len(a.password) = 7;
forall[a, b: Bank_Account] | a <> b => a.id <> b.id;

Q10: What constraints in the informal specification are formalized by these invariant?

209

Questions for system scenario 05

{input3}[Receive_Bank_Comm, Bank_Account_Authorize, Show_Balance]{balance}

Receive_Bank_Co
mm

Bank_Account_Au
thorize

Show_Balance

input3

comm_info

bank_id

bank_pas
s

acc3

w_amount

balance

Bank_Account_File

1. Questions for process “Receive_Bank_Comm”

process Receive_Bank_Comm(input3: string) comm_info: Security_Comm_info
pre true
post input3 = "show_balance" and comm_info = <show_balance>
end_process

Q1: Whether the name “Receive_Bank_Comm” is appropriate?

Q2: Whether the name and type of input variable “input3” are appropriate?

Q3: Whether the name and type of output variable “comm_info” are appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

input3 string
comm_info Security_Comm_Info

Q8: Whether the invariants related to process "Receive_Bank_Comm" are defined correctly?

Q9: What constraints in the informal specification are formalized by these invariant?

210

2. Questions for process “Bank_Account_Authorize”

process Bank_Account_Authorize (bank_id: string, bank_pass: string, comm_info:
Security_Comm_info) acc3: Account
pre true
post exists![x: Bank_Account_File] | bank_comm_info = <withdraw> and acc1 = x
 and
 bank_comm_info = <show_balance> and acc3 = x
end_process

Q1: Whether the name “Bank_Account_Authorize” is appropriate?

Q2: Whether the name and type of input variables “bank_id”, “bank_pass”, and “comm_info”
are appropriate?

Q3: Whether the name and type of output variable “acc3” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

bank_comm_info undefined
x.id nat0
acc1 undefined
acc3 Account

Q8: Whether the data store “Bank_Account_File” is declared appropriately with “wr” or “rd”?

Q9: What data resources in the formal specification is formalized by the data store

“Bank_Account_File”?

Q10: Whether the invariants related to process “Bank_Account_Authorize” are defined

correctly?

forall[a: Bank_Account] | len(a.id) = 4;
forall[a: Bank_Account] | len(a.password) = 7;
forall[a, b: Bank_Account] | a <> b => a.id <> b.id;

Q11: What constraints in the informal specification are formalized by these invariant?

211

3. Questions for process “Show_Balance”

process Show_Balance (acc3: Account) balance: real
ext rd #Bank_Account_File

pre true
post balance = acc3.balance
end_process

Q1: Whether the name “Show_Balance” is appropriate?

Q2: Whether the name and type of input variables “acc3” are appropriate?

Q3: Whether the name and type of output variable “balance” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Q8: Whether the data store “Bank_Account_File” is declared appropriately with “wr” or “rd”?

Q9: Whether the invariants related to process “Bank_Account_Authorize” are defined correctly?

Q10: What constraints in the informal specification are formalized by these invariant?

212

Questions for system scenario 06

{buy}[Receive_Security_Comm, Security_Account_Authorize, Buy]{msg_4}

Receive_Security
_Comm

Security_Account
_Authorize

Buy

buy

security_comm
_info

security_id

security_pass

acc4

buy_price
msg_4

 Bank_Account_File

 Security_Account_File

buy_code

buy_number

 Transactions_File Securities_File

1. Questions for process “Receive_Security_Comm”

process Receive_Security_Comm (buy: string) security_comm_info: Comm_Info
pre true
post buy = "buy" and security_comm_info = <buy>
end_process

Q1: Whether the name “Receive_Security_Comm” is appropriate?

Q2: Whether the name and type of input variable “buy” are appropriate?

Q3: Whether the name and type of output variable “security_comm_info” are appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Q8: Whether the invariants related to process “Receive_Security_Comm” are defined correctly?

Q9: What constraints in the informal specification are formalized by these invariant?

213

2. Questions for process “Security_Account_Authorize”

process Security_Account_Authorize (security_comm_info: Security_Comm_Info, security_id:
string, security_pass: string)acc4: Security_Account
ext wr #Security_Account
pre true
post exists![x: Security_Account_File] | (x.id = security_id) and security_comm_info = <deposit>
and acc1 = x
end_process

Q1: Whether the name “Security_Account_Authorize” is appropriate?

Q2: Whether the name and type of input variables “security_comm_info”, “security_id”, and
“security_pass” are appropriate?

Q3: Whether the name and type of output variable “acc4” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

Security_Account_File Security_Accounts
x.id string
acc1 undefined

Q8: Whether the data store “Security_Account_File” is declared appropriately with “wr” or “rd”?

Q9: What data resources in the formal specification is formalized by the data store “Security

_Account_File”?

