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Abstract— In Social network system, existing “people you 

might know” or “Mutual friends” recommending applications 

are commonly utilized to list two-hop mediate relationships that 

one could have with another in order to tighten the bonds among 

groups. However, as the number of SNS users increase 

dramatically, the relationship data get so huge that the 

performance of Mutual Friends recommendation system becomes 

an urgent problem considering the developers’ requirements. 

Here we propose a sorting algorithm in Hadoop----a parallel 

computing framework, to enhance the efficiency of “Mutual 

friends” recommendation process by taking advantage of the 

novel map reduce model. In the revised application, original 

sorting algorithm of intermediate data, merge sort, is replaced by 

a more time saving sorting approach which introduces a B-Tree 

like data structure, 2-3 Tree to store the user friendship data and 

conducts the sorting process. As number of user increases, the 

revised user defined map reduce functions perform better than 

the conventional design in time consuming aspect.    

Keywords— Mutual Friends, Recommendation System, 

Map Reduce, Hadoop, 2-3 Tree  

I.  INTRODUCTION 

As the number of SNS users increases, the relations among 
users will grow up to heterogeneous graphs, which outstrips the 
storing and computing ability of even large-scale parallel 
processing machines. In “People You Might Know” friendship 
recommendation, an efficient Reducer side graph processing 
algorithm on Hadoop distributed system is proposed, which 
takes advantage of the novel database structure, 2-3 Tree, to 
store and sort common friends entries used in user defined 
Reduce function instead of array data structure. As a result, 
average reduce processing time can be reduced.  

The application of Mutual Friends is a paralleling 
computing process which reads users’ friends list as input data 
and calculates the potential common relationship each user 
could have with another. And then application recommends the 
“people you might know” to users ordered by the number of 
common friends they both could have. In this application, 
people and the relationships between two persons can be 
regarded correspondingly as vertices and edges between 
vertices in graph theory. As a result, the human network is 
abstracted as a non-directional graph without edge weights. 

Existing algorithms designed for map reduce scenario to 
find friends in common such as Steve Krenzel [1] and Pulkit 

Goyal [2] emit inadequate output information. The former one 
generates just the specific mutual friends’ ids without a sum. 
For example, “A, B  C, D” is a typical output line which 
means C and D are common friends between A and B. But if 
the developer would like to show the number of common 
relationships, another map reduce cycle is necessary. The later 
one, Goyal’s algorithm is just short of something in an opposite 
way. Only number of mutual friends is written to the output file 
without the specific mutual friends list one by one.  

The paper [3] written by Zhao GuoGuang et al. proposed 
another way of finding “common ancestor” in a given tree 
graph, which resembles the situation as “finding mutual 
friends”, because the “common friend” to two users is like the 
ancestor to two of its children nodes. But this paper use 
different format of input data and data structure to store the 
graph information, so both algorithms have their own 
characters and they are just not able to be compared in a simple 
way. 

Both Rishan Chen et al. [4] and Kisung Lee et al. [5] 
focused on the partition strategy as an approach to achieve the 
improvement. We also came up with some similar idea about 
changing its previous partitioning way in Mapper side which 
will be demonstrated later. But we found this application has its 
own special features, so achieving the improvement in the 
Reducer side would be more applicable, described as following. 

Another algorithm about counting “people you might 
know” application is published by Jure Leskovec [6], whose 
design will be compared in the following chapter 4. Our 
revised version is based on the fundamental program of this 
one. During the reduce part of this algorithm, users and their 
mutual friends with key are stored and sorted by the array 
collection, which utilizes merge sort as sorting algorithm. And 
our improvement is focused on the modification of his sorting 
algorithm.  

The rest of paper is organized as follows. We review the 
preliminary and related works on map reduce program model, a 
popular framework called Hadoop which uses the model in 
section II, also we introduce the Mutual Friends algorithm in 
both map and reduce in the same section. We describe the 
original sorting algorithm and present the revised version of 
sorting algorithm using 2-3 Tree in section III. We show the 
experiment environment in section IV. We present the 
experiment process with results and analysis in section V, and 
conclude this thesis with future work in section VI. 



