
PDF issue: 2025-05-09

An Improved Algorithm for Mutual Friends
Recommendation Application of SNS in
Hadoop

LEI, YUAN

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編 / 法政大学大学院紀要. 情報科学研究科
編

(巻 / Volume)
10

(開始ページ / Start Page)
1

(終了ページ / End Page)
6

(発行年 / Year)
2015-03-24

(URL)
https://doi.org/10.15002/00011667

An Improved Algorithm for Mutual Friends

Recommendation Application of SNS in Hadoop

YUAN LEI

Faculty of Computer and Information Sciences, Hosei Unversity

Tokyo, Japan

yllbxx9072@gmail.com

Abstract— In Social network system, existing “people you

might know” or “Mutual friends” recommending applications

are commonly utilized to list two-hop mediate relationships that

one could have with another in order to tighten the bonds among

groups. However, as the number of SNS users increase

dramatically, the relationship data get so huge that the

performance of Mutual Friends recommendation system becomes

an urgent problem considering the developers’ requirements.

Here we propose a sorting algorithm in Hadoop----a parallel

computing framework, to enhance the efficiency of “Mutual

friends” recommendation process by taking advantage of the

novel map reduce model. In the revised application, original

sorting algorithm of intermediate data, merge sort, is replaced by

a more time saving sorting approach which introduces a B-Tree

like data structure, 2-3 Tree to store the user friendship data and

conducts the sorting process. As number of user increases, the

revised user defined map reduce functions perform better than

the conventional design in time consuming aspect.

Keywords— Mutual Friends, Recommendation System,

Map Reduce, Hadoop, 2-3 Tree

I. INTRODUCTION

As the number of SNS users increases, the relations among
users will grow up to heterogeneous graphs, which outstrips the
storing and computing ability of even large-scale parallel
processing machines. In “People You Might Know” friendship
recommendation, an efficient Reducer side graph processing
algorithm on Hadoop distributed system is proposed, which
takes advantage of the novel database structure, 2-3 Tree, to
store and sort common friends entries used in user defined
Reduce function instead of array data structure. As a result,
average reduce processing time can be reduced.

The application of Mutual Friends is a paralleling
computing process which reads users’ friends list as input data
and calculates the potential common relationship each user
could have with another. And then application recommends the
“people you might know” to users ordered by the number of
common friends they both could have. In this application,
people and the relationships between two persons can be
regarded correspondingly as vertices and edges between
vertices in graph theory. As a result, the human network is
abstracted as a non-directional graph without edge weights.

Existing algorithms designed for map reduce scenario to
find friends in common such as Steve Krenzel [1] and Pulkit

Goyal [2] emit inadequate output information. The former one
generates just the specific mutual friends’ ids without a sum.
For example, “A, B C, D” is a typical output line which
means C and D are common friends between A and B. But if
the developer would like to show the number of common
relationships, another map reduce cycle is necessary. The later
one, Goyal’s algorithm is just short of something in an opposite
way. Only number of mutual friends is written to the output file
without the specific mutual friends list one by one.

The paper [3] written by Zhao GuoGuang et al. proposed
another way of finding “common ancestor” in a given tree
graph, which resembles the situation as “finding mutual
friends”, because the “common friend” to two users is like the
ancestor to two of its children nodes. But this paper use
different format of input data and data structure to store the
graph information, so both algorithms have their own
characters and they are just not able to be compared in a simple
way.

Both Rishan Chen et al. [4] and Kisung Lee et al. [5]
focused on the partition strategy as an approach to achieve the
improvement. We also came up with some similar idea about
changing its previous partitioning way in Mapper side which
will be demonstrated later. But we found this application has its
own special features, so achieving the improvement in the
Reducer side would be more applicable, described as following.

