法政大学学術機関リポジトリ HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-06

流動に起因する配管構造物の振動評価手法に 関する研究

西口, 誠人 / NISHIGUCHI, Masato

(開始ページ / Start Page) 1 (終了ページ / End Page) 105 (発行年 / Year) 2015-03-24 (学位授与番号 / Degree Number) 32675甲第352号 (学位授与年月日 / Date of Granted) 2015-03-24 (学位名 / Degree Name) 博士(工学) (学位授与機関 / Degree Grantor) 法政大学(Hosei University) (URL) https://doi.org/10.15002/00010862

平成 26 年度 法政大学審査学位論文

流動に起因する配管構造物の振動評価手法に関する研究

指導教員 御法川 学 教授

法政大学大学院工学研究科機械工学専攻 学生番号:12R9103 西口 誠人

第	1章	緒詞							
	1.1	本研	究の背景	1					
	1.2	2 本研究の目的							
	1.3	3 本研究の概要							
	1.4	流体	関連振動の分類と本研究の対象	2					
第	2章	現北	犬の評価方法とその問題点						
	2.1	音響	励起振動の特徴と典型的な配管破損箇所	4					
	2.2	音響	励起振動による配管の破損事例	6					
	2.3	D/t	を用いた音響励起振動の評価方法	10					
	2	.3.1	Carucci および Muller の事例をもとにした設計曲線	10					
	2	.3.2	Energy Institute(EI)guide line による設計手法	12					
	2.4	D/t	を用いた現状の評価方法の問題点	14					
	2.5	第2	章のまとめ	15					
第	3章	合济	希配管における流動励起振動の特徴と評価方法						
	3.1	背景		16					
	3.2 実験装置		装置	17					
	3.3	合流	配管における流動励起振動の特徴	24					
	3	.3.1	圧力変動および配管振動のランダム性	24					
	3	.3.2	配管振動の特性	27					
	3	.3.3	配管合流部のチョーキングの発生について	29					
	3	.3.4	圧力変動の特性	32					
	3.4	合流	配管における流動励起振動の評価方法	38					
	3.5	第3	章のまとめ	41					

目次

第4章 合流角度および分岐配管径が合流配管の流動励起振動に与える影響

4.1 背景	42
4.2 実験装置	43
4.3 結果および考察	56
4.3.1 合流角度の影響	56
4.3.2 分岐配管径の影響	61
4.3.2.1 分岐管上流および下流における圧力変動の比較	61
4.3.2.2 分岐配管径が比較的大きいときにおける圧力変動の発生	
メカニズム	64
4.3.2.3 分岐配管径が比較的小さいときにおける圧力変動の発生	
メカニズム	69
4.3.3 分岐配管径および合流角度が Vn を用いた評価に与える影響	72
4.3.3.1 オリフィス孔部の流動条件およびオリフィス孔径を代表	
寸法として Vnを計算した評価	72
4.3.3.2 分岐管端部の流動条件および分岐管径を代表寸法として	
Vnを計算した評価	74
4.3.3.3 合流角度が Vnを用いた振動応力の評価に与える影響	77
4.4 第4章のまとめ	79
第5章 ランダム振動理論を用いた音響励起振動の評価方法	
5.1 背景	80
5.2 ランダム振動理論を用いた評価方法	81
5.2.1 過去の破損事例および本評価手法の比較	81
5.2.2 現行の評価手法における許容値の修正方法	84
5.3 従来の音響計算手法による配管径が与える影響の検討	87
5.3.1 評価方法	87
5.3.2 評価結果	88
5.4 実験による検討	90
5.4.1 実験方法	90
5.4.2 実験結果	93
5.5 流動励起振動(FIV)が音響励起振動(AIV)に与える影響	97
5.6 第5章のまとめ	99
第6章 結論	100
参考文献	103
謝辞	105

主な記号

a_c	: 音速 [m/s]
Α	: 配管断面積 [m ²]
A_1	:分岐管断面積 [m ²]
A_2	:母管断面積 [m ²]
A_{ro}	: RO 孔部断面積 [m ²]
С	: 減衰 [kg/s]
Cc	: 絞り部における縮流係数
С	: 定数
D	: 配管直径 [m]
D_1	:分岐管直径 [m]
D_2	: 母管直径 [m]
Ε	: ヤング率 [Pa]
f	: 周波数 [Hz]
f_c	: 中心周波数 [Hz]
f_{o}	: 流体の加振周波数範囲 [Hz]
$\hat{f_n}$: 配管周方向 n 次の固有振動数 [Hz]
f_{2nd}	: 配管周方向 2 次の固有振動数 [Hz]
F	:加振力 [N]
F_{rms}	:加振力の RMS 値 [N]
Η	: 伝達関数
Ι	:リング面内の単位長さ当り断面2次モーメント [m ³]
k	: バネ定数 [N/m]
L	: 配管長さ [m]
L_{p_in}	: 配管内部の音圧レベル [dB]
т	: 質量 [kg]
MF	:質量流量 [kg/s]
MF_{RO}	: RO 孔部のプロセス条件を用いて計算した質量流量 [kg/s]
MF_0	: 配管合流部においてチョーキングが発生していないときに流れる最大の質量流量 [kg/s
Mw	:平均分子量 [-]
п	: 周方向モード次数 [-]
р	:音圧 [Pa]
p_1	: RO 上流における圧力 [PaA]
p_2	: RO 下流における圧力 [PaA]
p_{atm}	: 大気圧 [PaA]
p_b	: 配管合流部における圧力 [PaA]
p_c	: 臨界圧力 [PaA]
p_{in}	: 配管内部における音圧 [Pa]
<i>TP</i> 1	: エアチャンバ内の圧力 (TP1)[PaA]
TP2	: 圧力センサ TP2 における圧力 [PaA]
p_{rms}	: 圧力変動の RMS 値 [Pa]
p_{rms}^*	: 無次元圧力変動の RMS 値
Р	: 圧力変動の Power Spectrum Density [Pa ² /Hz]

P^{*}	: 無次元圧力変動の Power Spectrum Density
PWL	: Sound Power Level [dB]
PWL_{lin}	"it: 許容 PWL [dB]
Δp	: チョーキング発生時における圧力不連続量 [Pa]
R	: 気体定数 [m²/sec²/K]
St	:ストローハル数 [-]
S_x	:変位のPower Spectrum Density [m ² /Hz]
S_w	:加振力の Power Spectrum Density [N ² /Hz]
t	: 配管肉厚 [m]
t_1	: 分岐管肉厚 [m]
t_2	: 母管肉厚 [m]
Т	: 配管内流体の温度 [K]
T_{atm}	: 大気温度 [K]
T_b	: 配管合流部における温度 [K]
T_c	: 臨界温度 [K]
TL	:透過損失 [dB]
TL_0	: 垂直入射音に対する透過損失 (θ=0)[dB]
TL_R	:任意入射(ランダム入射)音に対する透過損失 [dB]
v	: 配管合流部における分岐管側の流速 [m/s]
V_n	: Vibration Velocity Number [m/s]
V_{rms}	: 振動速度の RMS 値 [m/s]
W	:音響出力 [W]
W_0	:加振力の Power Spectrum Density [N ² /Hz]
x	: 振動変位 [m]
ż	: 振動速度 [m/s]
ÿ	: 振動加速度 [m/s²]
X_{rms}	: 振動変位の RMS 値 [m]
ϕ	: 分岐配管合流角度
к	: 比熱比
θ	: 音波の入射角 [rad]
$ ho_{atm}$: 大気圧における流体密度 [kg/m³]
$ ho_b$: 配管合流部における流体密度 [kg/m³]
$ ho_c$: 臨界条件における流体密度 [kg/m³]
$ ho_{g}$: 流体密度 [kg/m³]
$ ho_p$: 配管材料の密度 [kg/m³]
σ	: 振動応力 [Pa]
σ_{limit}	:許容振動応力 [Pa]
$\sigma_{\scriptscriptstyle rms}$: 振動応力の RMS 値 [Pa]
ω	: 角振動数 [rad/s]
ζ	: 減衰比 [-]

第1章 緒論

1.1 本研究の背景

プロセスプラント内において,配管合流部などでマッハ数が約0.5以上の高流速に伴 い配管振動が発生し、安全・安定操業の観点から問題となる可能性がある(1).特に近年 の経済設計の要求から配管構造物が大型化かつ薄肉化する傾向があり,通常知られてい る配管の梁モードの振動(Beam Mode)に加えて、配管周方向の振動(Shell Mode)が 問題となる場合がある.配管合流部などで高流速に伴い発生する配管振動については, 流れの乱れに伴うランダムな圧力変動に伴い発生する流動励起振動 (Flow Induced Vibration)⁽¹⁾および安全弁などで発生する大騒音により配管壁面が振動する音響励起振 動(Acoustically Induced Vibration)が知られている⁽²⁾.このうち,ランダムな圧力変動 に伴い発生する流動励起振動については,実機の計測結果から評価指標を検討した事例 が報告されており⁽³⁾,円柱の曲げ振動や平板周りを流れる外部平行流などに関して評価 方法が確立されている⁽⁴⁾⁽⁵⁾.一方, ランダム振動の解析技術については平板やエルボに おいて,実験で得られた圧力変動の Power Spectrum Density (PSD) を用いたランダム振 動解析により,その振動応答が精度よく計算できること^{(の (7) (8)},また,直管においては CFD で圧力変動の PSD を計算し、構造解析と双方向で連成させることにより、流れの 乱れに起因した振動応答が計算できることが報告されている^の. しかしながら, 配管合 流部で発生する流れの乱れに起因したランダムな加振力と,配管周方向の振動応答につ いて検討された事例は見当たらない. 音響励起振動については数十件の配管破損事例が Carucci および Muller により報告されており、これらの配管破損事例から配管の肉厚や 直径などの構造パラメータを用いた音響励起振動の評価方法が提案されており,現在の プラント設計でもこれらの設計手法が適用されている.しかしながら、これらの音響励 起振動の評価方法は最近では FEM などの詳細解析により検討が行われる事例もあるが (10)(11)(12)(13)(14)(15), ランダム振動理論などから理論的に妥当性が検討された事例は見当た らない、そのため、音響励起振動の評価手法に対して理論的な検討を実施して、配管系 などに対する適用範囲について検討する必要があると考える.

