
PDF issue: 2025-05-09

Processing Large-scale XML Files on
GPGPU Cluster

Liu, Ping

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編 / 法政大学大学院紀要. 情報科学研究科
編

(巻 / Volume)
10

(開始ページ / Start Page)
1

(終了ページ / End Page)
6

(発行年 / Year)
2015-03-24

(URL)
https://doi.org/10.15002/00011664

Processing Large-scale XML Files on GPGPU

Cluster

Ping Liu

Graduate School of Computer and Information Sciences, Hosei University

ping.liu.4f@stu.hosei.ac.jp

Abstract—XML has been used as a textual data format for

transporting and storing information in many areas. However,

the cost to process the large-scale XML file will become a serious

issue for general processing methods. In this paper, we propose a

design and implementation of a large-scale XML processing

system on GPU cluster to address the processing performance

issue. This system cooperates CPU and GPGPU to the master-

slave architecture for processing the XML file. The processing

consists of two phases, structure extracting, and tags parsing. The

structure extracting uses multiple threads to read the file and

recognize the document structure, tags parsing will take

advantage of GPGPU to get every tag’s name and attributes

using the location information got in structure extracting phase.

Keywords—XML ; CUDA; GPGPU; performance

I. INTRODUCTION

As a semi-structured language, XML has been increasingly
used for data transporting and storing, such as online data, logs,
configuration file, content-based database and company
documents. However, when the XML file gets too large it will
become a serious issue to process the large-scale XML file,
because analyzing the file from beginning to end will became a
nightmare for general processing methods. A number of
approaches [1] [2] [4] [5] [6] have been used to address these
performance concerns.

Meanwhile, the General-Purpose Computing on Graphics
Processing Units (GPGPU) have rapidly evolved to become
high performance accelerators for data-parallel computing.
Modern GPGPUs contains hundreds of processing units, which
makes them well suitable for many data-parallel computing
tasks. Moreover fortunately NVIDIA has provided a Compute
Unified Device Architecture (CUDA) [11] [12] for
programming for GPGPU, which makes it easier to program
and possible to optimize the program.

The GPGPU’s parallel architecture is suitable for data-
parallel computing, which needs to run a lot simple same tasks
at the same time. This is the reason why GPGPU is qualified
for the work like matrix operation or bit map processing.
Nevertheless, GPGPU is not considered suitable for the
problem, which contains a complicated logical control work
like analyzing the structure of a XML file, because the
analyzing work is based on machine abstract while the machine
work is hard to be transformed into data-parallel tasks. This is
the challenge for using GPU to processing XML files.

In this paper, we propose a design and implement for
processing large-scale XML files on GPGPU cluster. This

system operates CPU and GPGPUs together into master-slave
architecture for processing the XML file. Our processing
consists of two phases, structure extracting and tags parsing. In
structure extracting phase we use multiple CPU threads to read
the file and recognize the document structure, using the
location information got in structure extracting phase, we take
advantage of GPGPUs to parse every tag’s detail, tag name and
attributes, in tags parsing. The implementation of our system is
based on CUDA and C, and the communication between
master and slaves is based on Message Passing Interface (MPI)
[10]. Our system gains almost 2 times speedup than single
CPU implementation on processing file larger than 3GB.

II. RELATED WORK

XML processing is based on machine abstraction, such as
NFA, and the basic idea of using parallel way to process XML
is dividing the document into several parts. However, arbitrary
division will break the structure information and influence the
state of the parsing machine at the beginning of each chunk.
The PXP (Parallel XML Parsing) [1] uses a pre-parsing work
to determine the XML document structure, which is then used
to divide the XML document such the divisions between the
chunks occur at well-defined points in the XML grammar.
Nevertheless, this is counterproductive because XML parser
spends a large percentage of time tokenizing the file in an
inherently serial process, typically running a deterministic
finite automaton on the input, although PXP have tried to make
the pre-parsing light as possible. Besides this, the PXP take
advantage of multiple threads to do the further parsing work,
the amount of threads is limited by the system resource,
although increasing threads can achieve more performance, it
seems hard to use enough threads to get peak performance.
Therefore, because of the system resource limitation, the PXP
is not suit for processing large-scale XML files. The memory
in one machine is hard to maintain the process results for large-
scale XML file either. Michael R.Head also explored new
techniques for parallelizing parsers for very large XML
documents [4]. He does not focus on developing parallel XML
parsing algorithm, but dividing XML parsing process into
several phases, such as XML data loading, XML parsing and
result generation, and then scheduling working threads to
execute each parsing phase in a pipeline model. Besides, the
design of combining CUDA and MPI [7] [8] has occurred in
recent years.

