法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-05-09

衝突を伴う粒子群最適化法の最大電力点探索 への応用

安藤, 直人 / ANDO, Naoto

```
(出版者 / Publisher)
法政大学大学院理工学・工学研究科
(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 理工学・工学研究科編 / 法政大学大学院紀要. 理工学・工学研究科編
(巻 / Volume)
56
(開始ページ / Start Page)
1
(終了ページ / End Page)
4
(発行年 / Year)
2015-03-24
(URL)
https://doi.org/10.15002/00011080
```

衝突を伴う粒子群最適化法と最大電力点探索への応用

Collision Particle Swarm Optimizer for Exploring Maximum Power Point

安藤 直人

Naoto Ando

指導教員 斎藤利通

法政大学大学院理工学研究科電気工学専攻修士課程

In this paper, we present collision particle swarm optimizer and its application to the maximum power points in photovoltaic system. As a example, we consider the maximum power point tracking in a dimensional characteristics of solar strings.

Key Words: Particle swarm optimizer, Collision, Maximum power point Tracking, Dynamic optimization problem

1. はじめに

粒子群最適化法 (particle swarm optimizer, PSO [1]) は生 物集団のふるまいを模した粒子群に基づく最適化手法の一 つである.生物集団は位置と速度を持つ粒子群にモデル化 され,情報交換を繰り返すことで評価関数の取り得る最大 値,もしく最小値に収束する.PSO は簡素な評価関数であ れば小数の粒子で探索が可能である.また,更新式が簡素で 評価関数に微分可能性を要求しないため,実装が容易であ る. そのため多くのシステム最適化の問題に応用されてい る.[2][3][4], その中の一つとして, 光電変換システムの最 大電力点探索 (maximum power point tracking, MPPT) がある [5][6]. 太陽光発電に用いられる太陽電池セルの PV 特性は, 日射強度やセルの表面温度の変化に強い影響を受ける.この とき発電量がピークとなる動作電圧 (maximum power point, MPP) も同様に変化するため,発電の前に MPP を見つけ出 す必要がある.この制御は発電の損失を抑える上で重要とな る.しかし,時間経過による日射の変化や部分的な影の発生 によって PV 特性のピークは複雑に変化する.特に急激な日 照の変化が伴う状況において、複数のピークが大きく変動す ことがある.これはシステムの時間経過によって変化する最 適化問題 (dynamic optimization problem, DOP) と見なすこと が可能である従来の PSO は DOP に対して十分とはいえず, DOP に対応した PSO の改良は実用的な用途を考える上で重 要である.本稿では方向切り替えを有するリング粒子群最適 化法 (Collision Direction PSO, CPSO [7]) の最大電力点探索へ 応用について考察する. CPSO の粒子の情報共有に影響を及 ぼす.また,粒子は離散空間上を移動するため,MPPTのデ ジタル制御に有利である. CPSO を日照の変化を伴う PV 特 性の MPP 探索基本問題に適用し,その性能を検証する.

2. 評価関数

3. MPPT

日射環境が時間経過で変化する評価関数を考え,MPPを探索する.ただし,短時間の変化であるため表面温度の変動は考慮しない.

(1) 太陽電池

図 1 に太陽電池セルの等価回路 [8] を示す . 簡単のため , R_{sh},R_{s} を考慮しない . このときの特性は次式で記述される .

$$I = f(V, t) = I_{ph} - I_{rs} \quad \exp \quad \frac{qV}{kATn_s} \quad -1 \tag{1}$$

ただし I は端子電流 , V は端子電圧である . I_{ph} は光電効果で発生した電流 , Irs は逆飽和電流 , q は電気素量 , k はボルツマン定数 , T は太陽電池温度 , A は理想ダイオード因子である . この内 , I_{ph} は以下の式で表される .

$$I_{ph} = (I_{scr} + k_i(T - T_r)) \frac{S(t)}{100}$$
 (2)

ただし I_{scr} は基準温度時の太陽電池短絡電流 , k_i は短絡電流温度効率 , S は日射強度である . 本論文では図 2 に示すように太陽電池モジュールを直列に 3 つ接続した太陽電池ストリングを制御する . ストリングの電流を I , 電圧を V とすると , 電力を与える評価関数は以下のように記述される .

$$F(V,t) = VI \tag{3}$$

I は太陽電池の特性式 (7) で与えられる . このとき , I は各 セルの表面温度 T や日射強度 S のパラメータに支配される .