1.2 本研究の目的

本研究ではプラント設計時の配管設計において問題となる流動励起振動について理 論的に検討するため、ランダム振動理論から流動励起振動と振動応力の関係を導く.ま た、音響励起振動は安全弁出口における高流速の乱れに伴う大騒音に起因しており、振 動がランダムな乱れに起因しているという点では流動励起振動と音響励起振動は共通 していると考えられるため、音響励起振動に対しても流動励起振動において理論的に検 討された振動応力の評価方法を適用して、音響励起振動により発生する振動応力につい て検討する.

1.3 本研究の概要

はじめに、本研究の対象について理解を容易にするために、流動に起因した配管構造 物の振動において、本研究の対象となる流動励起振動および音響励起振動が、どのよう な位置付けにあるのかを流動関連振動の分類に従って述べる(第 1.4 節 流動励起振動 の分類と本研究の対象を参照)

第2章として,現状において適用されている評価手法とその問題点について説明する.

第3章として,合流配管で発生する流動励起振動の振動応力をランダム振動理論を用いて理論的に導き,実験結果との比較を行うことでその妥当性について検討する.

第4章として,第3章で検討した流動励起振動に起因する振動応力の評価方法を,異 なる合流角度および分岐配管系を用いて実施した実験結果と比較することにより,その 適用範囲について検討する.

第5章として,第3章および第4章において検討された流動励起振動に起因する振動 応力評価方法を音響励起振動にも適用させ,音響励起振動に対しても適切に振動応力が 評価できるか過去の配管破損事例との比較,実験による計測および簡易的な音響計算を 行い検討する.

第6章として、本研究で得られた結論を総括した.

1.4 流動励起振動の分類と本研究の対象

流動励起振動とは流体に起因して振動が発生する現象の総称であり、流れの様相によ り分類すると図 1.1 のようになる⁽¹⁶⁾. ここでは定常流,非定常流,二相流の各流れに 対応し,それぞれ確認されている各流動励起振動を分類したものである.定常流での振 動は,自励振動系の作用で流れと振動が相互に作用し,成長するものが主体である.非 定常流では,脈動流や乱流などの流れの乱れが構造物を振動させる.二相流は運動量の 異なる2種類の流体が混在して流れるために,運動量の時間的変動が構造物への励振源 として作用するほか,相変化を伴う運動量,圧力変動が励振源となるものである.この ように流動励起振動が含む物理現象は多岐にわたるが,本研究では高流速の乱れに起因 した振動を取り扱うため,図 1.1 内の乱流励起振動が対象となると考えられる.また, 音響励起振動については図 1.1 内では脈動流に起因する現象と位置付けられているが, これは脈動流によって発生する圧力変動が加熱炉内部などで音響的に共鳴して増幅し, 振動が発生する振動現象を指すため,本研究で取り扱う大騒音により強制的に配管が振 動し破損にいたる現象とは異なる.本研究で取り扱う音響励起振動は安全弁出口におけ る高流速の乱れに起因した大騒音に起因することを考えると,本研究で対象とする流動 励起振動と同じく,乱流励起振動に近い位置付けとなると考えられる.

Fig. 1.1 Category of Flow Induced Vibration⁽¹⁶⁾

第2章 現状の評価方法とその問題点

本章では現状の音響励起振動に対する評価方法の概要とその問題点について説明する.ここで,合流配管で発生する乱れに起因した流動励起振動については前章で述べた とおり現象そのものがよく知られておらず,一般的な評価方法が存在しないため,流動 励起振動の評価方法については第3章および第4章において後述するものとし,本章で は安全弁などで発生する大騒音に起因した音響励起振動の現状の評価方法とその問題 点について説明する.

2.1 音響励起振動の特徴と典型的な配管破損箇所

第1章で述べたとおり,昨今のプラント設計では経済的な要求から配管が大口径化および薄肉化している傾向がある.このため,通常問題となる配管の梁モード(Beam Mode)の振動に加えて配管の周方向(Shell Mode)の振動が問題になることがある.図2.1には配管周方向の振動モードの一例を示す.音響励起振動では図2.1のような周方向の振動モードが配管破損の原因となるため,図2.1に示す分岐管根元や図2.2に示す配管サポートシューの接続箇所など,構造不連続部において応力が集中しやすい箇所が典型的な配管破損箇所となる.このため,音響励起振動を防止するためには,配管周方向モードに起因した発生応力を低下させるため,構造不連続部における母管の肉厚を増加するか,図2.3に示すような全周補強(Full Wrap Reinforcement)を行い配管周方向モードを抑制する必要がある.

Fig.2.1 Example of the piping shell mode

Fig.2.2 Example configuration of support shoe

Fig.2.3 Example of full wrap reinforcement for AIV

2.2 音響励起振動による配管の破損事例

表 2.1 に Carucci および Muller⁽²⁾ により報告された音響励起振動により配管が破損し た事例とその運転条件を示す.また,表 2.2 には同じく Carucci および Muller により報 告された配管が音響励起振動により破損しなかった事例とその運転条件を示す. 図 2.4 に示すように Carucci および Muller はこれらの配管破損事例から,配管径と式(2.1)に より算出される Sound Power Level (PWL)⁽²⁾により整理することで,音響励起振動によ り配管が破損する可能性を評価できるとしている.この図 2.4 に示す評価方法が最初に 提案された音響励起振動の評価方法と考えられるが,本評価方法は配管肉厚が評価パラ メータとして考慮されていない.音響励起振動により発生する周方向振動の振動応力は 配管肉厚により影響を受けると考えられるため,本評価手法は適切に音響励起振動によ る配管破損の可能性を評価できないと考えられ、現在では使用されていない.しかしな がら, Carucci および Muller により報告された表 2.1 および表 2.2 に示される音響励起振 動により配管が破損した事例および破損しなかった事例は、 プラント内での破損事例が 顧客の秘密保持の観点から公開されにくいことを考えると非常に貴重である.そのため、 図 2.4 に示す評価方法は現在使用されていないものの、評価方法を検討する上で参照さ れる音響励起振動による配管破損事例は Carucci および Muller が報告した表 2.1 および 表 2.2 に示される事例以外はほとんどなく、これらの配管破損事例が現在でも参照され ている.

$$PWL = 10\log\left\{MF^{2} \times \left(\frac{p_{1} - p_{2}}{p_{1}}\right)^{3.6} \times \left(\frac{T}{Mw}\right)^{1.2}\right\} + 126$$
(2.1)

Data Point	Service	M.W	Upstream Temp. [K]	Upstream Pressure [MPaA]	Downstream Pressure [MPaA]	Mass Flow Rate [kg/hr]	Downstream Line Size [inch]	Thicknes s of Pipe [mm]	PWL (re. 10 ⁻¹² watts) [dB]	Failure Experience
A	Propylene Compressor Recycle	39.80	319.3	2.055	0.1586	107805	24	6.350	168.5	Failure during startup
B1	Natural Gas Pressure	23.10	379.8	4.275	0.6274	174954	10	5.563	170.9	Failure in 700 mm (28 inch) header modified piping, complete system redesigned.
B2	Natural Gas Letdown to Flare	23.10	255.4	0.5171	0.2068	174954	28	7.925	171.4	
С	Natural Gas Letdown to Flare	22.90	308.2	4.757	0.4137	172670	16	6.350	171.8	High vibrations, no failures. Based on other experience system modified.
D	Nitrogen Compressor Recycle	28.00	310.9	0.6964	0.3723	433960	24	6.350	168.3	Failure during startup modified system
Е	Nitrogen Compressor Recycle	28.00	310.9	1.682	0.7033	307426	18	6.350	168.8	High vibrations, no failures. Based on other system modified using low noise valve
F	Natural Gas Compressor Gas Recycle	27.70	330.4	5.109	1.386	127904	12	5.563	164.9	Failure at severely undercut weld on 300 mm (12 in.) line made to fasten conduit support clip. Points of high stress concentration eliminated.
G	Desuperheater Steam	18.00	802.6	9.997	1.034	133751	18	6.350	175.5	Failure in 450 mm (18 in.) attemporator, complete redesign of system.
Н	Desuperheater Steam	18.00	658.2	4.309	1.034	166732	20	6.350	163.9	Cracks through pipe and pad at transverse guide and I pipe around pressure tap.