Another algorithm about counting “people you might
know” application is published by Jure Leskovec [6], whose
design will be compared in the following chapter 4. Our
revised version is based on the fundamental program of this
one. During the reduce part of this algorithm, users and their
mutual friends with key are stored and sorted by the array
collection, which utilizes merge sort as sorting algorithm. And
our improvement is focused on the modification of his sorting
algorithm.

The rest of paper is organized as follows. We review the
preliminary and related works on map reduce program model, a
popular framework called Hadoop which uses the model in
section II, also we introduce the Mutual Friends algorithm in
both map and reduce in the same section. We describe the
original sorting algorithm and present the revised version of
sorting algorithm using 2-3 Tree in section III. We show the
experiment environment in section IV. We present the
experiment process with results and analysis in section V, and
conclude this thesis with future work in section VI.

II. PRELIMINARY AND RELATED WORK

A. Map Reduce Model

The basic core design ideas of map and reduce is that some
rules and limitations must be obeyed to achieve the
parallelization of huge assignments. Users specify the
computation in terms of a map and a reduce function. Map
processes a set of key-value and generates a new,
corresponding set of key-value as the intermediate results, and
then Reduce function merges the results with same key [7].
Map, written by the user, takes an input pair and produces a set
of intermediate key/value pairs. The Map Reduce library
groups together all intermediate values associated with the
same intermediate key I and passes them to the reduce
function. The reduce function, also written by the user, accepts
an intermediate key I and a set of values for that key. It merges
these values together to form a possibly smaller set of values
[8].

B. Hadoop Distributed File System and Hadoop way of Map

Reduce

Hadoop is the software for reliable, scalable, distributed
computing [9]. The Apache Hadoop software library is a
framework that allows for the distributed processing of large
data sets across clusters of computers using simple
programming models. An HDFS cluster has two types of nodes
operating in a master-worker pattern: a name node (the master)
and a number of data nodes (workers). The namenode manages
the file system namespace. It maintains the file system tree and
the metadata for all the files and directories in the tree.
Datanodes are the workhorses of the file system. They store
and retrieve blocks when they are told to (by clients or the
namenode), and they report back to the namenode periodically
with lists of blocks that they are storing. A client accesses the
file system on behalf of the user by communicating with the
namenode and datanodes. The Map Reduce framework
consists of a single master JobTracker and one slave
TaskTracker per cluster-node. The master is responsible for
scheduling the jobs' component tasks on the slaves, monitoring
them and re-executing the failed tasks. The slaves execute the
tasks as directed by the master.

C. Mutual Friends Counting in Parallel

Here’s how the application counts the mutual friends for
each user with others in a Map Reduce way. The input data
will contain the adjacency list and has multiple lines in the
format of <USER><SPACE><FRIENDS>, where <USER> is
an unique ID for an unique user, and <FRIENDS> is the list of
users separated by comma who are the friends of <USER>.
The following Fig 1 is an input example.

Fig. 1. Input example and a graph representing it

 In the graph, you can see User 2 is not friends of User 0,
User 4 and User 6, but User 2 and User 0 have mutual friends
1, 3 and 5; User 2 and User 4 have mutual friends 1, 5; User 2
and User 6 have mutual friend 1. As a result, we would like to
recommend User 0, User 4 and User 6 as friends of User 2.

The output common friends list will be given in the
following format shown in Fig 2:
<USER><SPACE><Recommended USER (Number of mutual
friends) [the ids list of mutual friends separated by comma]; >.
The output result is sorted according to the number of mutual
friends. Those who have the most mutual friends with
<USER> will be on top of the list. And if two have the same
number of common relationships they will be ordered by the
natural order of id such as ascending. For instance, User 0 has
two common friends with both User 4 (1, 5) and User 7 (1, 3),
since User 4 has the ID smaller than that of User 7’s, we hence
put User 4 in front of User 7 in the list.