Q10: Whether the invariants related to process “Security_Account_Authorize” are defined

correctly?

forall[a: Security_Account] | len(a.id) = 10;
forall[a: Security_Account] | len(a.password) = 6;
forall[a, b: Security_Account] | a <> b => a.id <> b.id;

Q11: What constraints in the informal specification are formalized by these invariant?

214

3. Questions for process “Buy”

process Buy (acc4: Security_Account, buy_code: string, buy_price: real, buy_number: nat)
 msg_4: string
ext rd #Bank_Account_File
 wr #Security_Account_File
 wr #Securities_File

pre true
post exists![x: Security_Account_File and y: Security_Account_File and z: Securities_File] |
 (x.id = acc4.id and y.security_account_id = acc4.id and z.code = buy_code and
 y.balance <= buy_ number * buy_ price and
 y.balance = y.balance - buy_number * buy_price and
 x.hold_securities = union(acc4.hold_securities,
 { (buy_code, buy_price, buy_number)} and
 z.bid = buy_share_price and
 msg_4 = "Success!")
end_process

Q1: Whether the name “Buy” is appropriate?

Q2: Whether the name and type of input variables “acc4”, "buy_code", "buy_price",
"buy_number" are appropriate?

Q3: Whether the name and type of output variable “msg_4” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

Security_Account_File Security_Accounts
y.security_account_id undefined
z.code string

Q8: Whether the data store “Security_Account_File”, “Bank_Account_File”, “Securities_File”,

“Transaction_File” are declared appropriately with “wr” or “rd”?

Q9: What data resources in the formal specification is formalized by the data store

“Security_Account_File”, “Securities_File”?

Q10: Whether the invariants related to process “Buy” are defined correctly

forall[a: Security_Account] | len(a.id) = 10;
forall[a: Security_Account] | len(a.password) = 6;
forall[a, b: Security_Account] | a <> b => a.id <> b.id;
forall[a: Security] | len(a.code) = 10;

 forall[a, b: Security] | a <> b => a.id <> b.id;

Q11: What constraints in the informal specification are formalized by these invariant?

215

Questions for system scenario 07

{buy}[Receive_Security_Comm, Security_Account_Authorize, Buy]{msg_5}

Receive_Security
_Comm

Security_Account
_Authorize

Buy

buy

security_comm
_info

security_id

security_pass

acc4

buy_price

msg_5

 Bank_Account_File

 Security_Account_File

buy_code

buy_number

 Transactions_File Securities_File

1. Questions for process “Buy”

process Buy (acc4: Security_Account, buy_code: string, buy_price: real, buy_number: nat)
 msg_5: string
ext rd #Bank_Account_File
 wr #Security_Account_File
 wr #Securities_File

pre true
post exists![x: Security_Account_File and y: Bank_Account_File and z: Securities] |
 (x.id = acc1.id and y.security_account_id = acc4.id and z.code = buy_share_code
 and
 y.balance < buy_number * buy_price and
 msg_5 = "Balance Is Not Enough!")
end_process

Q1: Whether the name “Buy” is appropriate?

Q2: Whether the name and type of input variables “acc4”, "buy_code", "buy_price",
"buy_number" are appropriate?

Q3: Whether the name and type of output variable “msg_5” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

216

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

Security_Account_File Security_Accounts
Bank_Account_File Bank_Accounts
Securities_File Securities
x.id string
acc4.id string
y.security_account_id undefined
z.code string

Q8: Whether the data store “Security_Account_File”, “Bank_Account_File”, “Securities_File”,

“Transaction_File” are declared appropriately with “wr” or “rd”?

Q9: What data resources in the formal specification is formalized by the data store

“Security_Account_File”, “Bank_Account_File”, “Securities_File”?

Q10: Whether the invariants related to process “Buy” are defined correctly

Q11: What constraints in the informal specification are formalized by these invariant?

217

Questions for system scenario 08

{buy}[Receive_Security_Comm, Security_Account_Authorize, Buy]{msg_6}

Receive_Security
_Comm

Security_Account
_Authorize

Buy

buy

security_comm
_info

security_id

security_pass

acc4

buy_price

msg_6

 Bank_Account_File

 Security_Account_File

buy_code

buy_number

 Transactions_File Securities_File

1. Questions for process “Buy”

process Buy (acc4: Security_Account, buy_code: string, buy_price: real, buy_number: nat)
 msg_6:
ext rd #Bank_Account_File
 wr #Security_Account_File
 wr #Securities_File

pre true
post exists![x: Security_Account_File and y: Bank_Account_File and z: Securities_File] |
 (x.id = acc4.id and y.security_account_id = acc4.id and z.code = buy_code
 and
 buy_prince < z.bid and
 msg_6 = "The Offered Price Is Too Cheap!")
end_process

Q1: Whether the name “Buy” is appropriate?