Table 2.1 Piping failure example due to AIV reported by Carucci and Muller⁽²⁾

Data Point	Service	M.W	Upstream Temp. [K]	Upstream Pressure [MPaA]	Downstream Pressure [MPaA]	Mass Flow Rate [kg/hr]	Downstream Line Size [inch]	Thicknes s of Pipe [mm]	PWL (re. 10 ⁻¹² watts) [dB]
1	Process Gas Compressor Recycle	28.60	308.2	1.317	0.1034	98212	16	6.350	165.9
2	Process Gas Compressor Recycle	28.60	311.5	3.875	1.000	50339	12	5.563	156.6
3	Propylene Compressor Recycle	41.60	316.5	2.055	0.3241	45680	16	6.350	156.0
4	Process Gas Compressor Recycle	24.80	300.4	0.2482	0.1034	126077	20	6.350	161.3
5	Process Gas Compressor Recycle	23.80	310.9	1.586	0.2206	91817	16	6.350	165.2
6	Process Gas Compressor Recycle	21.40	300.9	3.944	1.551	74915	10	5.563	158.3
7	Propylene Compressor Recycle	42.10	310.9	1.669	0.1379	137954	14	5.588	166.6
8	Propylene Compressor Recycle	42.10	310.9	1.669	0.1379	126990	20	9.525	165.9
9	Waste Steam Dump	18.00	403.7	0.2758	0.1034	68520	16	6.350	160.5
10	Process Gas Compressor Recycle	28.60	302.6	1.069	0.1034	75829	16	6.350	163.2
11	Process Gas Compressor Recycle	14.00	308.2	5.481	2.751	33164	12	5.563	150.5
12	Natural Gas Compressor Recycle	20.60	308.2	0.3792	0.2482	143892	36	7.925	155.4
13	Natural Gas Compressor Recycle	20.60	308.2	0.6481	0.3999	142978	36	7.925	157.2
14	Natural Gas Compressor Recycle	20.60	308.2	1.145	0.6757	141151	30	6.934	158.1
15	Natural Gas Compressor Recycle	20.60	308.2	2.179	1.165	130645	26	6.960	159.4
16	Natural Gas Compressor Recycle	20.60	308.2	4.075	2.199	130188	24	6.350	159.2
17	Natural Gas Compressor Recycle	20.40	308.2	8.012	4.089	128361	20	6.350	160.1
18	Natural Gas Compressor Recycle	20.40	308.2	17.30	7.998	128361	16	6.350	161.5
19	Natural Gas Compressor Recycle	20.70	308.2	0.3861	0.2344	134756	36	7.925	157.3
20	Natural Gas Compressor Recycle	20.70	308.2	0.6205	0.3930	133386	36	7.925	155.9
21	Natural Gas Compressor Recycle	20.70	308.2	1.062	0.6274	130645	30	6.934	157.4
22	Natural Gas Compressor Recycle	20.70	308.2	1.972	1.062	119682	26	6.960	158.4
23	Natural Gas Compressor Recycle	20.70	308.2	3.682	1.979	119225	24	6.350	158.4
24	Natural Gas Compressor Recycle	20.70	308.2	6.447	3.696	118996	20	6.350	157.3
25	Natural Gas Compressor Recycle	20.70	308.2	13.95	6.453	118768	16	6.350	160.7
26	Propane Compressor Recycle	44.00	308.2	1.207	0.09653	182720	18	9.525	168.9
27	Steam Desuperheater	18.00	658.2	4.309	1.034	166732	30	11.151	161.2

Table 2.2 Example of AIV with no piping failure reported by Carucci and Muller $^{(2)}$

*Point F failure attributed to severe weld undercutting at a small connection. No abnormal experience after quality welds achieved.

Fig.2.4 Safe Design Limit based on experience of acoustically induced vibrations (2)

2.3 D/t を用いた音響励起振動の評価方法

前節で示した通り,音響励起振動を適切に評価するためには,加振力の指標としての PWL および,配管側の構造パラメータとして配管直径だけでなく配管肉厚を考慮することが望ましい.そのため,現状において多く使用されている音響励起振動の評価手法は D/t (D:配管外径, t:配管肉厚)で表される配管直径と肉厚の比および式 (2.1)で示される PWL を用いて評価されることが多い.本節では現状において使用されることの多い D/t を用いた音響励起振動の評価方法のうち代表的な 2 つの評価方法について説明する.

2.3.1 Carucci および Muller の事例をもとにした設計曲線

第2.1 節に示した Carucci および Muller により報告された音響励起振動による配管破 損事例をもとに提案された設計曲線を図2.5 に示す⁽¹⁷⁾.図2.5 に示す設計曲線は D/t が 大きくなると許容される PWL が小さくなる,すなわち直径に対して肉厚が薄くなると 許容 PWL が小さくなり音響励起振動により破損する可能性が高くなることを示してい る.また,図2.5 により示される設計曲線は D/t が70以下の領域において D/t の増加に 伴い比較的急に許容 PWL が低下して,D/t が70以上の領域になると比較的緩やかに許 容 PWL が減少するようになっている.このように設計曲線を規定することにより図2.5 に示すように配管が音響励起振動により破損する事例と,配管が破損しない事例を良好 に区別することができることが分かる.図2.5 に示す設計曲線は図2.4 に示す設計曲線 と異なり,配管直径だけでなく配管肉厚についても考慮された評価曲線のため,図2.4 に示す設計曲線より適切に音響励起振動を評価できていると考えられる.

*Point F failure attributed to severe weld undercutting at a small connection. No abnormal experience after quality welds achieved.

Fig.2.5 Design curve for AIV based on the failure examples reported by Carucci and Muller⁽¹⁷⁾

2.3.2 Energy Institute (EI) guide line による設計手法⁽¹⁾

第 2.3.1 節に示した設計曲線に加えて, EI guideline により提案されている設計手法⁽¹⁾ が一般的な音響励起振動の設計手法の一つとして用いられている.ここで, El guideline とはプロセスプラントで発生する配管振動現象全般を対象とした配管設計指針であり, 音響励起振動だけでなく回転機周辺において発生する機械振動や,往復動圧縮機周辺で 発生する圧力脈動により配管が振動する現象など多岐にわたる配管振動現象について 対応しており、その中で音響励起振動についても配管振動現象の一つとして、EI guideline 内でその評価方法が記載されている. El guideline の評価の特徴として, 異なる 配管振動現象に対して同一の評価指標 Likelihood of Failure (LOF)を用いて必要な対 処法を規定していることにあり、LOFが 0.5 より大きくなると振動を低減するための補 強もしくは再設計が望ましく,LOFが1.0を超えると配管補強もしくは再設計が必要と している. EI guideline では PWL の評価においては前節 2.3.1 に示す式(2.1) による評 価手法と同じ計算式を用いているが, D/t に対する許容 PWL の評価方法が LOF および 配管フィッティングにより異なる設計曲線を用いることになる. 図 2.6 に図 2.5 で示し た Carucci および Muller が報告した音響励起振動による配管破損事例から提案された設 計曲線と, EI guideline が提案する設計曲線の比較を示す. 図 2.6 から EI guideline にお いても Carucci および Muller が報告した破損事例をもとに提案された設計曲線と同じく, D/t が大きくなり配管径に対する配管肉厚が薄くなると許容 PWL が小さくなり,音響励 起振動による破損の可能性が高くなるように評価していることがわかる.また,前述の とおり EI guideline では LOF および配管フィッティングにより異なる設計曲線を用いる が, LOF が 0.5 よりも大きいときの許容 PWL は, Carucci および Muller の破損事例をも とにした設計曲線よりも小さくなることが分かる. 一方 LOG が 1.0 よりも大きいとき の許容 PWL は Carucci および Muller の破損事例をもとにした設計曲線よりも大きくな る.

- --- El guideline for LOF > 0.5 without weldolet type fitting
- --- El guideline for LOF > 1.0 without weldolet type fitting
- -----El guideline for LOF > 0.5 with weldolet type fitting
- ---- Design curve for AIV based on the failure examples reported by Carucci and Muller

Fig.2.6 Comparison between design curve of EI guideline⁽¹⁾ and design curve based on the failure example reported by Carucci and Muller⁽²⁾

2.4 D/t を用いた現状の評価方法の問題点

第2.3.1 節の図2.5 で示した通り, D/t および PWL を用いることにより適切に Carucci および Muller により報告された過去の配管破損事例を評価できると考えられるが、こ の設計曲線は過去の事例から提案されているものの理論的な検討がされてはおらず、そ の適用範囲などについて検討されてはいない. Carucci および Muller により報告された 配管破損事例は表2.1 および表2.2 に示す通り、その配管径の範囲は10インチから36 インチまでであるため、配管径がこの範囲外にある場合は、適切に音響励起振動を防止 する設計ができない可能性がある.ただし、図2.5 に示す設計曲線がプラント設計に適 用されている実績は20年以上あり、少なくとも危険側の設計にはなっていないと考え られる.そのため、図2.5 に示す設計曲線を用いた設計を行えば安全側の評価にはなっ ていると考えられるが、経済設計の観点からは安全側になり過ぎており、適切な配管設 計となっていない可能性がある.

図 2.6 に示す EI guideline により提案される設計曲線についても理論的な根拠が EI guideline 内において示されておらず. 図 2.5 に示す Carucci および Muller により報告された音響励起振動による配管破損事例をもとにした設計曲線と同じく,その適用範囲について検討された事例は確認できない. そのため, 図 2.6 に示す EI guideline による設計曲線に関してもより適切な設計を実施するためには理論的な検討が望ましいと考えられる.

また,PWL の計算方法についても Carucci および Muller により報告された式(2.1) を用いるのが一般的だが、この計算手法についても安全側に計算されすぎている可能性 があり⁽¹⁸⁾,経済設計の観点から詳細な検討により、適切な PWL の計算方法について検 討する必要があると考えられる.

2.5 第2章のまとめ

本章では現状の音響励起振動の設計手法とその問題点について説明した.本章の内 容のまとめを以下に示す.

- (1) 音響励起振動による配管破損事例はCarucciおよびMullerが報告した事例がほとんどであり、現在でも音響励起振動の評価方法を検討する際はこれらの配管破損事例が参照されている.
- (2) 音響励起振動による配管破損の可能性を評価する際は,加振力としての指標である PWL と,構造側のパラメータとして D/t(D:配管直径,t:配管肉厚)が用いられることが一般的である.
- (3) 現在一般的に用いられている評価方法はCarucciおよびMullerにより報告された 配管破損事例をもとにした設計曲線と EI guideline により提案された設計曲線の 2 つがあるが、これらの評価方法は理論的な検討が実施された事例が確認できな いため、配管径などに対する適用範囲については検討する必要があると考える.

第3章 合流配管における流動励起振動の特徴と評価方法

3.1 背景

第1章で説明したとおり、高流速の乱れに起因した流動励起振動はランダム振動とし て円柱や平板を対象に検討された事例はあるが⁽⁴⁾⁽⁵⁾合流配管を対象に検討された事例は ない.また、高流速の乱れに起因した合流配管における流動励起振動の場合、経済設計 の観点から配管が薄肉化していることもあり、通常知られている梁モードの振動(Beam Mode)だけでなく配管周方向の振動(Shell Mode)が問題になることも多い.そのため、 合流配管における流動励起振動を設計時に適切に評価するためには、通常用いられてい る梁モードの振動ではなく⁽¹⁹⁾、配管周方向に対する流動励起振動の特徴を把握する必要 がある.そこで本研究では合流角度が45度で母管径が4インチ、分岐管径が1.5イン チの配管を対象に、配管内部に高流速の流体を流して配管周方向に発生する流動励起振 動の特徴について検討した.また、ランダム振動理論をもとに配管合流部で周方向に発 生する流動励起振動の評価方法についても検討を行い、本評価方法と実験結果を比較す ることで、本評価手法の適切性について検討を行った.