(2) 日射強度の変動

S や T がセルごとに異なる環境において,PV 特性は複数のピークが発生する.[9].図 3 に 10 秒間の各太陽電池セルの日射変化を記す.図 4 に日射変化に伴う PV 特性の変動を記す.探索範囲は最小値を 0.0[V],最大値を 1.8[V] とした.

4. 衝突 PSO

(1) 動関数最適化におけるリング PSO

DOP を最適化するための PSO を考える。通常の PSO は同じ時刻 t ごとに全体を粒子を更新し、情報を共有する。しかし、実際の PV システムに複数の動作点はなく、粒子は個々に動かすほかない。従って物理的な探索時間 $T_{max}[s]$ を定めたとき、粒子は定められた周期ごとにサンプリングを行い、

図 1 太陽電池等価回路

:太陽電池

六 : バイパスダイオード

図2 実験システム

移動を行う。このとき、サンプリング周期 Δt と経過時間は以下のように定義できる。:

サンプリング周期 $\Delta t = T_{max}/M$

経過時間 $t = n\Delta t, 1 \le n \le M$

本章の PSO はデジタル PSO であり、粒子を離散座標上に移動する探索座標 S は Lp 個の格子で構成されており,粒子は格子の上を移動する.粒子の結合はリング結合を用い,両近傍の粒子間で情報交換する.粒子の各パラメータを以下のように定義する。

 $n\Delta t$ における粒子の位置: $x(n)\equiv x(n\Delta t)\in\{0,1,\cdots,Lp\}$ 粒子の速度: $y(n)\equiv y(n\Delta t)$

 x_i のパーソナルベスト: Pb_i

 Pb_i の評価値: F_{P_i}

 x_i のローカルベスト: $Lb_i \in \{Pb_i, Pb_{i-1}, Pb_{i+1}\}$

 Lb_i の評価値: F_{L_i}

本章のリングトポロジー粒子の概念図を図 XXX に示す。PSO は粒子数 N の同じ数の過去を記憶し、古い情報を更新してい く。粒子群は同じ時刻 t を共有せず、至近の時刻 t-1 と離れた時刻 t-N の粒子の間でパーソナルベストを共有する。

(2) アルゴリズム

以下に CPSO を 5 ステップで定義する.

Step 1 (initialization): N 個の粒子をランダムに配置し探索空間内に配置し、各パラメータを初期化する。 $Pb_1=\cdots=Pb_N=0, Lb_1=\cdots=Lb_N=0.$ $n\leftarrow N+1$ に設定する. Dir=0 に設定する。

Step 2 (Update of velocity and location): 粒子の位置と速度を

図 4 P V 特性の変動: (a) 時刻:0[s]. (b) 時刻:2[s]. (c) 時刻:5[s]. (d) 時刻:10[s].

更新する。

$$y(n) \leftarrow y(n-N) + c(Lb_i - x(n-N)) x(n) \leftarrow x(n-N) + y(n)$$
(4)

 $i=n \bmod N$. w と c 乱数を含まない決定論的なパラメータである.

粒子は移動したのち、探索空間 S_D の格子点に四捨五入される.

Step 3 (Judge of collision):

粒子が他の粒子と同一の格子上に存在するとき,粒子の衝突が発生する.m 番目と衝突したとき,各粒子の速度を以下のように更新する:

$$y(t) \leftarrow y(t - (N - m))$$

$$y(t - (N - m)) \leftarrow y(t)$$

$$x(t) \leftarrow x(t) + y(t)$$

$$x(t - (N - m)) \leftarrow x(t - (N - m)) + y(t - (N - m))$$
(5)

このとき,被衝突側の粒子のパーソナルベストは更新される.

$$Pb_m \leftarrow x(t - (N - m))$$
 if $F(x(t - (N - m))) > F_{Pb_m}$
(6)

Step 4 (Update of personal and local bests): 粒子のパーソナルベストとローカルベストを更新する。

$$\begin{array}{ll} Pb_{i} \leftarrow x(t), & F_{Pb_{i}} \leftarrow F(x(t),t) & \text{if } F(x(t),t) > F_{Pb_{i}} \\ Pb_{i} \leftarrow Pb_{i}, & F_{Pb_{i}} \leftarrow F_{Pb_{i}} & \text{otherwise} \\ Lb_{i} \leftarrow Pb_{j}, & F_{Lb_{i}} \leftarrow F_{Pb_{j}} & \text{if } F_{Pb_{j}} > F_{Pb_{i}} \\ Lb_{i} \leftarrow Pb_{i}, & F_{Lb_{i}} \leftarrow F_{Pb_{i}} & \text{otherwise} \end{array}$$

ただし $j \in \{i-1, i, i+1\}$ とする.