III. ACHITECTURE AND DESIGN

In order to process file effectively, large-scale XML
processing is executed as pipeline. The whole processing is
divided into two stages, structure extracting and tags parsing in
the system. These two stages can be executed as pipeline based
on parsing tasks, which means structure extracting inputs the
XML file in parallel way and outputs the parsing tasks
managed by task manager, the stage Tags parsing inputs the
parsing tasks and outputs parsed results, which will be stored in
different nodes. After all structure extracting is done, we will
merge the whole document structure information in master
node and store detailed information in every slave nodes. Both
the structure extracting stage and the Tags parsing stage can
apply data-parallel mode respectively to exploit more
parallelism.

To take advantage of multiple CPUs and GPUs, we try to

find out the parallelizable part in full processing work. We use

a number of file reader to read the file in parallel way and each

reader contains a parser to recognize tags in the file stream s

show in Figure 1. The readers and parsers run on the CPU for

extracting document structure. The GPUs will parse tags’

names and attributes in tags parsing phase.

Fig. 1. System Architeture

In the architeture showed in Figure 1, readers and parsers run on the CPU,

they are responsible for extracting document structure.

A. Structure extracting

Structure extracting is designed for extracting tags’ location
information and packing the information into parsing tasks,
detecting tags’ location is a specific step for extracting
structure. In structure extracting stage, the performance to read
the XML file through I/O is a big bottleneck for our system.
Therefore, we design the parallel read to scan a large-scaled
XML document in parallel way. The XML document is
divided into chunks so that each reader works on a chunk
independently. One of keys to the parallel reading is how to
divide XML document without seeing the whole document. A
chunk may start in the middle of some string whose context
and grammatical role is unknown. For example, a chunk may
start as a part of element name or attribute or text value.

We propose a method called, Broken XML Seaming, to
address this issue. Broken XML Seaming can recognize the
broken elements, caused by dividing XML file, at the end of
the chunk and heal the broken element automatically.

After dividing the XML file, we should parse the partial
XML Information set in every chunk. The parsing work
includes searching out all tags and building structure. Actually
in the readers mentioned above, there is a corresponding parser

embedded for handling the XML stream, consequently the
parsing work is parallel as the reading work.

1) Broken XML Seaming
When we divide the file into equal size chunk, we will meet

an obvious problem, broken tags, which involves partial tag in
the end of chunk. For example in Figure 2, a start tag is split
into two broken parts, in this case the prior part of the start tag
belongs to thread 1 but the rest part belongs to thread 2. We
design an auto-complement method to heal the broken tag.

Fig. 2. Broken tag caused by we simplly split the file into equal parts. The

left part is read by thread 1 and the right part is read by thread 2.

To heal the broken tag, we need to recognize the broken tag
first. Because we prepare a NFA to recognize tags, we can
figure out whether the character belongs to a tag, when thread
finishes parsing all the characters in current chunk and the state
in Figure 3 is Content, it means that there is no broken tags;
otherwise, the last few bytes compose a broken tag. When a
broken tag appears, the thread continues to read characters until
the NFA state changes to Content, and then broken tag is
healed.

2) Searching tags
The output of parallel parser in this phase is the tags’

location information and partial tree structure responding to the
chunk read by reader, we have to mention that the structure
extracting will not get tags’ names or attributes to make the
structure extracting work as light as possible. As a result, the
node in the tree structure is unnamed and we identify them
with IDs. For recognizing tags, we took advantage of a NFA
designed in [1] to recognize tags. We quote the automaton in
Figure 3, here we just need to restore the offset and length of
every tag but ignoring the text parts of nodes. To identify the
tag, we give every start tag or whole tag an ID.

Fig. 3. NFA for recognizing tags.

3) Building structure

Supervisor: Prof. Toshio Hirotsu

Because we have divided the file in to chunk, we will build
the partial tree (P-Tree) in each chunk. P-TREE contains the
structure information of the chunk and it will be merged with
others later. Therefore, while we create the P-TREE we also
need to do some prepare work for merging.

According to the automaton in figure 2, we can recognize
three types of tag, start tag, end tag and whole tag. The
example of each kind of tag is showed in TABLE I:

TABLE I. TAG TYPES

Tag types illustrate

Start Tag <tag attr=’a’>

End Tag </tag>

Whole Tag <tag/>

Three tag types we can recognize from Fig.3

When we meet a start tag, we push it into a stack, and when
we meet an end tag, we pop a start tag from the stack, which
should be paired with the end tag. Moreover, the start tag’s
parent should be the top element of the stack now. We show
the process in Figure 4. When we meet a whole tag, we treat it
as a start tag and an end tag like above.