Fig. 2. Output example

User 0 has friends User 1, User 3 and User 5; as a result,
the pair of <1, 3>, <1, 5> and <3, 5> have mutual friend of
User 0. As a result, we can emit <key, value> = <k=1, {v1=3,
v2=0}>, <k=1, {v1=5, v2=0}>, <k=3, {v1=5, v2=0}>, where
v2 means the common relationship as mutual friend between k
and v1. In the following implementation, v2 = -1 is used when
they are already friends instead of using extra field.

A. Map phase:

For each f in {f} = {f1,f2,f3…fn}

 Emit <k, {v1= f, v2=-1}>;

Let’s say the number of f is n; then we’ll emit n records for
describing that k and f are already friends. So we set v2 as -1.

For each f1 and f2 (f1 ≠ f2) in {f}

 Emit <f1, {v1=f2, v2=k}>;

 Emit <f2, {v1=f1, v2=k}>;

They have mutual friend, k. It will emit n*(n – 1) records.

Totally, there are n^2 emitted records in the map phase,
where n is the number of friends <USER> has.

B. Reduce phase:

Just summing how many mutual friends they have between
the k and v1, and make a list to contain all the v2. If any of

them has mutual friend -1, that is, v2 = 1, we don’t make the
recommendation since they are already friends.

Pick up all the keys and values in the hash and sort them
based on the size of value. And if two values in the hash have
the same size, he who has the smaller key can stand in the front
of the larger one.

However, by calculating the time each phase spends, the
current Reduce part occupies the majority of whole job time,
which we believe is not so efficient adequately; Sorting all the
keys and values in the hash takes advantage of the merge sort
as sorting algorithm and normal array as data structure, which
has its limitation, that is, not efficient enough. There still
remains potential for improvement. And we think 2-3 Tree, by
which the improved design will be realized, is more promising,
because it sacrifices space and trades that for speed. A contrast
between these two sorting algorithms is about to be explained
as following chapter.

III. 2-3 TREE SORT AND MERGE SORT

The difference between two designs is that the original
utilizes the merge sort to sort intermediate data in reduce, while
the revised one adopts 2-3 tree to do so. And merge sort offers
O (nlogn) performance while the time complexity of the
revised one is O (logn) (The time complexity of insertion
method of 2-3 tree). Therefore, we make the prediction that the
revised algorithm will end up with a performance improvement.

A. 2-3 Tree Sort

2-3 Tree is a type of data structure like B-Tree widely used
to improve the performance in insertion, deletion, searching
and sorting of data. 2-3 Tree has 3 main features. Its structure
is shown in Fig 3.

 For any non-leaf node, it has either 2 or 3 children
strictly;

 All leaves lie on the same level (the bottom level);

 Records can be comparable with each other. Each node
has six fields, as shown in Fig 3. P1 points to the left
child, P2 points to the middle child and P3 points to the
right child. V1 represents the max/min record in the
sub-tree of P1. V2 corresponds to P2 and V3 to P3.
Note that V3 and P3 can be empty. Only leaves contain
the records. Intermediate nodes and root only contain
the references and max/min value.

Fig. 3. 2-3 Tree Strcuture

Here is the pseudo code for the 2-3 Tree insert algorithm.
The function has two parameters, one is the tree and the other
is the element to be inserted to the tree. The function return the
previous tree with x inserted correctly.

2-3Tree Insert (2-3 Tree tree, Element x)

 If tree is null, put x to a leaf p, tree = p;

 If tree has only a root which is a leaf, let tree be a 2-
leaf tree with a root. One leaf contains the original leaf’s record,
the other leaf contains the x;

 Add (2-3 Tree tree, Element x, 2-3 Tree p’);

 If p’ != null, make a new root R, let tree be the left
child of R, p’ be the middle child of R, tree = R;

The insertion algorithm of 2-3 tree is described as above, in
which there is a recursive function Add. The detail of the Add
function is presented as Fig 4.

Fig. 4. Recursive function Add in the insertion algorithm

Finally as the tree constructed, we can see all the records in
the leaves are sorted by the defined element comparing rules
from left leaves to right leaves. Then the tree is required to be
traversed to emit all the records in the reduce phase.