3.2 実験装置

配管合流部で発生する、配管内部の圧力変動の特性、および、ランダムな加振力によ り励起される周方向の振動特性を把握するため、図 3.1 および図 3.2 に示す配管系を用 いて配管内部の圧力変動、および、配管周方向の振動(動ひずみ)を計測した. 図 3.3 および図 3.4 には実験設備の概観を示す.図 3.3 に示すように本実験ではエアチャンバ 内に溜められた圧縮空気を合流配管に流して,流れの乱れに起因した合流配管の振動を 図 3.4 に示すひずみゲージで計測した.また、配管内の乱れに起因した圧力変動につい ても図 3.4 に示す圧力変動センサにより計測をした. 配管のサポートについては図 3.1 に示す3か所に、振動になるべく影響を与えないよう、配管とサポートの間にはゴムシ ートを挟んで設置した. 配管周方向の計測では振動応力の最大値と振動モードを把握す るため、図 3.5 に示すように配管の半周側に 21 箇所のひずみゲージ(東京測器研究所 製:モデル UFLA-1-350-11)を設置した.ここで,ひずみゲージの設置位置に関しては 事前に検討した CFD の結果から,大きな乱流エネルギが予想される,配管合流部(TPA3) から約 100mm 下流の箇所 (TPA4) を選定した. また, 図 3.1 に示す実験系では, Restriction Orifice (RO)による減圧部および配管合流部の2箇所に,加振源の原因となる流れの乱れ が発生する箇所があるため、どちらが加振源の主要因となっているか調べることを目的 として、配管合流部の上流側(TPA1)と配管合流部の下流側(TPA2~TPA5)にそれぞ れ圧力および圧力変動の計測点を設置した.なお,配管内の圧力は圧力センサ(KYOWA 製:モデル PG-U)を用いて,圧力変動は圧力変動センサ(PCB 製:モデル M106B)を 用いてそれぞれ計測した、実験の手順については表 3.1 に示す実験条件をもとに、①~ ④に示す手順で圧力変動と振動(動ひずみ)の計測を行った.

- エアチャンバ内の空気を加圧する
- ② ボール弁を開放して圧縮空気を放出する
- ③ 質量流量を決めるために設置した,図 3.6 および表 3.2 に示す Restriction
 Orifice により,圧縮空気を減圧させる
- ④ 配管系を流れる圧縮空気により発生した圧力変動と振動(動ひずみ)をそれ
 ぞれのセンサで計測する

Fig.3.1 Experimental Setup. The pressure fluctuation is measured by pressure fluctuation sensors which are described as "TPA" in the above Figure. The static pressure is measured by pressure sensors which are described as "TP" in the above Figure.

 Table 3.1
 Experimental condition

Main Pipe Inside Diameter [mm]	110.1
Main Pipe Wall Thickness [mm]	2.1
Branch Pipe Inside Diameter [mm]	45.2
Branch Pipe Wall Thickness [mm]	1.7
Fluid Material	Air
Measured Pressure (TP1) [MPaA]	0.1 – 2.9

 Symbol
 Dimension[mm]

 Pipe Inside Diameter
 151.0

 tro
 8.0

 h
 0.8

 d
 8.66

 P.C.D. R1
 39.1

 P.C.D. R2
 87.4

 Table 3.2
 Specification of restriction orifice

Fig.3.2 Experimental setup around tee connection.

Fig.3.3 Overview of experimental setup (1)

Fig.3.4 Overview of experimental setup (2)

Fig.3.5 Measuring point of strain for circumferential direction. The strain gauges were attached to the half side of the pipe.

Fig.3.6 Configuration of Restriction Orifice. This orifice is installed in order to determine the mass flow rate with TP1.

3.3 合流配管における流動励起振動の特徴

3.3.1 圧力変動および配管振動のランダム性

図 3.7 および図 3.8 にエアチャンバ内の圧力が 1.4MPaA のときに計測された圧力変動 と振動(動ひずみ)の時系列波形をそれぞれ示す.図 3.7 および図 3.8 に示す時系列波 形から,配管内の圧力変動および発生振動はランダムに振幅が増減しており,本実験系 で発生している振動はランダム振動であると推測できる.図 3.9 および図 3.10 に圧力 変動と振動の度数分布をそれぞれ示す.これらの度数分布は正規分布に近い形状を有し ていることがわかる.ランダム振動の度数分布は正規分布になることを考慮すると⁽²⁰⁾ 図 3.9 から図 3.10 により,本実験で観測された圧力変動および振動はランダムな特性を 有していることが分かる.また,後述する図 3.15 に示す圧力変動のスペクトルでは広 帯域のスペクトルが観測されており,このことからも圧力変動が乱流に起因したランダ ムなものであることがわかる.表 3.3 には計測された圧力変動が乱流に起因したランダ ムなものであることがわかる.表 3.3 には計測された圧力変動が乱流に起因したランダ ムなものであることがわかる.表 3.3 には計測された圧力変動が乱で振動の,標準偏差 sを3倍した値として3s値および瞬時最大値を比較したものを示す(ここで,sは標 準偏差,すなわち RMS値を示す).表 3.3 から瞬時最大値と3s値は概ね近い値を示し ており,ランダム振動の場合,RMS値の3倍を用いることで,その最大値を概ね予測 できることがわかる.

Fig.3.7 Time history of measured pressure fluctuation at 1 diameter downstream of main pipe from the impingement point when the pressure inside air chamber is 1.4 MPaA.

Fig.3.8 Time history of measured strain at 1 diameter downstream of main pipe from the impingement point when the pressure inside air chamber is 1.4 MPaA.

Fig.3.9 Probability distribution of measured pressure fluctuation at 1 diameter downstream of main pipe from the impingement point when the pressure inside air chamber is 1.4 MPaA.

Fig.3.10 Probability distribution of measured strain at 1 diameter downstream of main pipe from the impingement point when the pressure inside air chamber is 1.4 MPaA.

Table 3.3 Comparison between 3s (s: Standard Deviation) and instantaneous maximum value

	3 <i>s</i> Value	Instantaneous Maximum Value		
Pressure Fluctuation (TPA4)	88.7 kPa	87.0 kPa		
Strain	94.6 µ Strain	94.6 µ Strain		

3.3.2 配管振動の特性

表 3.4 に式(3.1)に示す円形リングの固有振動数の計算式⁽²¹⁾を用いて、本実験系に 使用した配管の、周方向の固有振動数を計算した結果を示す.なお、*I*についてはリン グ面内の単位長さ当たり断面 2 次モーメントとして *I* = t³/12 により計算している.ま た、図 3.11 に計測された 2 次と 3 次の周方向モードをそれぞれ示す.図 3.11 の 2 次と 3 次の周方向モードの周波数は、式(3.1)で計算される円形リングの固有振動数と近い 値を示しており、本実験で観測された振動は、円形リングのような 2 次元的な挙動を示 すことが確認された.また、図 3.12 に計測された周方向のひずみおよび軸方向のひず みの PSD を比較したものを示す.図 3.12 から周方向のひずみが、軸方向のひずみより もはるかに大きく、本実験で観測された振動は周方向支配であることが確認された.し たがって、本実験系により観測された支配的な振動は、2 次元的な挙動を示す、周方向 振動であることが確認された.

$$f_{n} = \frac{2n \cdot (n^{2} - 1)}{\pi \cdot D^{2}} \sqrt{\frac{EI}{(n^{2} + 1)\rho_{p}t}}$$
(3.1)

Pipe Diameter	Pipe Wall Thickness	Young's Modulus	Pipe Material Density	Mode Number	Calculated Natural Frequency of Shell Mode of Main Pipe	Measured Natural Frequency of Shell Mode of Main Pipe
D	t	E	ρρ	п	f	f
[mm]	[mm]	[GPa]	[kg/m ³]	[-]	[Hz]	[Hz]
114.3	2.1	209	7980	2	406	400
114.3	2.1	209	7980	3	1147	1170

 Table 3.4
 Natural frequency of shell mode for tested pipe

Fig.3.11 Measured mode shape for circumferential direction. Frequency analyze was executed in order to obtain the amplitude for the specific frequency and phase information for each strain measurement point. These red lines show the analyzed measured strain, that is, strain amplitude for the specific frequency which takes the phase information into account. These red lines are described in symmetry since the strain measurements were executed only half side of the pipe.

Fig.3.12 Comparison of dynamic strain PSD between circumferential direction and axial direction when the pressure of inside air chamber is 2.0 MPaA. The red dotted line shows the strain of PSD for the circumferential direction. The blue line shows the strain of PSD for the axial direction.

3.3.3 配管合流部のチョーキングの発生について

本実験系ではエアチャンバ内の圧力が高く,質量流量が大きいときには RO 絞り部の みならず,配管合流部においてもチョーキングが発生した可能性があると考えられる. そのため,以下に示す手順で検討を行った.

- (1) チャンバ内圧力(TP1)と配管合流部上流の圧力(TP2)の圧力比から, RO 絞 り部でのチョーキングの発生の有無を判断し,質量流量を求める.
- (2) (1) で求めた質量流量と、配管合流部にかかる背圧との関係から、配管合流 部(小径側の配管の末端部)でのチョーキングの有無を判定する.