Fig. 4. Process to build the P-TREE.

The algorithm for creating the structure of file in each
thread is showed below:

1) Create a stack S and an List L for start tags

2) If meeting a start tag P, push it into S

3) If meeting an end tag, pop a start tag Q from S, set the
parent of Q as the top element of S if S is not empty,
add Q to L.

4) If meeting a whole tag W, set the parent of W as the
top element of S if S is not empty.

After searching tags, there will be a tree structure and a list
of start tags in each thread. Up to now, the start tags in every
thread only include the location information and an ID, and the
tree structure is the structure of partial XML document, next
we need to parse the details of every start tag and merge the
tree structures in all threads into a whole structure.

While searching out all the tags location in structure
extracting, we have built the P-TREE structure about the partial
document in every thread, to merge the structures into a whole
structure, we will figure out the relationship between current
structure and the structure in prior thread. We take advantage
of the ill-formed exceptions [2] caused by splitting file to
merge the structures. The ill-formed document is showed in

Figure 5, the whole node’s start tag and end tag are divided into
different chunks.

Fig. 5. Ill-formed partial XML document caused by splitting. The start tag of

whole node belongs to thread 1, but its corresponding end tag belongs to
thread 2.

There are two types of ill-formed structure in Figure 5.

Unresolved start tag: which there is no paired end tag in

current chunk, like the whole start tag, <whole attr=”start”>,

in thread 1 in Figure 5.

Unresolved end tag: which has no paired start tag in current

chunk, like the whole end tag, </whole>, in thread 2 in Figure

5.
Then we will use the number of unresolved start tags and

unresolved end tags before a node to find the parent of this
node.

Fig. 6. Process to merge two partial structure.The parent of magazine node is

unknown. In fact we still don’t know the name of tags, in the structure tree,

we use an ID to identify a node. 1 is store, 2 is book, 3 is author, 4 is

magazine, 5 is author in second chunk.

In Figure 6, we try to find the parent of node magazine in
second node. First, we add the unresolved start tags to the
global unresolved tags. Then the number of global unresolved
start tag in first chunk is 2, the number of unresolved end
before magazine is 1, which means there is 1 unresolved start
tag between magazine node and its parent. We use the number
of global unresolved start tags, which is 2, to minus the number
of unresolved end tags before magazine, we will get the order
number of its parent in global unresolved start tags, which is 1,
this means the first unresolved start tag is the parent.

To count the number of unresolved start tags and the
number of unresolved end tags before a node in each chunk, we
need to modify the algorithm of building partial tree. The
modified algorithm is showed in Figure 7.

Fig. 7. Algorithm for creating partial tree.

The next is the algorithm to merge the partial tree in each
chunk.

Fig. 8. Algorithm for merging partial trees in all threads.

B. Tags Parsing

In tags parsing phase, we use GPUs to parse the tags’
details. GPU’s parallel multi-core architecture allows it run
hundreds or thousands of threads simultaneously. The threads
are grouped into blocks and the blocks are grouped into grids.
The shared memory in each bock can be accessed by all the
threads in current block. Moreover, the CUDA makes it
possible for programmer to specify the number of blocks as
well as the number of threads per block to find optimal number
of GPU thread to be used. After receiving the parsing task.
What GPU thread parses will always be a well-formed tag
rather than unformed text thanks to the location information of
every tag in parsing task. Then every GPU thread uses the NFA
in Figure 10 to parse the tag name and attributes.

Fig. 9. GPU work in slaves. Every GPU thread only parse one tag for tag

name and attributes.

We show the parsing process in GPU in Figure 9. After
loading data, one GPU thread just need to parse a little piece of
XML stream, and this piece of XML file is a well-formed tag.
As a result, we can simplify the NFA for parsing the tags in
every core. Figure 10 shows the NFA for parsing tag name and
attributes for a well-formed tag.

Fig. 10. NFA for recognizing tag name and attributes.

What GPGPU does in this phase is running thousands GPU
threads to execute the NFA in Figure 10 to parse tags’ name
and attributes, one thread parse on tag, then copy the result to
memory and store it.

About the NFA in Figure 10, there are no state for text or
content, because the data ready for Tags Parsing is prepared as
tag format according to the tag location information got in
structure extracting.