Q2: Whether the name and type of input variables “acc4”, "buy_code", "buy_price",
"buy_number" are appropriate?

Q3: Whether the name and type of output variable “msg_6” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

218

Q6: Whether all input and output variables are used in the pre- and post-condition?

Variable Type

Security_Account_File Security_Accounts
Bank_Account_File Bank_Accounts
Securities_File Securities
x.id string
acc4.id string
y.security_account_id undefined
z.code string

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

forall[a: Bank_Account] | len(a.id) = 4;
forall[a: Bank_Account] | len(a.password) = 7;
forall[a, b: Bank_Account] | a <> b => a.id <> b.id;
forall[a: Security_Account] | len(a.id) = 10;
forall[a: Security_Account] | len(a.password) = 6;
forall[a, b: Security_Account] | a <> b => a.id <> b.id;
forall[a: Security] | len(a.code) = 10;
forall[a, b: Security] | a <> b => a.id <> b.id;

Q8: Whether the data store “Security_Account_File”, “Bank_Account_File”, “Securities_File”,

“Transaction_File” are declared appropriately with “wr” or “rd”?

Q9: What data resources in the formal specification is formalized by the data store

“Security_Account_File”, “Bank_Account_File”, “Securities_File”?

Q10: Whether the invariants related to process “Buy” are defined correctly

Q11: What constraints in the informal specification are formalized by these invariant?

219

Questions for system scenario 09

{sell}[Receive_Security_Comm, Security_Account_Authorize, sell]{msg_8}

Receive_Security
_Comm

Security_Account
_Authorize

sell
sell security_comm

_info

security_id

security_pass

sell_price

msg_8

 Bank_Account_File

 Security_Account_File

sell_code

sell_number

 Transactions_File Securities_File

acc5

1. Questions for process “Receive_Security_Comm”

process Receive_Security_Comm (sell: string) security_comm_info: Comm_Info
pre true
post sell = "sell" and security_comm_info = <sell>
end_process

Q1: Whether the name “Receive_Security_Comm” is appropriate?

Q2: Whether the name and type of input variable “sell” are appropriate?

Q3: Whether the name and type of output variable “security_comm_info” are appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Q8: Whether the invariants related to process “Receive_Security_Comm” are defined correctly?

Q9: What constraints in the informal specification are formalized by these invariant?

220

2. Questions for process “Security_Account_Authorize”

process Security_Account_Authorize (security_comm_info: Security_Comm_Info, security_id:
string, security_pass: string)acc5: Security_Account
ext wr #Security_Account
pre true
post exists![x: Security_Account_File] | (x.id = security_id) and
 security_comm_info = <sell> and acc5 = x
end_process

Q1: Whether the name “Security_Account_Authorize” is appropriate?

Q2: Whether the name and type of input variables “security_comm_info”, “security_id”, and
“security_pass” are appropriate?

Q3: Whether the name and type of output variable “acc5” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

Security_Account_File Security_Accounts
x.id string
acc5 Security_Account

Q8: Whether the data store “Security_Account_File” is declared appropriately with “wr” or “rd”?

Q9: What data resources in the formal specification is formalized by the data store

“Security_Account_File”?

Q10: Whether the invariants related to process “Security_Account_Authorize” are defined

correctly?

forall[a: Security_Account] | len(a.id) = 10;
forall[a: Security_Account] | len(a.password) = 6;
forall[a, b: Security_Account] | a <> b => a.id <> b.id;

Q11: What constraints in the informal specification are formalized by these invariant?

221

3. Questions for process “sell”

process sell(acc5: Security_Account , sell_code: nat, sell_price: real, sell_number: real)
 msg_8: msg
ext rd #Bank_Account_File
 wr #Security_Account_File
 wr #Securities_File

pre true
post exists![x: Security_Account_File and y: Security_Account_File and z: Securities_File] |
 (x.id = acc5.id and y.security_account_id = acc5.id and z.code = sell_code and
 sell_price <= z.ask and
 y.balance -> y.balance - sell_number * sell_price) and
 x.hold_securities -> diff(acc1.hold_securities,
 { (sell_share_code, sell_share_price, sell_share_number)} and
 z.ask = sell_price and msg_4 = "Success!"
end_process

Q1: Whether the name “sell” is appropriate?

Q2: Whether the name and type of input variables “acc5”, "sell_code", "sell_price",
"sell_number" are appropriate?

