法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-05-09

電気光学プローブによる有機薄膜太陽電池の 故障診断に関する研究

勝山, 純 / KATSUYAMA, Jun

(出版者 / Publisher)
法政大学大学院理工学・工学研究科
(雑誌名 / Journal or Publication Title)
法政大学大学院紀要.理工学・工学研究科編
(巻 / Volume)
56
(開始ページ / Start Page)
1
(終了ページ / End Page)
3
(発行年 / Year)
2015-03-24
(URL)
https://doi.org/10.15002/00011233

法政大学

電気光学プローブによる 有機薄膜太陽電池の故障診断に関する研究

FAILURE DIAGNOSIS OF ORGANIC PHOTOVOLTAIC USING ELECTRO-OPTIC PROBE

勝山純 Jun KATSUYAMA 指導教員 品川満

法政大学大学院理工学研究科応用情報工学専攻修士課程

This paper describes measurement of an organic photovoltaic using an electro-optic probe. Electric field distribution of the organic photovoltaic is discussed by measurement results of the test board using the electro-optic probe and simulation results of the test board using electromagnetic field simulator. We succeed in failure diagnosis of organic photovoltaic with three failure mode. *Key Words* : *Electro-optic probe, organic photovoltaic, failure diagnosis, electric field distribution*

1. 序論

有機薄膜太陽電池(OPV)は薄い・軽い・柔らかいといった特長を持ったフィルム状の太陽電池である[1]. OPV はロールツーロール(R2R)プロセスと呼ばれる帯状基板 を巻き取りながら、ロールから流れてくる透明電極などの 基板に発電層となる有機半導体溶液を吹き付ける印刷技 術によって、大量生産される.またOPVの変換効率は、P 型およびN型半導体溶液の混合比と、製造工程中の温度に 依存する[2]ため、製造工程中に製品の性能をチェックする インライン検査が必要となる.しかし、R2Rプロセス中の OPV 基板は動いているため、製造工程中に信号線やグラウ ンド線に接触して計測するのが困難である.

上記の課題を解決するために本研究では、非接触計測が 可能で測定対象に擾乱を与えにくいといった特長を持っ た電気光学プローブ(EO プローブ)の、OPVの故障診断 を目的としたインライン検査への適用を提案する.

2. 電気光学プローブ

EO プローブは EO 結晶を通過する電界の強度に比例す るレーザ光の偏光変化から電界強度を非接触で計測する ことができる.図1に示す構成図[3]の通り、レーザーダイ オードやフォトダイオード (PD) などの能動部品は制御装 置側に配置され、測定対象に近づくプローブ部分には EO 結晶や光学素子などの受動部品のみが配置されており、こ の構造によって低擾乱な計測が可能となる.このとき EO 結晶のカット面とレーザ光の向きにより検出できる電界 の向きが決まり、実験に用いた EO プローブではレーザ方 向に対して平行な電界を検出することのできる(100)カッ トのカドミウムテルル結晶を用いた。

3. 実験

EO プローブの非接触での OPV 上の電界分布計測によっ て OPV の発電状態の推測や故障箇所の特定を行う.以下 に示す図 2 と図 3 がその実験系の概要と写真である.

図3 実験系の写真

LED ドライバによって駆動された LED からの光を OPV に 入射させて,そのときのセル上の電界分布を EO プローブ で計測した.EO プローブを X 方向に動かせるステージに 立てたポールに固定し,各セルの中心点を計測した.EO プローブはファイバにより制御装置につながれ,そこから の出力信号をスペクトラムアナライザで計測した.後述の 電磁界シミュレーションでの設定を考慮して変調周波数 は11kHz とした.実験結果を以下の図4に示す.縦軸は最 大値で規格化された信号の検出強度で,横軸はテストボー ドの左縁を原点としたときのプローブ位置である.

図4 OPV上の電界分布計測結果

なだらかな変化が見られる中で7番目のセル上で検出さ れた信号強度が急激に減少し不連続な値を取った.この結 果から実験に用いた OPV には故障があると考え,正常な 状態にある OPV 上の電界分布の様子がどうなるのか,電 磁界シミュレーションと OPV の構造を模擬したテストボ ードを用いて同様の実験を行った.図5に製作したテスト ボードの写真と構造を示す.テストボードは両面銅箔のガ ラエポ基板から出来ており,セルごとに区切られたパター ンがリード線で直列に繋がっている.ひとつのセルにはPD がひとつ取り付けられていて,PD へ光を入射させること で発電する.

図 5 テストボードの(a)写真と(b)構成図

図6 テストボード上の電界分布計測結果

実験結果とシミュレーション結果を図6に示す.まずシ ミュレーション結果(□)について、テストボード上の電 界はすべてのセルの起電力が合計された最も高電位の最 右のセルから最も低電位の最左のセルに向かってアーチ 状に発生しているため、左右の縁に近付くほど電界のZ成 分が支配的になり、中心に近付くほど電界のZ成分が支配 的になる.このシミュレーション結果の値は電界のZ成分 であるので、このように左右対称なV字型の電界分布にな る.続いて計測結果(●)について、実験に用いたEOプ ローブはZ方向の電界を検出できるよう設計されている. したがって、解析結果(□)と計測結果(●)は一致して V字型の左右対称な電界分布になった.この結果から我々 は、EOプローブがテストボード上の電界分布を正確に計 測できることを明らかにし、EOプローブの有効性を確認 した.

実験結果から正常な OPV 上の電界分布計測結果の予測 ができ、図4に示した結果と比較すると OPV は故障して いると考えられる. OPV の詳しい故障状態を検証するため にテストボードを用いて3つの故障状態を想定し故障解析 を行った.

4. 故障診断

故障診断として OPV を意図的に故障させるのは困難で あるためテストボードを用いて以下の3つの故障状態を 作り出した.(1)隣り合う陽極同士が接続されたブリッジ モード,(2)隣り合うセル同士の直列接続が切れたオープ ンモード,(3)セルが発電機能を失ったとしてPDを取り 外した PD 欠落モードである.ここではブリッジモードの 結果について述べる.以下の図7に示す通り,6番目のセ ルと7番目のセルをリード線により接続した.

図8 ブリッジモードの電界分布計測結果

図8に示すEOプローブを用いた計測結果(●)とシミ ユレーション結果(□)は一致した.7番目のセルに繋が るPDを短絡させたことにより7番目のセルに発生する起 電力が減り,電位が低くなって高電位側からの電界がより 多く7番目のセルに向かった.その結果EOプローブに検 出された電界が多くなり,このような電界分布になった.

5. 結論

本研究では OPV の電界分布計測と, OPV の構造を模し たテストボードを作り3つのモードを用いた故障診断を行 って OPV 上の電界分布を計測することで,発生電圧を推 定し故障セルと故障状態を特定できることを確認した. 今 後は EO プローブの周波数特性を向上させるために, 受光 回路の改良, EO 結晶の変更などを行い, OPV の故障診断 だけでなく様々なアプリケーション応用を目指す.

参考文献

 C. W. Tang, "Two-layer organic photovoltaic cell", Appl. Phys. Lett., Vol.48, No.2, pp.183-185 (1986)

[2] W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, "Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology", Adv. Funct. Mater., Vol.15, No.10, pp.1617-1622 (2005)

 [3] M. Shinagawa, T. Nagatsuma, K. Ohno, and Y. Jin, "A Real-Time Electro-Optic Handy Probe Using a Continuous-Wave Laser", IEEE Trans. Instrum. Meas., Vol.50, No.5, pp.1076-1080 (2001)