II. PRELIMINARY AND RELATED WORK 

A. Map Reduce Model 

The basic core design ideas of map and reduce is that some 
rules and limitations must be obeyed to achieve the 
parallelization of huge assignments. Users specify the 
computation in terms of a map and a reduce function. Map 
processes a set of key-value and generates a new, 
corresponding set of key-value as the intermediate results, and 
then Reduce function merges the results with same key [7]. 
Map, written by the user, takes an input pair and produces a set 
of intermediate key/value pairs. The Map Reduce library 
groups together all intermediate values associated with the 
same intermediate key I and passes them to the reduce 
function. The reduce function, also written by the user, accepts 
an intermediate key I and a set of values for that key. It merges 
these values together to form a possibly smaller set of values 
[8]. 

B. Hadoop Distributed File System and Hadoop way of Map 

Reduce 

Hadoop is the software for reliable, scalable, distributed 
computing [9]. The Apache Hadoop software library is a 
framework that allows for the distributed processing of large 
data sets across clusters of computers using simple 
programming models. An HDFS cluster has two types of nodes 
operating in a master-worker pattern: a name node (the master) 
and a number of data nodes (workers). The namenode manages 
the file system namespace. It maintains the file system tree and 
the metadata for all the files and directories in the tree. 
Datanodes are the workhorses of the file system. They store 
and retrieve blocks when they are told to (by clients or the 
namenode), and they report back to the namenode periodically 
with lists of blocks that they are storing. A client accesses the 
file system on behalf of the user by communicating with the 
namenode and datanodes. The Map Reduce framework 
consists of a single master JobTracker and one slave 
TaskTracker per cluster-node. The master is responsible for 
scheduling the jobs' component tasks on the slaves, monitoring 
them and re-executing the failed tasks. The slaves execute the 
tasks as directed by the master. 

C. Mutual Friends Counting in Parallel  

Here’s how the application counts the mutual friends for 
each user with others in a Map Reduce way. The input data 
will contain the adjacency list and has multiple lines in the 
format of <USER><SPACE><FRIENDS>, where <USER> is 
an unique ID for an unique user, and <FRIENDS> is the list of 
users separated by comma who are the friends of <USER>. 
The following Fig 1 is an input example. 

 

 

 

 

 

Fig. 1. Input example and a graph representing it 

 In the graph, you can see User 2 is not friends of User 0, 
User 4 and User 6, but User 2 and User 0 have mutual friends 
1, 3 and 5; User 2 and User 4 have mutual friends 1, 5; User 2 
and User 6 have mutual friend 1. As a result, we would like to 
recommend User 0, User 4 and User 6 as friends of User 2. 

The output common friends list will be given in the 
following format shown in Fig 2:  
<USER><SPACE><Recommended USER (Number of mutual 
friends) [the ids list of mutual friends separated by comma]; >. 
The output result is sorted according to the number of mutual 
friends. Those who have the most mutual friends with 
<USER> will be on top of the list. And if two have the same 
number of common relationships they will be ordered by the 
natural order of id such as ascending. For instance, User 0 has 
two common friends with both User 4 (1, 5) and User 7 (1, 3), 
since User 4 has the ID smaller than that of User 7’s, we hence 
put User 4 in front of User 7 in the list. 

 

 

 

 

 

 

 

 

Fig. 2. Output example 

User 0 has friends User 1, User 3 and User 5; as a result, 
the pair of <1, 3>, <1, 5> and <3, 5> have mutual friend of 
User 0. As a result, we can emit <key, value> = <k=1, {v1=3, 
v2=0}>, <k=1, {v1=5, v2=0}>, <k=3, {v1=5, v2=0}>, where 
v2 means the common relationship as mutual friend between k 
and v1. In the following implementation, v2 = -1 is used when 
they are already friends instead of using extra field. 

A. Map phase: 

For each f in {f} = {f1,f2,f3…fn}  

 Emit <k, {v1= f, v2=-1}>;  

Let’s say the number of f is n; then we’ll emit n records for 
describing that k and f are already friends. So we set v2 as -1. 

For each f1 and f2 (f1 ≠ f2) in {f} 

 Emit <f1, {v1=f2, v2=k}>; 

 Emit <f2, {v1=f1, v2=k}>;  

They have mutual friend, k. It will emit n*(n – 1) records. 

Totally, there are n^2 emitted records in the map phase, 
where n is the number of friends <USER> has. 

B. Reduce phase: 

Just summing how many mutual friends they have between 
the k and v1, and make a list to contain all the v2. If any of 



them has mutual friend -1, that is, v2 = 1, we don’t make the 
recommendation since they are already friends.  