上記検討の結果を表 3.5 に示す. なお,配管合流部(小径側の配管の末端部)の温度 T_b については全エンタルピが保存する式から計算し,密度 ρ_b ,流速vについては式(3.2) に示す質量流量 *MF* および配管合流部にかかる背圧 p_b から計算した,ここで表 3.5 に示 すように RO 絞り部下流の圧力(TP2)は表 3.5 に示す全ての条件において,エアチャ ンバ内の圧力(TP1)に対して概ね 1/3 以下であり,RO 絞り部においてチョーキングし ているものと考えられる.したがって,各エアチャンバ内圧力における質量流量 *MF* は RO 絞り部における臨界流の,式(3.2)から式(3.6)を用いて求めた.

$$MF_{RO} = A_{ro} \times Cc \times a_c \times \rho_c \tag{3.2}$$

$$a_c = \sqrt{\frac{\kappa R T_c}{M w}}$$
(3.3)

$$\rho_c = \frac{p_c \times Mw}{R \times T_c} \tag{3.4}$$

$$T_c = T_{atm} \times \frac{2}{\kappa + 1} \tag{3.5}$$

$$p_c = p \times \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa}{\kappa-1}} \tag{3.6}$$

一方,配管合流部においてチョーキングが発生していないときに流れる最大の質量流 量は,式(3.7)および式(3.8)により計算できる.ここで,式(3.8)中の*T*_cについて は,全エンタルピが保存されるとして臨界温度を用いた.また,圧力については配管合 流部下流の圧力 TP4 がエアチャンバ内圧力に依らずほぼ大気圧であったことから,大 気圧により密度を評価した.また,合流前の小径管の動圧が全て損失すると考え,合流 前後の圧力差は生じないとした.

$$MF_0 = A_1 \times a_c \times \rho_{atm} \tag{3.7}$$

$$\rho_{atm} = \frac{p_{atm} \times Mw}{R \times T_c} \tag{3.8}$$

このとき,式(3.2)に示す RO 絞り部のプロセス条件をもとに計算した質量流量 MF が, 式(3.7)に示す配管合流部においてチョーキングが発生していないときに流れる最大 の質量流量 MF₀を上回る場合,配管合流部においてチョーキングが発生し,式(3.2) に示す RO 絞り部のプロセス条件から決まる質量流量を確保するため,合流前の圧力が 上昇し,合流前後で圧力の不連続 Δp が生じる.このとき圧力の不連続量 Δp については, 前述のとおり配管合流部下流の圧力 TP4 がほぼ大気圧であることから,配管合流部の 圧力 p_b と大気圧との差から求めた.表 3.5 より TP1 が 0.45MPaA 以下では MF < MF₀ と なり配管合流部においてチョーキングが発生しないと考えられる.一方,TP1 が 1.0MPaA~1.4MPaA の範囲では MF > MF₀ となり, RO 絞り部だけでなく配管合流部で もチョーキングが発生していると考えられる.
)					
							i	Calculated	
				Calculated		Pressure	Mass Flow	Mass Flow Rate	
Pressure	Pressure	Calculated	Calculated	Eluid	Calculated	Discontinuity	Rate	at Tee	
Inside	Downstream	Temparature	Pressure		Velocity at	through Tee	Calculated at	Connection with	Flow
Air	of Restriction	at Tee	at Tee		Tee	in Case of	Process	Atmosphere	Condition at
Chamber	Orifice	Connection	Connection	Connotion	Connection	Choking	Condition in	Pressure and	Tee
						Condition	RO Hole	Sonic Flow	Connection
								Speed	
TP1	TP2	${\cal T}_b$	ρ_b	ρ_{b}	7	dΓ	MF _{RO}	MF_{0}	
[MPaA]	[MPaA]	[K]	[MPaA]	[kg/m ³]	[m/sec]	[MPa]	[kg / s]	[kg / s]	
1.40	0.348	236	0.268	3.96	308	0.167	1.96	0.739	Choking
1.20	0.299	236	0.230	3.39	308	0.129	1.68	0.739	
1.00	0.250	236	0.192	2.83	308	0.0905	1.40	0.739	
0.450	0.116	246	0.101	1.43	274	0	0.631	0.739	
0.400	0.109	252	0.101	1.40	250	0	0.561	0.739	No Choking
0.350	0.106	258	0.101	1.36	224	0	0.491	0.739	Condition
0.300	0.105	264	0.101	1.34	197	0	0.421	0.739	

Table 3.5 Investigation of Flow Condition at Tee Connection

3.3.4 圧力変動の特性

図 3.13 および図 3.14 に、本実験系において Restriction Orifice および配管合流部のど ちらに加振源の支配要因があるかを調べるため、合流部上流側(TPA1:図3.1参照)お よび合流部下流側(TPA4:図 3.1 参照)の圧力変動の PSD を比較したものを示す.こ こで,図 3.13 に示すエアチャンバ内の圧力が 1.4MPaA のときは,表 3.5 で示したよう に配管合流部でチョーキングが発生していると考えられ、図 3.14 に示すエアチャンバ 内の圧力が 0.4MPaA のときは、配管合流部でチョーキングが発生していないと考えら れる.図 3.13 および図 3.14 から,配管合流部下流の圧力変動の PSD は配管合流部上流 の PSD よりもはるかに大きく、本実験系では配管合流部でのチョーキングの有無に関 わらず、配管合流部での流れの乱れが、加振源となる圧力変動の支配要因であることが わかる. また, 図 3.13 に示すチャンバ内の圧力が高く質量流量が多いときの圧力変動 の PSD は、図 3.14 に示すチャンバ内の圧力が低く質量流量が少ないときの圧力変動の PSD よりはるかに大きいことが確認された.したがって、チャンバ内の圧力が大きく、 質量流量が多いと,配管内の乱れが大きくなることも併せて確認された.図 3.15 には 合流部下流側で計測された圧力変動の PSD を, エアチャンバ内の圧力をパラメータに してプロットしたものを示す. 図 3.15 でも, 前述したようにエアチャンバ内の圧力が 高く, 流れの乱れが強いときほど合流部下流で発生する圧力変動が大きくなることがわ かる. なお, ここでは配管合流部で発生するチョーキングの有無による違いを明確にす るため, エアチャンバ内の圧力が 0.45MPaA から 1.0MPaA の結果は表記していない. 図 3.15 に示す配管合流部で発生する圧力変動と周波数の関係を整理したものを図 3.16 に示す. ここで,図 3.16 では圧力変動の PSD については式(3.10)を用い,周波数に ついては式(3.9)を用いて整理した. なお,式(3.10)では圧力変動の PSD は運動エ ネルギ $0.5\rho_b v^2$ および分岐管サイズ D_l と流速vにより決まる代表周波数により整理した. また,このとき合流部の密度ρωおよび流速 ν については表 3.5 に示す値を用いた. 図 3.17 では圧力変動の PSD を式(3.11)を用いて整理したものを示す.ここで,式(3.11)に おいて,配管合流部でチョーキングが発生する場合は,運動エネルギ 0.5_{0b}v²と配管合 流部での圧力不連続量△pの和が、圧力変動に比例するとした.図 3.16 では配管合流部 における圧力変動の PSD が、配管合流部でチョーキングが発生すると、配管合流部で チョーキングが発生していないときに比べて大きくなることが確認された.一方,図 3.17 では配管合流部でのチョーキングの有無に関わらず, ストローハル数 0.17 周辺の ピークを除き全体的に一致する.このため,配管合流部下流で発生している圧力変動は, チョーキングしている場合においては運動エネルギに加えて,圧力不連続量が支配要因 となっていると考えられる. また, 図 3.17 では, 配管合流部におけるチョーキングの 有無により2つに分類できるスペクトラムが得られた. 配管合流部でチョーキングして いないときには、ストローハル数 0.17 周辺にピークが観測され、一定のストローハル

数でピークが発生していることが確認された.一方,チョーキングしているときにはこのピークが消失していることが確認された.表 3.6 に図 3.17 に示した無次元 PSD から式 (3.12)を用いて,無次元圧力変動の RMS 値を計算したものを示す.配管合流部でチョーキングが発生する場合は,図 3.17 に示す通り圧力変動の PSD にピークが発生しないため,チョーキングが発生しないときに比べて無次元圧力変動の RMS は小さくなる.しかしながら,表 3.6 からチョーキングの有無が無次元圧力変動の RMS 値に与える影響は1割未満であり,その影響が少ないことがわかる.したがって,配管内の圧力変動は,式(3.11)で示すようにチョーキング発生時における圧力不連続量 Δp を考慮することで,チョーキングの有無に依らず $0.5 \times \rho_b v^2 + \Delta p$ に,ほぼ同じように比例することがわかった.

$$St = f \frac{D_1}{v} \tag{3.9}$$

$$P^{*} = \frac{P}{\left(0.5 \times \rho_{b} v^{2}\right)^{2} / \left(v / D_{1}\right)}$$
(3.10)

$$P^{*} = \frac{P}{\left(0.5 \times \rho_{b} v^{2} + \Delta p\right)^{2} / \left(v / D_{1}\right)}$$
(3.11)

Fig.3.13 Comparison of PSD of pressure fluctuation between tee connection downstream and tee connection upstream under choking condition when the pressure inside air chamber is 1.4 MPaA.

Fig.3.14 Comparison of PSD of pressure fluctuation between tee connection downstream and tee connection upstream under no choking condition when the pressure inside air chamber is 0.4 MPaA.

Fig.3.15 PSD of pressure fluctuation (TPA4) at each pressure inside air chamber. The red, pink and yellow lines show the PSD of pressure fluctuation with choking condition at tee connection. The blue, green, light blue and purple lines shows the PSD of pressure fluctuation with no choking condition at tee connection.

Fig.3.16 Non-dimensional PSD of pressure fluctuation (TPA4) at each pressure inside air chamber normalized by Equation (3.10) which does not take into account the pressure discontinuity through tee in case of choking condition. The red, pink and yellow lines show the non-dimensional PSD of pressure fluctuation with choking condition at tee connection. The blue, green, light blue and purple lines shows the non-dimensional PSD of pressure fluctuation with no choking condition at tee connection.