Because the 2-3 Tree requires more space to store extra
nodes except for those who contain records, optimization has
been applied when realizing the algorithm. For instance, we
use the custom class instead of numeric to present the record.
Also, StringBuilder instead of String is used in the traversal
method.

B. Comparison between 2-3 Tree Sort and Merge Sort

On the other hand, the original design puts all entries from
the hash described in the end of the recommendation algorithm
into an array collection and sorts the elements by taking
advantage of the merge sort.

Merge sort [10] is based on the divide-and-conquer
paradigm. Its worst-case running time has a lower order of
growth than insertion sort [11] [12].

The original merge sort is realized in Java which sorts the
specified list according to the order induced by the specified
comparator. This sort is guaranteed to be stable: equal elements
will not be reordered as a result of the sort. This algorithm
offers guaranteed O (nlogn) performance.

Because we can see a difference in two versions that
original process uses merge sort which offers O (nlogn)
performance while the revised one utilizes the 2-3 Tree with
time complexity of insertion method as O (logn) to sort values
in reduce function, we make the prediction that the revised
algorithm will end up with a performance improvement.
Therefore related experiments are designed and planned to test
the assumption.

IV. EXPERIMENT ENVIRONMENT

A. Cluster Configurations

We use a cluster of 8 nodes. One is name node and job
tracker, one is secondary name node and the other 6 nodes are
data nodes and task trackers as slave nodes for HDFS storage
and MapReduce task execution. We set the HDFS block size to
its default value 64 MB. Each slave node was configured with
2 map slots and 2 reduce slots, resulting in a total capacity of
running 12 map and 12 reduce tasks simultaneously in the
cluster. Each machine has 4GB RAM, two 2.4GHz Intel®
Core™2 CPU 6600 64-bit processor and one 7200 rpm SATA
disk with 160GB. The network typology is shown in Fig 5
from which the rack structure is displayed. All nodes were
interconnected by a Gigabit Ethernet. Each node is installed the
Linux Ubuntu 12.04 operating system, JDK 7, Hadoop stable
release version 1.2.1and SSH. The hostnames, Linux
UserName, machine NO.s and IP addresses are shown as table
nodes’ information.

Fig. 5. Network Typology

B. Dataset: Generation of Input Friends List

The input data should be similar to the real world SNS user
relationships. So the number of friends one user could have is
by no means a random number. And how many friends one
could have should follow some rules and disciplines. Since the
scenario is one of the applications from those bi-directional
relationship pattern SNS such as Facebook, we take a look at
the Facebook friends statistics.

According to The Anatomy of the Facebook Social Graph
by Johan Ugander et al. [13], they measured how many friends
people have with a conclusion that the average friend count is
190. And according to the Data Science of the Facebook World
[14] as shown in Fig 6 and the deduction by Self-learner
project: Friendship Paradox [15], the distribution can be
summarized as gamma distribution with 3 features: 1. The
distribution should be self-similar; 2. The shape of the
distribution of the friends of friends should resemble the shape
of distributions of friends of friends of friends. The distribution
must be positive; you can't have less than 0 friends; 3. The
distribution should have a long right tail.

Fig. 6. Facebook - distribution of number of friends

Therefore we generate the user friends list to make the
number of friends follow a Gamma (3, 67) distribution. Scale is
3 and shape is 67 so that the average number of friends one
user could have is about 200. And the mode is Shape*(Scale-1)
= 134. The distribution of number of friends we adapted to the
input data is shown in Fig 7.