Pick up all the keys and values in the hash and sort them 
based on the size of value. And if two values in the hash have 
the same size, he who has the smaller key can stand in the front 
of the larger one. 

However, by calculating the time each phase spends, the 
current Reduce part occupies the majority of whole job time, 
which we believe is not so efficient adequately; Sorting all the 
keys and values in the hash takes advantage of the merge sort 
as sorting algorithm and normal array as data structure, which 
has its limitation, that is, not efficient enough. There still 
remains potential for improvement. And we think 2-3 Tree, by 
which the improved design will be realized, is more promising, 
because it sacrifices space and trades that for speed. A contrast 
between these two sorting algorithms is about to be explained 
as following chapter.    

III. 2-3 TREE SORT AND MERGE SORT  

The difference between two designs is that the original 
utilizes the merge sort to sort intermediate data in reduce, while 
the revised one adopts 2-3 tree to do so. And merge sort offers 
O (nlogn) performance while the time complexity of the 
revised one is O (logn) (The time complexity of insertion 
method of 2-3 tree). Therefore, we make the prediction that the 
revised algorithm will end up with a performance improvement.  

A. 2-3 Tree Sort 

2-3 Tree is a type of data structure like B-Tree widely used 
to improve the performance in insertion, deletion, searching 
and sorting of data. 2-3 Tree has 3 main features. Its structure 
is shown in Fig 3.  

 For any non-leaf node, it has either 2 or 3 children 
strictly; 

 All leaves lie on the same level (the bottom level); 

 Records can be comparable with each other. Each node 
has six fields, as shown in Fig 3. P1 points to the left 
child, P2 points to the middle child and P3 points to the 
right child. V1 represents the max/min record in the 
sub-tree of P1. V2 corresponds to P2 and V3 to P3. 
Note that V3 and P3 can be empty. Only leaves contain 
the records. Intermediate nodes and root only contain 
the references and max/min value. 

 

 

 

 

 

 

Fig. 3. 2-3 Tree Strcuture 

Here is the pseudo code for the 2-3 Tree insert algorithm. 
The function has two parameters, one is the tree and the other 
is the element to be inserted to the tree. The function return the 
previous tree with x inserted correctly.  

2-3Tree Insert (2-3 Tree tree, Element x) 

 If tree is null, put x to a leaf p, tree = p;  

 If tree has only a root which is a leaf, let tree be a 2-
leaf tree with a root. One leaf contains the original leaf’s record, 
the other leaf contains the x; 

 Add (2-3 Tree tree, Element x, 2-3 Tree p’); 

 If p’ != null, make a new root R, let tree be the left 
child of R, p’ be the middle child of R, tree = R;  

The insertion algorithm of 2-3 tree is described as above, in 
which there is a recursive function Add. The detail of the Add 
function is presented as Fig 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Recursive function Add in the insertion algorithm 

Finally as the tree constructed, we can see all the records in 
the leaves are sorted by the defined element comparing rules 
from left leaves to right leaves. Then the tree is required to be 
traversed to emit all the records in the reduce phase. 

Because the 2-3 Tree requires more space to store extra 
nodes except for those who contain records, optimization has 
been applied when realizing the algorithm. For instance, we 
use the custom class instead of numeric to present the record. 
Also, StringBuilder instead of String is used in the traversal 
method. 

B. Comparison between 2-3 Tree Sort and Merge Sort 

On the other hand, the original design puts all entries from 
the hash described in the end of the recommendation algorithm 
into an array collection and sorts the elements by taking 
advantage of the merge sort.  



Merge sort [10] is based on the divide-and-conquer 
paradigm. Its worst-case running time has a lower order of 
growth than insertion sort [11] [12].  

The original merge sort is realized in Java which sorts the 
specified list according to the order induced by the specified 
comparator. This sort is guaranteed to be stable: equal elements 
will not be reordered as a result of the sort. This algorithm 
offers guaranteed O (nlogn) performance.  

Because we can see a difference in two versions that 
original process uses merge sort which offers O (nlogn) 
performance while the revised one utilizes the 2-3 Tree with 
time complexity of insertion method as O (logn) to sort values 
in reduce function, we make the prediction that the revised 
algorithm will end up with a performance improvement. 
Therefore related experiments are designed and planned to test 
the assumption. 