Fig.3.17 Non-dimensional PSD of pressure fluctuation (TPA4) normalized by Equation (3.11) which takes into account the pressure discontinuity through tee in case of choking condition. The red, pink and yellow lines show the non-dimensional PSD of pressure fluctuation with choking condition at tee connection. The blue, green, light blue and purple lines shows the non-dimensional PSD of pressure fluctuation with no choking condition at tee connection.

$$p_{rms}^* = \sqrt{\int P^*(St) dSt}$$

Flow Condition at Tee Connection	Pressure Inside Air Chamber	RMS Value of Non- Dimensional Pressure Fluctuation	Averaged RMS Value of Non- Dimensional Pressure Fluctuation
	TP1	p [*] rms	p [*] ms
	[MPaA]	[-]	[-]
Choking	1.40	6.59	
Condition	1.20	6.79	6.71
Condition	1.00	6.76	
	0.450	7.68	
No Choking	0.400	7.44	7 20
Condition	0.350	7.21	1.29
	0.300	6.85	

 Table 3.6
 RMS value of non-dimensional pressure fluctuation

3.4 合流配管における流動励起振動の評価方法

前述までの検討から、本実験で確認された振動は、配管合流部で発生する流れの乱れ に起因した、ランダムな周方向振動であった.これらの特徴とランダム振動理論を考慮 した以下に示す手法を用いて、配管合流部で発生する流れの乱れに起因した振動応力の 評価方法を考案した.まず、周期性がないランダム振動において、ある時刻における振 幅は他の時刻における振幅と関連がないため統計的な処理が必要となる.ランダム振動 による疲労破壊の可能性を評価するためには、振動応力の分散 *s* を用いた統計処理をす る必要がある⁽¹⁹⁾.ここで、分散 *s* は RMS 値と同義のため、ランダム振動の評価を行う 上ではまず振動応力の RMS 値を把握することが重要となる.ここで、式(3.13)のよ うな 1 自由度の振動系にランダムな加振力が作用した場合、変位の PSD は式(3.14)の ように表すことができる.

$$m\ddot{x} + c\dot{x} + kx = F(t) \tag{3.13}$$

$$S_{x}(\omega) = |H(\omega)|^{2} \cdot S_{w}(\omega)$$
(3.14)

ここで, H(ω)は伝達関数で式 (3.15)を用いて表される.

$$H(\omega) = \frac{1}{\sqrt{\left(k - m\omega^2\right)^2 + \left(c\omega\right)^2}}$$
(3.15)

変位の RMS 値は式(3.14) を積分して式(3.16)のように表すことができる⁽²²⁾.

$$X_{rms}^{2} = \int_{-\infty}^{\infty} S_{x}(\omega) d\omega = \int_{-\infty}^{\infty} \left| H(\omega) \right|^{2} \cdot S_{w}(\omega) d\omega = \frac{W_{0}}{4kc}$$
(3.16)

したがって,式(3.17),式(3.18)の関係を用いて式(3.16)を整理すると変位のRMS は式(3.19)のような比例関係となる.

$$k = \left(2\pi f_n\right)^2 m \tag{3.17}$$

$$c = 2\zeta \sqrt{mk} = 2\zeta m\omega_n = 4\pi\zeta mf_n \tag{3.18}$$

$$X_{rms} \propto \frac{\sqrt{W_0 f_n}}{m\sqrt{\zeta} f_n^2} \propto \frac{\sqrt{W_0 f_g}}{m\sqrt{\zeta} f_n^2}$$
(3.19)

ここで, f_gはランダムな加振力が作用する周波数範囲を表し,式(3.19)の分子の f_nと 比例するものと仮定した.式(3.19)右辺の分子は加振力を表しており,一般的に振動 応力は振動速度に比例しているので,ランダム振動により発生する振動応力は式(3.20) のような比例関係を持つと考えられる.

$$\sigma_{rms} \propto V_{rms} = 2\pi f_n \times X_{rms} \propto \frac{\sqrt{W_0 f_g}}{m\sqrt{\zeta} f_n}$$
(3.20)

ここで式 (3.20)の右辺の分子は流体の加振力を表す.本研究では図 3.17 に示すよう に、配管内の圧力変動は $0.5 \times \rho_b v^2 + \Delta p$ に比例することが、本研究の実験により示され たので、式 (3.20)の分子については式 (3.21)の右辺と比例するものと仮定した.ま た、式 (3.20)における分母の *m* ついては、代表質量として軸方向単位長さの円形リン グの質量に配管径 *D* に比例する質量が、合流配管下流のランダム振動に作用すると仮 定して、式 (3.22)用いた. *f*_nについては 3.3.2 項に示すように、配管周方向の固有振動 数は、円形リングの物理モデルを用いて算出できる.ここで、本検討では配管周方向 2 次モードの周波数を代表周波数として用いた.

$$\sqrt{W_0 f_g} \propto F_{rms} = p_{rms} \times A_1 \propto 0.5 \times \rho_b A_1 v^2 + \Delta p A_1$$
(3.21)

$$m = \pi \rho_p D t_2 \times D = \pi \rho_p D_2^{-2} t_2$$
(3.22)

式(3.21),および,式(3.22)より,ランダム振動による振動応力の大きさを評価す るために式(3.23)に示す指標を提案する.ここで,式(3.23)のVnは速度の次元にな ることからVibration Velocity Numberと呼ぶことにする.なお,式(3.23)では減衰くを 含めることもできるが,一般的な配管材料である炭素鋼やステンレス鋼において,減衰 の大きさが大きく違わないと考え省略した.

$$\sigma_{rms} \propto Vn = \frac{0.5 \times \rho_b A_1 v^2 + \Delta p A_1}{\pi \rho_p D_2^2 t_2 f_{2nd}}$$
(3.23)

図 3.18 に式 (3.23) で計算される *In*および実験で計測された振動応力の関係を示す. ここで、ランダム振動の場合、表 3.3 で示すように RMS 値の 3 倍を用いることで最大値 を概ね予測できるため、図 3.18 の振動応力は計測された振動応力の RMS 値を 3 倍にし て示している.図 3.18 より、本研究で提案した *Vn* と振動応力は概ね*σ*=12*Vn* で表せる 比例関係にあることから、*Vn* を用いた振動応力の評価方法により、配管合流部で発生 するランダムな周方向振動の発生応力を予測できることがわかる.なお、本評価指標の 汎用性については、異なる配管径、配管肉厚および合流角度などのパラメータの影響を 受けるものと考えられ、第4章で後述する合流角度および分岐管径をパラメータとした 検討が必要であると考えられる.

Fig.3.18 Comparison between measured vibration stress and vibration velocity number. The red square shows the measured vibration stress.

3.5 第3章のまとめ

配管合流部で発生するランダム振動の特徴を把握するため、圧力・流量条件を変化 させ、配管内の圧力変動および周方向の振動を計測した.また、本実験結果、および、 ランダム振動理論から、簡易的に振動応力を評価できる指標として Vn を考案した.以 上の検討の結果、以下に示す知見を得た.

- (1) 配管合流部で発生するランダムな周方向振動はリングのような 2 次元的な挙動 を示し、その固有振動数は、円形リングの式を用いて評価できる.
- (2) 合流部下流側のランダムな圧力変動の RMS 値は $0.5 \times \rho_b v^2 + \Delta p$ (流体の動圧 + チョーキング発生時における配管合流点の圧力不連続量) に比例する.
- (3) 配管合流部でチョーキングが発生しないとき,配管合流部の流れの乱れに起因 した圧力変動はストローハル数 0.17 程度のピークを持つ.ただし,このピーク が圧力変動の RMS 値に与える影響は少ない.
- (4) 本研究で考案したランダム振動応力の評価指標(Vn)は、本実験により計測され たランダム振動の応力の大きさと比例する.

第4章 合流角度および分岐配管径が合流配管の流動励起振動に与

える影響

4.1 背景

第3章において配管合流部下流で発生するランダムな周方向振動の評価手法につい て、圧力・流量条件を変化させた実験によりその特徴を把握し、ランダム振動理論を考 慮した振動応力の評価指標を Vibration Velocity Number (Vn) と称して提案した. この Vn は実験により得られた振動応力と比例関係にあることが確認され、配管合流部下流 で発生する、ランダムな周方向振動の振動応力の評価指標となり得ることが示された. ただし、このときの実験では分岐管および母管の組み合わせが4インチ x1.5インチ(面 積比 0.181) で合流角度が45度の配管系を用いていたが、実際に使用される配管系では 合流角度 90度の合流配管も多く用いられる. また、分岐管と母管の面積比についても 第3章で検討した面積比 0.181の合流配管だけでなく、面積比が1.0、すなわち分岐管 と母管の配管径が同一の同径ティーや、面積比が0.01程度の母管径が大きく分岐管径 が非常に小さい合流配管も多く使用される. そこで、本章では配管合流部で発生する流 動励起振動に対して、Vn による評価方法を用いた際の合流角度および配管径に対する 適用範囲について検討することを目的として、分岐管合流角度が90度および45度の場 合を対象に、また、母管に対する分岐管の面積比を0.0146から1.00まで変化させて実 験を行い、流動励起振動に伴う振動応力との関係について検討を行った.