Fig. 7. Our data – distribution of number of friends

C. Measurements

Fig. 8. Experiment Group Design

We separately test the original version of application and
the improved one by using 12, 6, 4 input splits on 6, 3, 2 data
nodes (also the number of task trackers) cluster as shown in Fig
8. The reason we choose these variables can be illustrated by

the fact that different input splits and the number of nodes
determines whether all the map task slots available can be fully
taken advantage of in the cluster. In our experimental
configuration, the maximum task each machine has is 2 so that
6-Node cluster is capable of loading 6 * 2 = 12 map tasks at
one time. Hence, if we use 12 splits input data, all files can be
read into the map tasks, so the cluster can be described as
completely utilized. But on the other occasion, we remove 3
nodes from the cluster, which makes it only 3 left, and there are
still 12 splits, as a result, only 6 of them will be loaded first.
The system will still create 12 map tasks, but 6 of them will not
relieve pending status until some map task has been finished
and there is some map slot available for another pending map
task to run. That means some tasks have to wait and the system
is overloaded. On the third situation, we still have 3 active
nodes but with just 2 splits. It is not hard to image, only two
map tasks will be running and because the less number of
splits, the larger each split will be, it will take much longer
time to process each map task, and we call that underutilized.
All input data are the same with 10000 users and have the
number of friends’ distribution: Gamma (3, 67). We calculated
each reduce task execution time in each scenario. Then the
average execution time of user defined reduce functions are
calculable. All required calculations are shown as below.

However, the reduce task contains three phase: shuffle, sort
and the user defined function. So the time of user defined
reduce function can be counted as the formula:

Time (User Defined Reduce Function) = Time (Whole Reduce

Phase) – Time (Shuffle) – Time (Sort) (1)

And the average time each reduce task spent is:

AVG Time (Reduce) = sum of time of each reduce task/ number

of reduce tasks (2)

In addition, to compare the different memory usage of both
applications, the sum of physical memory each reduce task
occupied is recorded.

Physical Memory Usage (Reduce) = sum of physical memory

usage of each reduce task (3)

We test the average reduce process time and memory usage
in the application which has the original sorting algorithm and
in that which has the improved sorting algorithm under the
Cartesian product of two-dimension configurations, that is,
comparing both time as number of map tasks and cluster nodes
changes.

V. RESULTS ANALYSIS

The Fig 9 shows the detailed experimental results from
which we can see the different time consumption of each part.

Fig. 9. Experimental Results

Fig 10 shows the physical memory usage of all
combinations of the experimental variables such as the number
of input splits, i.e., number of map tasks, and the number of
active nodes.

From the fig we can see for the same-node scenarios, no
matter how many splits there are, the physical memory usage
are almost the same among all original design as well as among
all revised design except for the 12 splits in 6 nodes scenarios.
It results from the facts that more reduce tasks are killed in 12
splits-6 nodes scenario than that in 6 splits-6 nodes and 4 splits-
6 nodes scenarios. Those tasks may confront with some
runtime error and end up being failed. In a word, extra tasks
cause more memory usage.

Also as a crucial discovery, under the same input splits and
active nodes environment, the revised version required cost
more physical memory than the original one did. While
compared within each version and each input split scenario, the
physical memory usage increased as the number of active
nodes rises. The reason is because 2-3 Tree data structure
requires more memory for indexing. It treats the space for
efficiency. There are plenty of intermediate nodes which take
extra room besides the store-in-leaf records. As a result, the
initialization and the garbage collection of these objects need
more time. While looking at the merge sort version, the space
array occupies is the same as the amount of records’ demand.
Therefore it is reasonable that the improved application makes
use of more physical memory that the original one does.

Fig. 10. Physical memory usage

Fig 11 shows the comparison among average user defined
reduce function running time of all combinations of the
experimental variables.

The difference can be told from the fig that the revised
application performs better than the original one under the
same number of input splits and the same number of active
nodes situation. Noted that when the cluster contains only 2
nodes, the performance is much better than that under which
scenario the cluster contains more than 2 nodes. In addition, the
performance of 6 nodes scenarios outweigh 3 nodes ones
grouped by each kind of version while the performance of 3
nodes scenarios do worse than that of 2 nodes ones. This is
because when there are 3 or 6 active nodes in the cluster, the
number of data replicas is 3, all output data will be copied
twice more for the data redundancy, but it can only be 2 when
there are only 2 active nodes and all output data will be copied
just once more, which saves a lot of time. As a result, the
performance of 2 nodes scenarios overshadows that of other
configurations.