IV. EXPERIMENT ENVIRONMENT 

A. Cluster Configurations  

We use a cluster of 8 nodes. One is name node and job 
tracker, one is secondary name node and the other 6 nodes are 
data nodes and task trackers as slave nodes for HDFS storage 
and MapReduce task execution. We set the HDFS block size to 
its default value 64 MB. Each slave node was configured with 
2 map slots and 2 reduce slots, resulting in a total capacity of 
running 12 map and 12 reduce tasks simultaneously in the 
cluster. Each machine has 4GB RAM, two 2.4GHz Intel® 
Core™2 CPU 6600 64-bit processor and one 7200 rpm SATA 
disk with 160GB. The network typology is shown in Fig 5 
from which the rack structure is displayed. All nodes were 
interconnected by a Gigabit Ethernet. Each node is installed the 
Linux Ubuntu 12.04 operating system, JDK 7, Hadoop stable 
release version 1.2.1and SSH. The hostnames, Linux 
UserName, machine NO.s and IP addresses are shown as table 
nodes’ information. 

 

 

 

 

 

 

 

Fig. 5.  Network Typology 

B. Dataset: Generation of Input Friends List 

The input data should be similar to the real world SNS user 
relationships. So the number of friends one user could have is 
by no means a random number. And how many friends one 
could have should follow some rules and disciplines. Since the 
scenario is one of the applications from those bi-directional 
relationship pattern SNS such as Facebook, we take a look at 
the Facebook friends statistics. 

According to The Anatomy of the Facebook Social Graph 
by Johan Ugander et al. [13], they measured how many friends 
people have with a conclusion that the average friend count is 
190. And according to the Data Science of the Facebook World 
[14] as shown in Fig 6 and the deduction by Self-learner 
project: Friendship Paradox [15], the distribution can be 
summarized as gamma distribution with 3 features: 1. The 
distribution should be self-similar; 2. The shape of the 
distribution of the friends of friends should resemble the shape 
of distributions of friends of friends of friends. The distribution 
must be positive; you can't have less than 0 friends; 3. The 
distribution should have a long right tail. 

 

 

 

 

 

Fig. 6. Facebook - distribution of number of friends 

Therefore we generate the user friends list to make the 
number of friends follow a Gamma (3, 67) distribution. Scale is 
3 and shape is 67 so that the average number of friends one 
user could have is about 200. And the mode is Shape*(Scale-1) 
= 134. The distribution of number of friends we adapted to the 
input data is shown in Fig 7. 

 

 

 

 

 

 

 

Fig. 7. Our data – distribution of number of friends 

C. Measurements 

 

 

 

 

 

 

 

Fig. 8. Experiment Group Design 

We separately test the original version of application and 
the improved one by using 12, 6, 4 input splits on 6, 3, 2 data 
nodes (also the number of task trackers) cluster as shown in Fig 
8. The reason we choose these variables can be illustrated by 



the fact that different input splits and the number of nodes 
determines whether all the map task slots available can be fully 
taken advantage of in the cluster. In our experimental 
configuration, the maximum task each machine has is 2 so that 
6-Node cluster is capable of loading 6 * 2 = 12 map tasks at 
one time. Hence, if we use 12 splits input data, all files can be 
read into the map tasks, so the cluster can be described as 
completely utilized. But on the other occasion, we remove 3 
nodes from the cluster, which makes it only 3 left, and there are 
still 12 splits, as a result, only 6 of them will be loaded first. 
The system will still create 12 map tasks, but 6 of them will not 
relieve pending status until some map task has been finished 
and there is some map slot available for another pending map 
task to run. That means some tasks have to wait and the system 
is overloaded. On the third situation, we still have 3 active 
nodes but with just 2 splits. It is not hard to image, only two 
map tasks will be running and because the less number of 
splits, the larger each split will be, it will take much longer 
time to process each map task, and we call that underutilized. 
All input data are the same with 10000 users and have the 
number of friends’ distribution: Gamma (3, 67). We calculated 
each reduce task execution time in each scenario. Then the 
average execution time of user defined reduce functions are 
calculable. All required calculations are shown as below. 

However, the reduce task contains three phase: shuffle, sort 
and the user defined function. So the time of user defined 
reduce function can be counted as the formula:  

Time (User Defined Reduce Function) = Time (Whole Reduce 

Phase) – Time (Shuffle) – Time (Sort)                              (1) 

And the average time each reduce task spent is: 

AVG Time (Reduce) = sum of time of each reduce task/ number 

of reduce tasks                                                                  (2) 

In addition, to compare the different memory usage of both 
applications, the sum of physical memory each reduce task 
occupied is recorded. 