4.2 実験装置

配管合流部で発生する、ランダムな加振力により励起される周方向の振動について、 合流角度および分岐配管と母管の面積比の影響を検討するため,表4.1,図4.1,図4.2, 図 4.3 および図 4.4 に示す配管系を用いて配管内部の圧力変動と,配管周方向の振動(動 ひずみ)を計測した.また、本試験で使用した各配管系の概観を図4.5から図4.16に示 す. ここで, 面積比については母管径4インチおよび6インチを対象に0.0146から1.00 まで変化させ, 合流角度については 45 度に加え合流角度 90 度の配管系について実験し た. 併せて本管の肉厚を 2.1mm から 3mm および 4.5mm に増加させ, 母管の寸法がラ ンダムな加振力により励起される周方向の振動に与える影響についても調べた.なお, 分岐配管径が1インチよりも小さい場合は, 圧力センサのタップが設置するスペースが 確保できないため,図 4.2 および図 4.4 に示すような 1.5 インチ配管に圧力センサを設 置した後に, 所定のサイズまでレデューサを介して口径を小さくしてから本管と合流す る構造にした. 配管のサポートについては図 4.1 および図 4.2 に示す 3 か所に, 振動に なるべく影響を与えないよう、配管とサポートの間にはゴムシートを挟んで設置した. 配管周方向の振動応力の計測では、合流角度 45 度の実験では第3章の試験と同じく半 周方向に 21 箇所のひずみゲージ(東京測器研究所製:モデル UFLA-1-350-11)を設置 して計測した. 合流角度 90 度の実験では合流角度 45 度の試験結果から, 振動応力の最 大値を把握するためには半周側に7箇所のひずみゲージを設置すれば十分と判断し,図 4.18 に示すように配管の半周側に 7 箇所のひずみゲージ(東京測器研究所製:モデル UFLA-1-350-11)を周方向に設置した.ここで,合流角度45度の配管系におけるひずみ ゲージの設置位置は、第3章と同じく事前に検討した CFD の結果から圧力変動が大き くなると予想される,配管合流部(TPA3)から約 100mm 下流の箇所(TPA4)を選定 した. 合流角度 90 度の配管系では第3章で検討した合流角度 45 度の配管系と異なり, 合流部直下(TPA3)の圧力変動が大きくなると予想されたが、合流配管接続部が周方 向振動を拘束してしまうため良好な振動計測は難しいと判断し, 合流部から約 100mm 下流の箇所(TPA4)をひずみゲージの設置位置として選定した. なお, 配管内の圧力 は圧力センサ(KYOWA 製:モデル PG-U)を, 圧力変動は圧力変動センサ(PCB 製: モデル M106B)を用いてそれぞれ計測した.実験の手順については表 4.1 に示す実験 条件をもとに, ①~④に示す手順で圧力変動と振動(動ひずみ)の計測を行った.

①エアチャンバ内の空気を加圧する

②ボール弁を開放して圧縮空気を放出する

- ③質量流量を決めるために設置した、図 4.18 および表 4.2 に示す Restriction Orifice により、圧縮空気を減圧させる
- ④配管系を流れる圧縮空気により発生した圧力変動と振動(動ひずみ)をそれぞれ のセンサで計測する

Combi - ning Angle	Pipe Combination	Measured Pressure at Inside Air Chamber	Branch Pipe Diameter	Branch Pipe Wall Thick - ness	Main Pipe Diameter	Main Pipe Wall Thick -	Length between TPA1 and TP2	Length from End of Branch to TPA1	Length from End of Branch to Reducer	Length of Reducer	Area Ratio
φ	I	TP1	D_{1}	t_{η}	D_2	t_2	Γ 1	L 2	L3	L 4	A_{1}/A_{2}
[deg]		[MPaA]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	000000000000000000000000000000000000000
	4inch x 1.5inch	0.301 - 1.40	48.60	1.700	114.3	2.100	200	100	I	I	0.181
	4inch x 3inch	0.701 - 2.00	89.10	2.100	114.3	2.100	200	100	ı	I	0.608
45	4inch x 4inch	1.00 - 2.90	114.3	2.100	114.3	2.100	200	100	I	I	1.00
	4inch x 0.75inch	0.501 - 1.30	27.20	1.700	114.3	2.100	200	250	100	63.5	0.0566
	4inch x 0.25inch	0.851 - 1.05	13.80	1.200	114.3	2.100	200	250	100	63.5	0.0146
	4inch x 1.5inch	0.301 - 1.40	48.60	1.700	114.3	2.100	200	100		ı	0.181
	4inch x 1.5inch	0.301 - 1.40	48.60	1.700	114.3	3.000	200	100	I	I	0.181
	4inch x 1.5inch	0.301 - 1.40	48.60	1.700	114.3	4.500	200	100	I	I	0.181
06	4inch x 3inch	0.701 - 2.00	89.10	2.100	114.3	2.100	120	100	I	I	0.608
	4inch x 0.75inch	0.501 - 1.30	27.20	1.700	114.3	2.100	125	250	100	63.5	0.0566
	6inch x 1.5inch	0.301 - 1.40	48.60	1.700	165.2	2.800	200	100	I	I	0.0865
	6inch x 0.75inch	0.501 - 1.30	27.20	1.700	165.2	2.800	85.0	250	100	63.5	0.0271

Table 4.1 Experiment Case

sensors which are described as "TPA" in the above figure. The static pressure is measured by pressure sensors which are described as Experimental setup in case the branch pipe size is larger than 1 inch. The pressure fluctuations are measured by pressure fluctuation "TP" in the above figure. Fig.4.1

Fig.4.3 Experimental setup around tee connection in case the branch pipe size is larger than 1 inch.

Fig.4.4 Experimental setup around tee connection in case the branch pipe size is less than 1 inch.

Fig.4.5 Experimental piping system (4 inch x 1.5 inch with 45 degree combining angle tee)

Fig.4.6 Experimental piping system (4 inch x 3 inch with 45 degree combining angle tee)

Fig.4.7 Experimental piping system (4 inch x 4 inch with 45 degree combining angle tee)

Fig.4.8 Experimental piping system (4 inch x 0.75 inch with 45 degree combining angle tee)

Fig.4.9 Experimental piping system (4 inch x 0.25 inch with 45 degree combining angle tee)

Fig.4.10 Experimental piping system (4 inch x 1.5 inch with 90 degree combining angle tee)

Fig.4.11 Experimental piping system (4 inch x 1.5 inch with 90 degree combining angle tee: pipe wall thickness is increased from 2.1 mm to 3.0 mm)

Fig.4.12 Experimental piping system (4 inch x 1.5 inch with 45 degree combining angle tee: pipe wall thickness is increased from 2.1 mm to 4.5 mm)

Fig.4.13 Experimental piping system (4 inch x 3 inch with 90 degree combining angle tee)

Fig.4.14 Experimental piping system (4 inch x 0.75 inch with 90 degree combining angle tee)

Fig.4.15 Experimental piping system (4 inch x 1.5 inch with 45 degree combining angle tee) ※事情により本配管系の写真は試験中に撮影できず、本写真は倉庫に保管中の写真を掲載している.こ の状態において、歪ゲージは設置されているが圧力センサは設置されていない.また、合流部上流に あるサポートは保管中の破損防止を目的に設置されているもので、試験中には他の配管系と同様にサ ポートを取り外した状態で試験を行った.

Fig.4.16 Experimental piping system (4 inch x 0.75 inch with 90 degree combining angle tee)

Fig.4.17 Measuring points of strain for circumferential direction in case of 45 deg combining angle piping system. The 21 strain gauges were attached to the half side of the pipe.

Fig.4.18 Measuring points of strain for circumferential direction in case of 90 deg combining angle piping system. The 7 strain gauges were attached to the half side of the pipe.

Symbol	Dimension [mm]
Pipe Inside Diameter	151
t _{ro}	8.00
h	0.800
d	8.66
P.C.D. D _{rol}	39.1
P.C.D. D _{ro2}	87.4

Table 2Specification of Restriction Orifice

Fig.4.19 Configuration of Restriction Orifice (RO). This orifice is installed in order to determine the mass flow rate with TP1.

4.3 結果および考察

4.3.1 合流角度の影響

合流角度 45 度における 4 インチ x 1.5 インチの配管系では,配管内部の圧力変動は 式(4.1)に示す運動エネルギおよびチョーキング発生時における圧力不連続量の和に より整理できること、また、周波数については式(4.2)に示すストローハル数により 整理できることを第3章の検討で確認している.ここでは,まず,合流角度が90度に おいても、合流角度 45 度と同じく式(4.1)および式(4.2)に示す無次元数を用いて整 理が可能か確認し、合流角度90度の配管系における圧力変動の傾向について検討した. 図 4.20 に合流角度 90 度における 4 インチ x 1.5 インチの配管系で, 噴流衝突点から 100mm 下流(TPA4: 図 4.1 参照)の圧力変動の PSD を示す. また, 図 4.21 に合流角度 45 度のときと同じく,式(4.1)および式(4.2)により図 4.20 に示す圧力変動の PSD を整理した結果を示す.ここで、図 4.21 においては第3章と同じ方法により求めた表 4.3 に示す数値を用いて無次元変数を求めている. 図 4.21 に示す無次元の圧力変動の PSD から,図4.20 に示す各タンク内圧力における圧力変動の PSD は式(4.1) および式 (4.2) により概ね整理できていることがわかる. しかしながら, St=0.05 から St=0.15 付近までの範囲で各タンク内圧力(TP1)の違いによりバラつきが確認され、また、St=1.0 から St=2.0 の範囲では図 4.20 における 7000Hz のピークに起因したバラつきが確認され た. これらのバラつきについては式 (4.3) に示す Vn を用いて振動応力を評価する際に, 振動応力へ与える影響を確かめる必要があると考える(4.3.3.2節参照).