C. Parse Task Management

While we extract document structure, we need to pack the
location information for tags parsing. We design a structure,
parsing task, containing the location information of thousands
of tags, which can be transferred to slaves by MPI quickly
because of the light data volume in one parsing task.

On the other hand, we apply the produce-consumer module
to parsing task management, the structure extracting will
produce tasks and the slaves will consume the task. This will
guarantee the master and slaves working in asynchronous way.

In this architecture, the time breakdown of full-parsing
work should be like Figure 11.

Fig. 11. System time breakdown. The x axis indicates the time.

IV. EXPERIMENT AND DISCUSSION

 First, we performed experiment to compare the processing
performance with SAX method, and then performed
experiments to measure the full parsing performance. The
experiments were conducted on a cluster containing CPU and

GPUs, one master and three slaves. Every node is equipped
with one Intel Xenon Processor E5-2620(15M Cache, 2.00
GHz, 6 cores) CPU, and one NVIDIA Tesla M2075 GPU. The
MPI version complied on the nodes is Open MPI 1.6.3. All the
experiments used Wikimedia archive (http://dumps.wikimedia.
org/enwiki/latest/) as data input, the file size are 287MB,
446MB, 987MB and 3400MB.

 To prove our system is able to achieve a better performance
when processing a large-scale file. We performed experiment
to compare the execution time with general Simple API for
XML (SAX) method.

Next, we measured the time costing for full parsing
including structure extracting, task transporting, and Tags
parsing work in slaves. Every test was run two times but the
measurement of first time was discarded to avoid cached data
influencing.

At last, we show the time breakdown for the full parsing.

A. Performance Comparison with SAX

Our original intention to design this system is to achieve
speedup of processing big-scale XML file compared with
sequence method based on CPU. To prove the speedup of our
system, we measured the performance difference between the
CPU method and our GPGPUs cluster in Figure 12.

Fig. 12. Experiment for performance comparing between SAX and GPU

Cluster in processing XML file. Two slaves nodes were used in this

experiment.

We saw that the performance of SAX was better than that
of GPU cluster when the file size is less than 500MB. GPU
cluster got a better performance in 976MB than SAX and kept
performing better. In fact, the SAX parsing is a sequence job,
and it will only use CPU to do the parsing work. We got almost
2.5 times speedup than SAX method.

B. Full Parsing Performance

Full parsing work includes the structure extracting,
management and tags parsing work. The full parsing is exactly
what our system can do, and its performance indicates the
system’s performance. Because there are two phases, structure
extracting and tags parsing, in our full parsing work, we
designed two experiments, which make the performance of
these two phases permanent respectively in different
experiment.

We made the tags parsing performance permanent with
using 2 slaves and 1024 GPU threads in each node in
experiment showed in Figure 13. The performance is measured
as speed of parsing file, the data size parsed per second. The
threads applied for structure extracting would influence the
structure extracting work, which would influence the whole
system’s speed thereby. Therefore, we used different number
of threads for structure extracting. Full parsing work includes
the structure extracting, management and tags parsing work.
Moreover, in our system, the manage work, tasks management
and MPI invoking, will cause a loss to file parsing performance,
to make up this performance lose will measure the speed for
parsing larger and larger size of files.

Fig. 13. Performance for full parsing, the different color line indicate different

size of file, X ax

According to this experiment in Figure 13, we can figure
out that the speed will increase as the structure extracting
threads and file size increasing, and then reach a peak.

Next, we made the structure extracting performance
permanent, but changed the slave nodes and the GPU threads
used in each node. In fact, we used ten threads for structure
extracting to keep the best extracting performance. Then we
measured the time cost for processing a 967MB file, and the
results is showed in Figure14.

Fig. 14. Time cost for full parsing with using different number of slaves and

different GPU threads in each slave. The x indicates the GPU threads number

and the y indicates the time cost.

From Figure14 we saw that the time cost for processing file
got less as the number of GPU threads increasing. The more

GPU threads used meant the better tags parsing performance,
the better tags parsing performance caused better full parsing
performance. More slave nodes would increase the full parsing
performance, this could be explained by that more slave nodes
increased the total GPU threads in tags parsing phase thereby
improved the full parsing performance.

On the other hand, when we used about 512 threads in each
GPU, the performance almost got best, and stopped improving
obviously. This fit well to the GPU’s cores number 448, which
meant we did not waste GPU threads in prior experiment in
which we used 1024 threads.