Fig. 11. Average running time of user defined reduce function

VI. CONCLUSIONS AND FUTURE WORK

We present an improved algorithm for mutual friends
recommendation application of SNS in Hadoop by taking
advantage of the 2-3 Tree data structure to conduct the sorting
algorithm in reduce phase rather than the original merge sort
algorithm by array data structure.

From the result analysis of the experiments, we draw the
conclusion as below. Under the same number of active nodes
and the same number of input splits situation, the improved
algorithm is better than the original one.

From a dynamic perspective, when the number of data
splits is fixed, the more available nodes in the cluster to process
the application there are, the better we should apply the
improved algorithm. When the number of nodes is fixed, the
less input splits there are, the more appropriate it is to utilize
the revised design.

In future work, we plan to increase the applicability of our
work to a wider range of MapReduce applications and the next
generation of MapReduce -- MapReduce 2. As the upgrade of
hardware, we are considering promoting the usage of the
improved algorithm to the Map Reduce 2 and even in in-
memory database configuration, which allows reduce phase to
copy and store intermediate data in ram instead of hard disk,
under which circumstance the I/O will be considerably cut
down. Also, it is possible that multiple tasks can run on one
processor at the same time. As a result, we would like to move
further steps to set up experiments to see if the number of splits
can be increased and the task trackers can be further utilized.

ACKNOWLEDGMENT

The paper is directed and supervised by Prof. Nobuhiko
KOIKE. All research and experimental materials are supported
by the KOIKE’s parallel computing laboratory and the Faculty
of Computer and Information Sciences, Hosei Unversity.

REFERENCES

[1] Map Reduce - Finding Friends. http://stevekrenzel.com/finding-friends-

with-mapreduce

[2] Writing scalable recommender system with Hadoop.
http://pulkitgoyal.in/writing-scalable-recommender-system-with-
hadoop/

[3] Z. GuoGuang and D. Bu, "CloudLCA: finding the lowest common
ancestor in metagenome analysis using cloud computing," Protein &
Cell, (2012), vol 3(2), pp. 148-152.

[4] C. Rishan and X. Weng, "Improving large graph processing on
partitioned graphs in the cloud," Proceedings of the Third ACM
Symposium on Cloud Computing. ACM, (2012).

[5] K. Lee, Ling Liu, “Efficient data partitioning model for hetergeneous
graph in the cloud,” SC 13 November 17-21 (2013).

[6] “People You May Know” Friendship Recommendation with Hadoop.
http://importantfish.com/people-you-may-know-friendship-
recommendation-with-hadoop/

[7] D. Jeffrey, and S. Ghemawat. "MapReduce: simplified data processing
on large clusters." Communications of the ACM 51.1 (2008), pp. 107-
113.

[8] W. Tom. “Hadoop: the definitive guide: the definitive guide." O'Reilly
Media, Inc., 2009.

[9] Welcome to Apache Hadoop. http://hadoop.apache.org/

[10] R. Raghu, J. Gehrke, and J. Gehrke, “Database management systems.”
New York: McGraw-Hill, Vol. 3, (2003).

[11] Merge Sort.
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/S
orting/mergeSort.htm

[12] Merge Sort. http://en.wikipedia.org/wiki/Merge_sort

[13] U. Johan, "The anatomy of the facebook social graph." arXiv preprint
arXiv:1111.4503 (2011).

[14] Data Science of the Facebook World .
http://blog.stephenwolfram.com/2013/04/data-science-of-the-facebook-
world/

[15] Self-learner project: Friendship Paradox.
http://badmomgoodmom.blogspot.jp/2013/01/self-learner-project-
friendship.html