Q3: Whether the name and type of output variable “msg_8” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

x.id string
acc5.id string
y.security_account_id undefined
msg_4 undefined

Q8: Whether the data store “Security_Account_File”, “Bank_Account_File”, “Securities_File”,

“Transaction_File” are declared appropriately with “wr” or “rd”?

Q9: What data resources in the formal specification is formalized by the data store

“Security_Account_File”, “Securities_File”?

Q10: Whether the invariants related to process “sell” are defined correctly

forall[a: Security_Account] | len(a.id) = 10;
forall[a: Security_Account] | len(a.password) = 6;
forall[a, b: Security_Account] | a <> b => a.id <> b.id;
forall[a: Security] | len(a.code) = 10;

 forall[a, b: Security] | a <> b => a.id <> b.id;

Q11: What constraints in the informal specification are formalized by these invariant?

222

Questions for system scenario 10

{sell}[Receive_Security_Comm, Security_Account_Authorize, sell]{msg_9}

Receive_Security
_Comm

Security_Account
_Authorize

sell
sell security_comm

_info

security_id

security_pass

sell_price

msg_9

 Bank_Account_File

 Security_Account_File

sell_code

sell_number

 Transactions_File Securities_File

acc5

1. Questions for process “sell”

process sell(acc5: Security_Account , sell_code: nat, sell_price: real, sell_number: real)
 msg_9: msg
ext rd #Bank_Account_File
 wr #Security_Account_File
 wr #Securities_File

pre true
post exists![x: Security_Account_File and y: Security_Account_File and z: Securities_File] |
 (x.id = acc5.id and y.security_account_id = acc1.id and z.code = sell_code
 and
 sell_prince > z.ask and
 msg_5 = "The Offered Price Is Too Expensive!")
end_process

Q1: Whether the name “sell” is appropriate?

Q2: Whether the name and type of input variables “acc5”, "sell_code", "sell_price",
"sell_number" are appropriate?

Q3: Whether the name and type of output variable “msg_8” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

223

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

Variable Type

Security_Account_File Security_Accounts
Securities_File Securities
x.id string
acc5.id string
y.security_account_id undefined
msg_5 undefined

Q8: Whether the data store “Security_Account_File”, “Bank_Account_File”, “Securities_File”,

“Transaction_File” are declared appropriately with “wr” or “rd”?

Q9: What data resources in the formal specification is formalized by the data store

“Security_Account_File”, “Securities_File”?

Q10: Whether the invariants related to process “sell” are defined correctly

forall[a: Security_Account] | len(a.id) = 10;
forall[a: Security_Account] | len(a.password) = 6;
forall[a, b: Security_Account] | a <> b => a.id <> b.id;
forall[a: Security] | len(a.code) = 10;

 forall[a, b: Security] | a <> b => a.id <> b.id;

Q11: What constraints in the informal specification are formalized by these invariant?

224

Questions for system scenario 11

{buy}[Receive_Security_Comm, Security_Account_Authorize]{msg_7}

Receive_Security
_Comm

Security_Account
_Authorize

buy

security_comm
_info

security_id

security_pass

 Security_Account_File

msg_7

1. Questions for process “Security_Account_Authorize”

process Security_Account_Authorize (security_comm_info: Security_Comm_Info, security_id:
string, security_pass: string)msg_7: String
ext wr #Security_Account
pre true
post exists![x: Security_Account_File] | (x.id = security_id) and msg_2 = "Error!"
end_process

Q1: Whether the name “Security_Account_Authorize” is appropriate?

Q2: Whether the name and type of input variables “security_comm_info”, “security_id”, and
“security_pass” are appropriate?

Q3: Whether the name and type of output variable “acc5” is appropriate?

Q4: What functions in the informal specification are formalized by this process?

Q5: What constraints in the informal specification are formalized by this process?

Q6: Whether all input and output variables are used in the pre- and post-condition?

Q7: Whether the variables and their types in the pre- and post-condition are used appropriately?

225

Variable Type

Security_Account_File Security_Accounts
msg_2 undefined

Q8: Whether the data store “Security_Account_File” is declared appropriately with “wr” or “rd”?

Q9: What data resources in the formal specification is formalized by the data store “Security

_Account_File”?

Q10: Whether the invariants related to process “Security_Account_Authorize” are defined

correctly?

forall[a: Security_Account] | len(a.id) = 10;
forall[a: Security_Account] | len(a.password) = 6;
forall[a, b: Security_Account] | a <> b => a.id <> b.id;

Q11: What constraints in the informal specification are formalized by these invariant?

226

	New Cover
	print binding version.pdf
	Thesis.pdf
	Binder1
	informal.pdf
	SecurityTransactionSystem
	questionlist
	ss01
	ss02
	ss03
	ss04
	ss05
	ss06
	ss07
	ss08
	ss09
	ss10
	ss11