Step 5:

最大探索時間 $t=t_{max}$ に至るまで $t\leftarrow t+1$ に更新する.

Step 3 を踏まないことで通常の Local-best PSO を定義することが可能である.

5. 数值実験

CPSO の性能を検証するため、図4に示す評価関数を用 いて数値実験を行った.探索に用いる各パラメータは次のよ うに設定した: 粒子数 N=5, 慣性定数 w=0.7, 加速度係 数 c1 = 1.4. サンプリング周期 V = 0.05. 図 8 に粒子の探 索過程を示す.探索初期の段階では左端のピークが最も高い 電力を示すため,粒子は左へ向かって移動した.この時点で, 粒子は完全に収束していないことが確認できる.その後の環 境変化に伴い,右端のピークの電力が大きく増加した.粒子 は拡散した状態で移動し,最終的に右端のピークに収束,結 果 MPP を求めることができた.図6,7に発電電力の推移と 衝突が発生した時刻を示す. 従来の Local-best PSO では初期 に収束したピークに捕らわれ,環境の変化に対応できなかっ た.一方, CPSO は電力が増加する過程で電力の大幅な増減 が見られた.図7から,電力が上昇する直前に衝突が発生し ていることが見て取れる.この結果から,衝突によって拡散 した粒子が環境の変化を捉え,新たな MPP を発見できたと 考えられる.図7から,衝突が発生しないタイミングが繰 り返し現れていることがわかる. 粒子が拡散した状態では衝 突が少ないことが推測できるので, CPSO は衝突による拡散 と収束を繰り返しながら探索を行うことが考えられる.また DOP への適用には、環境の変化に適切なタイミングで衝突 が必要になることが予想される.

6. まとめ

衝突を伴う PSO を,MPP 探索に基づいた基本問題に適用した.特性の変動が伴う環境において,効果的な探索を行えることが示唆された.今後の課題として,衝突の発生に伴う粒子の動作の解析,下降する電力に追従できるような PSOの改良が上げられる.

参考文献

- 1) J. Kennedy and R. Eberhart, Particle Swarm Optimization, Proc of IEEE/ICNN, pp.1942-1948, 1995.
- 2) R. A. Vural, T. Yildirim, T. Kadioglu and A. Basargan, Performance evaluation of evolutionary algorithms for optimal

図 5 リングトポロジーの概念図

filter design, IEEE Trans. Evol. Comput., 16, 1. pp. 135-147, 2012.

- A. B. van Wyk and A. P. Engelbrecht, Overfitting by PSO trained feedforward neural networks, in Proc. IEEE Congress Evol. Comput., pp. 2672 - 2679, 2010.
- H. Matsushita and T. Saito, Application of particle swarm optimization to parameter search in dynamical systems, NOLTA, IEICE, E94-N, 10, pp. 458-471, 2011.
- Y. Liu, S. Huang, J. Huang, W. Liang, A Particle Swarm Optimization-Based Maximum Power Point Tracking Algorithm for PV Systems Operating Under Shaded Conditions, IEEE Trans. Ene. Conve., 27, 4, pp.1027-1035, 2012.
- M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii and H. Ko, Maximum Power Point Tracking of Multiple Photovoltaic Arrays: A Particle Swarm Optimization Approach, IEEE Trans. Aeros. Elect. Systems, 47, 1. pp. 367-380, 2011.
- H. Maruyama and T. Saito, Deterministic Particle Swarm Optimizers with Collision, in Proc. IEEE SMC, pp. 1335-1340, 2013.
- G. Vachtsevanos and K. Kalaitzakis, A Hybrid Photovoltaic Simulator for Utility Interactive Studies, IEEE Trans. Ener Conve., 2, 2. pp. 227-231, 1987. s, 47, 1. pp. 367-380, 2011.
- H. Hiren and V. Agarwal, MATLAB-Based Modeling to study the Effects of Partical Shading on PV Array Characteristics, IEEE Trans. Ene. Conve., 23, 1, pp.302-309, 2008.

図 8 CPSO の探索過程: (a) 時刻: 0[s]. (b) 時刻: 2.5[s]. (c) 時刻: 4.25[s]. (d) 時刻: 5.25[s]. (e) 時刻: 6.5[s]. (f) 時刻: 9.0[s].