C. System Breakdown

Loading balance is an important element for a cluster
system, so we measure the time breakdown of the system to
test the cluster’s load balance. On the master, we run the
structure extracting for recognizing tags and document
structure to produce parsing tasks for slaves. At the same time,
slaves consume the parsing tasks and store the parsing results
on the slaves. In theory, the master and slaves will work
parallel, and the best case is that master and slaves start and
stop almost at the same time. To balance the load, we can
adjust data in every parsing task, the number of tags every
parsing task contains, which will influence the tags parsing task
speed. Moreover, because our parsing tasks are managed by a
task pool, we get the peak system performance when the speed
of producing tasks, which is performed by master, equals to the
speed of consuming tasks, which is performed by slaves.

Here we tried to parse a 976MB file, and we set that one

parsing task contains 1024 tags. The time breakdown about

the two parsing phases is show in Figure 15.

Fig. 15. System full parsing breakdown.

The slaves almost stopped at the same time with master in
this experiment, this meant that we got a nice system load
balance.

Compared to other approaches, our approach tries to
parallelize the structure extracting stage to exploit multiple
threads in this phase, as we discovered the structure extracting
overhead is considerable especially after we improved the
parsing performance by processing file on GPGPUs cluster.
Our algorithm is task-based and each task contains thousands
of tags, and these tags should be parsed by GPUs in slaves. The
produce-consumer mode is used in the tasks management and
therefore complementary to our approach. Moreover, our paper
is the first one using the GPGPUs cluster to processing large-

scale XML file. The performance evaluation results show the
performance benefits from this system.

V. CONCLUSION

In this paper, parallel implementations were presented of
using the CUDA toolkit. Both the serial and the parallel
implementations were compared in terms of running time for
different file sizes and number of threads. It was shown that the
parallel implementation of the algorithms was up to 2 times
faster than the serial implementation, especially when larger
text and smaller pattern sizes where used. In addition, it was
discussed that in order to achieve peak performance on a GPU,
the hardware must be as utilized as possible and the shared
memory should be used to take advantage of its very low
latency.

Future research in the area of large-scale xml parsing and
GPGPU parallel processing could focus on the file system
study for the parallel implementation to store final parsing
results in slaves, such as transferring the invert index into file
format. Moreover, it would be interesting to examine the
performance of the algorithms when executed on multiple
GPUs and on hybrid MPI and CUDA clusters. Finally, further
optimization of the parallel implementation of the algorithms
could be considered to make better use of the GPUs
capabilities, including loop unrolling, matrix reordering and
register blocking in addition to smarter use of the shared
memory.

REFERENCES

[1] Wei Lu, Kenneth Chiu, Yinfei Pan, “A Parallel Approach to XML

Parsing,” Grid Computing Conference 2006

[2] Yu Wu, Qi Zhang, Zhiqiang Yu, and Jianhui Li“A Hybrid Parallel
Processing for XML Parsing and Schema Validation,” Balisage: The
Markup Conference 2008

[3] Charalampos S. Kouzinopoulos and Konstantinos G. Margaritis, “String
Matching on a multicore GPU using CUDA”, Informatics, 2009. PCI '09.
13th Panhellenic Conference

[4] Zacharia Fadika, Michael R. Head, Madhusudhan Govindaraju, “Parallel
and Distributed Approach for Processing Large-Scale XML Datasets”,
10th IEEE/ACM International Conference on Grid Computing 2009

[5] Kevin Lü, Yuanling Zhu, Wenjun Sun, Shouxun Lin and Jianping Fan,
“Parallel Processing XML Documents”, Proceedings of the International
Database Engineering and Applications Symposium (IDEAS’02) 2002

[6] Wei Zhang and Robert van Engelen,“A Table-Driven Streaming XML
Parsing Methodology for High-Performance Web Services”, IEEE
International Conference on Web Services 2006

[7] S. Potluri, H. Wang, D. Bureddy, A. K. Singh, C. Rosales and D. K.
Panda, “Optimizing MPI Communication on Multi-GPU Systems using
CUDA Inter-Process Communication”, IEEE computer society 2012

[8] Sam White, Niels Verosky, Tia Newhall, “A CUDA-MPI Hybrid
Bitonic Sorting Algorithm for GPU Clusters”, 2012 41st International
Conference on Parallel Processing Workshops.

[9] W3schools, XML Totutorial, http://www.w3schools.com/xml/default.
ASP

[10] Andrew   Lumsdaine, Joshua   Hursey, Jeffrey   M.   Squyres   and
Abhishek Kulkarni, Open MPI Tutorial

[11] NVIDIA Inc. CUDA C Programming Guide

[12] NVIDIA Inc. CUDA, http://www.nvidia.com/object/cuda_home_new.
html