Physical Memory Usage (Reduce) = sum of physical memory 

usage of each reduce task                                                (3)     

We test the average reduce process time and memory usage 
in the application which has the original sorting algorithm and 
in that which has the improved sorting algorithm under the 
Cartesian product of two-dimension configurations, that is, 
comparing both time as number of map tasks and cluster nodes 
changes. 

V. RESULTS ANALYSIS 

The Fig 9 shows the detailed experimental results from 
which we can see the different time consumption of each part. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Experimental Results 

Fig 10 shows the physical memory usage of all 
combinations of the experimental variables such as the number 
of input splits, i.e., number of map tasks, and the number of 
active nodes.  

From the fig we can see for the same-node scenarios, no 
matter how many splits there are, the physical memory usage 
are almost the same among all original design as well as among 
all revised design except for the 12 splits in 6 nodes scenarios. 
It results from the facts that more reduce tasks are killed in 12 
splits-6 nodes scenario than that in 6 splits-6 nodes and 4 splits-
6 nodes scenarios. Those tasks may confront with some 
runtime error and end up being failed. In a word, extra tasks 
cause more memory usage.  

Also as a crucial discovery, under the same input splits and 
active nodes environment, the revised version required cost 
more physical memory than the original one did. While 
compared within each version and each input split scenario, the 
physical memory usage increased as the number of active 
nodes rises. The reason is because 2-3 Tree data structure 
requires more memory for indexing. It treats the space for 
efficiency. There are plenty of intermediate nodes which take 
extra room besides the store-in-leaf records. As a result, the 
initialization and the garbage collection of these objects need 
more time. While looking at the merge sort version, the space 
array occupies is the same as the amount of records’ demand. 
Therefore it is reasonable that the improved application makes 
use of more physical memory that the original one does. 

 

 

 

 

 

 

 

 

 

Fig. 10. Physical memory usage 



Fig 11 shows the comparison among average user defined 
reduce function running time of all combinations of the 
experimental variables.  

The difference can be told from the fig that the revised 
application performs better than the original one under the 
same number of input splits and the same number of active 
nodes situation. Noted that when the cluster contains only 2 
nodes, the performance is much better than that under which 
scenario the cluster contains more than 2 nodes. In addition, the 
performance of 6 nodes scenarios outweigh 3 nodes ones 
grouped by each kind of version while the performance of 3 
nodes scenarios do worse than that of 2 nodes ones. This is 
because when there are 3 or 6 active nodes in the cluster, the 
number of data replicas is 3, all output data will be copied 
twice more for the data redundancy, but it can only be 2 when 
there are only 2 active nodes and all output data will be copied 
just once more, which saves a lot of time. As a result, the 
performance of 2 nodes scenarios overshadows that of other 
configurations. 

 

 

 

 

 

 

 

 

 

Fig. 11. Average running time of user defined reduce function 

VI. CONCLUSIONS AND FUTURE WORK 

We present an improved algorithm for mutual friends 
recommendation application of SNS in Hadoop by taking 
advantage of the 2-3 Tree data structure to conduct the sorting 
algorithm in reduce phase rather than the original merge sort 
algorithm by array data structure.   

From the result analysis of the experiments, we draw the 
conclusion as below. Under the same number of active nodes 
and the same number of input splits situation, the improved 
algorithm is better than the original one.  

From a dynamic perspective, when the number of data 
splits is fixed, the more available nodes in the cluster to process 
the application there are, the better we should apply the 
improved algorithm. When the number of nodes is fixed, the 
less input splits there are, the more appropriate it is to utilize 
the revised design. 

In future work, we plan to increase the applicability of our 
work to a wider range of MapReduce applications and the next 
generation of MapReduce -- MapReduce 2. As the upgrade of 
hardware, we are considering promoting the usage of the 
improved algorithm to the Map Reduce 2 and even in in-
memory database configuration, which allows reduce phase to 
copy and store intermediate data in ram instead of hard disk, 
under which circumstance the I/O will be considerably cut 
down. Also, it is possible that multiple tasks can run on one 
processor at the same time. As a result, we would like to move 
further steps to set up experiments to see if the number of splits 
can be increased and the task trackers can be further utilized. 
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