合流角度の違いによる圧力変動の大きさを検討するため, 図 4.22 に $0.5 \times \rho_b v^2 + \Delta p$ に 対する合流角度 90 度のときに各センサで計測された圧力変動の RMS 値の比率を,図 4.23 には $0.5 \times \rho_b v^2 + \Delta p$ に対する合流角度 45 度のときの各センサで計測された圧力変 動の RMS 値の比率をそれぞれ示す. 図 4.22 および図 4.23 の比較から,最も大きな圧力 変動が発生している噴流衝突点(TPA3)においてはタンク内圧力が 1.0MPaA のときを 除き合流角度 90 度の圧力変動の方が大きくなっていることがわかる.一方,噴流衝突 点から約 100mm 下流(TPA4)では分岐管端部でチョーキングが発生していないタンク 内圧力 0.5MPaA 以下の領域において、合流角度 90 度の圧力変動が $0.5 \times \rho_b v^2 + \Delta p$ に対 して約8%程度の比率であるのに対し、合流角度45度の圧力変動は10%程度の比率で あり, 噴流衝突点から約100mm (TPA4) においては合流角度45度の圧力変動の方が合 流角度 90 度の圧力変動よりも大きくなることがわかる. このように, 合流角度や噴流 衝突点からの距離の違いにより配管内部の圧力変動の大小関係は複雑に変化するが,合 流角度 45 度の TPA3 を除き,配管内の圧力変動は合流角度および噴流衝突点からの距 離が変化しても $0.5 \times \rho_b v^2 + \Delta p$ に対して概ね一定であることがわかる.このため、式 (4.3) の分子における加振力として $0.5 \times \rho_{\nu} v^{2} + \Delta p$ を用いることは, 合流角度 45 度の ときと同じく合流角度 90 度の配管系に対しても適切であると考える.ただし、合流角

度 45 度の TPA4 で確認されるようなバラつきが振動応力に与える影響については 4.3.3.2 節で後述するように振動応力の計測結果と Vn の関係から確認する必要があると 考える.

$$P^{*} = \frac{P}{\left(0.5 \times \rho_{b} v^{2} + \Delta p\right)^{2} / \left(v / D_{1}\right)}$$
(4.1)

$$St = f \frac{D_1}{v} \tag{4.2}$$

$$\sigma_{rms} \propto Vn = \frac{\left(0.5 \times \rho_b v^2 + \Delta p\right) A_1}{\pi \rho_p D^2 {}_2 t_2 f_{2nd}}$$
(4.3)

L	lable 4.3	linvestigatio	n of flow conc	lition at tee cc	nnection (4in	ch x 1.5inch, co	ombining angle	e is 90 deg)	
Pres: Downs of Rest Orifi	sure stream triction îce	Calculated Temparature at Tee Connection	Calculated Pressure at Tee Connection	Calculated Fluid Density at Tee Connection	Calculated Velocity at Tee Connection	Pressure Discontinuity through Tee in Case of Choking Condition	Mass Flow Rate Calculated at Process Condition in RO Hole	Calculated Mass Flow Rate at Tee Connection with Atmosphere Pressure and Sonic Flow Speed	Flow Condition at Tee Connection
Ę.	2	\mathcal{T}_{b}	p_b	ρ_{b}	7	dΓ	MF _{RO}	MF_{0}	
[MP;	aA]	[K]	[MPaA]	[kg/m ³]	[m/sec]	[MPa]	[kg / s]	[kg / s]	
	0.358	236	0.268	3.97	308	0.172	1.96	0.739	Choice
	0.308	236	0.230	3.40	308	0.139	1.68	0.739	
	0.258	236	0.192	2.83	308	0.100	1.40	0.739	
	0.124	245	0.101	1.43	275	0.000	0.631	0.739	
	0.116	252	0.101	1.40	250	0.000	0.561	0.739	No Choking
	0.110	258	0.101	1.37	224	0.000	0.491	0.739	Condition
	0.106	264	0.101	1.33	197	0.000	0.421	0.739	

: • • ξ, Þ

Fig.4.20 PSD of pressure fluctuation (TPA4) at each pressure inside air chamber in case of 4inch x 1.5 inch piping system with 90 deg tee connection. The red, pink and yellow lines show the PSD of pressure fluctuation with choking condition at tee connection. The blue, green, light blue and purple lines shows the PSD of pressure fluctuation with no choking condition at tee connection.

Fig.4.21 Non-dimensional PSD of pressure fluctuation (TPA4) calculated by Equation (4.1) and Equation (4.2) in case of 4 inch x 1.5 inch piping system with 90 deg tee connection. The red, pink and yellow lines show the non-dimensional PSD of pressure fluctuation with choking condition at tee connection. The blue, green, light blue and purple lines shows the non-dimensional PSD of pressure fluctuation with no choking condition at tee connection.

Fig.4.22 Ratio between $0.5 \times \rho_g v^2 + \Delta p$ and the RMS value of pressure fluctuation in the 4 inch x 1.5 inch piping system with 90 deg tee connection.

Fig.4.23 Ratio between $0.5 \times \rho_g v^2 + \Delta p$ and the RMS value of pressure fluctuation in the 4 inch x 1.5 inch piping system with 45 deg tee connection.

4.3.2 分岐配管径の影響

4.3.2.1 分岐管上流および下流における圧力変動の比較

図4.1および図4.2に示す本検討に用いた実験系においては、オリフィスによる減圧部 と配管合流部の2箇所に、加振源の原因となる強い流れの乱れが発生する箇所がある. このとき、合流角度45度で4インチ x1.5インチの配管系においては、配管合流部におけ る流れの乱れが圧力変動の主要因であることが前章の検討により確認されている. 分岐 配管径が異なったとき,オリフィスの減圧部および配管合流部のどちらに加振源の支配 要因があるかを調べるため、合流角度が90度で分岐配管径が1.5インチおよび3インチの 配管系を対象に, 分岐管上流側 (TPA1 : 図4.1および図4.2参照) と合流部下流側 (TPA4 : 図4.1および図4.2参照)の圧力変動のPSDを比較した.図4.24に分岐配管径が1.5インチ, 図4.25に分岐配管径が3インチの圧力変動のPSDについて合流部上流および下流での比 較をそれぞれ示す. 図4.24に示す分岐配管径が1.5インチの場合は, 合流部下流の圧力変 動のPSDが合流部上流の圧力変動のPSDより大きく,前章で示した合流角度45度で4イ ンチ x 1.5インチの配管系と同様に、圧力変動の主要因は配管合流部で発生する流れの 乱れであると考えられる.一方,図4.25に示す分岐配管径が3インチと比較的大きい場 合は、合流部上流および下流で圧力変動のPSDは全体的にはほとんど変わらないとみら れる.このため、分岐管径が3インチと比較的大きい場合は配管合流部で圧力変動が増 幅されず,オリフィスで発生する流れの乱れが圧力変動の主要因となっている可能性が 示唆された.

Fig.4.24 Comparison of PSD of pressure fluctuation between tee connection downstream (TPA4) and tee connection upstream (TPA1) in case of 4inch x 1.5inch piping system with 90 deg tee connection (Pressure inside air chamber (TP1) is 1.00MPaA). The red dotted line shows the PSD of pressure fluctuation at tee connection downstream. The blue bold line shows the PSD of pressure fluctuation at tee connection upstream.

Fig.4.25 Comparison of PSD of pressure fluctuation between tee connection downstream (TPA4) and tee connection upstream (TPA1) in case of 4inch x 3inch piping system with 45 deg tee connection (Pressure inside air chamber (TP1) is 1.00MPaA). The red dotted line shows the PSD of pressure fluctuation at tee connection downstream. The blue bold line shows the PSD of pressure fluctuation at tee connection upstream.

4.3.2.2 分岐配管径が比較的大きいときにおける圧力変動の発生メ

カニズム

分岐配管径が3インチと比較的大きいときにおける合流角度が90度の配管系を対象 に、合流部下流の圧力変動(TPA4)の PSD を配管合流部の流動条件(表 4.4 参照)お よび分岐管内径(84.9mm)を用いて式(4.1)と式(4.2)に示す無次元数により整理し た結果を図 4.26 に示す. 表 4.4 に示すように配管合流部においてはエアチャンバ内の圧 力低下とともに分岐配管端部の流速が下がる傾向にあり、この流速低下に伴い図 4.26 に示すようにストローハル数の大きい領域において PSD が大きくなる傾向にある.図 4.26 に示すように分岐管端部の流動条件を用いた整理により圧力変動の PSD が異なる ということは、配管内の圧力変動が分岐管端部の流れの乱れに起因していないことを示 唆するため、分岐管が3インチのときは分岐管端部の流動条件および分岐管内径を用い た整理は不適切であると考えられる. 分岐管が3インチの配管系を対象により適切な整 理方法を検討するため、図 4.27 にオリフィス孔部における流動条件(表 4.5 参照)およ びオリフィス孔径を代表寸法として用いて圧力変動の PSD を整理した結果を示す.こ こで、本試験では多孔オリフィスを使用しているので、代表寸法は直径 8.66mm で 12 個の孔が有する断面積と等価になるような等価直径として 30mm を適用している.表 4.5 に示すようにオリフィス孔部の流動条件は検討した範囲においてエアチャンバ内の 圧力に関わらず臨界状態、つまり音速となっており、この条件を用いることにより図 4.27 は、St=0.12 付近でバラつきが確認できるものの、St=0.7 付近のピークや、St=0.01 から St=0.07 付近までの領域において良好な一致が見られ,異なる圧力条件において圧 力変動の PSD を良好に整理できることが確認された. したがって、本実験において分 岐配管径が3インチで比較的大きい場合はオリフィスで発生する流れの乱れが,圧力変 動の主要因となっているものと考えられるため, オリフィスにおける流動条件およびオ リフィス孔径を代表寸法として圧力変動を整理する方法が適切と考えられる.

64

							Calculated	
					Pressure	Mass Flow	Mass Flow Rate	
Calculat	ted	Calculated	Calculated	Calculated	Discontinuity	Rate	at Tee	
Temparat	:ure	Pressure	Poneity,	Velocity at	through Tee	Calculated at	Connection with	Flow
at Tee		at Tee		Tee	in Case of	Process	Atmosphere	Condition at
Connectio	ç	Connection	al lee	Connection	Choking	Condition in	Pressure and	Tee
			COLLIECTION		Condition	RO Hole	Sonic Flow	Connection
							Speed	
\mathcal{T}_{b}		p_b	ρ_{b}	7	$d \nabla$	MF _{RO}	MF_o	
K		[MPaA]	[kg/m ³]	[m/sec]	[MPa]	[kg / s]	[kg / s]	
25(~	0.131	1.80	247	0	2.52	2.61	
25	2	0.122	1.67	236	0	2.24	2.61	
25	8	0.116	1.56	222	0	1.96	2.61	
5(ß	0.111	1.47	202	0	1.68	2.61	
2	67	0.107	1.40	177	0	1.40	2.61	
7	72	0.105	1.34	148	0	1.12	2.61	
2	74	0.104	1.32	131	0	0.980	2.61	

Table 4.4 Investigation of flow condition at tee connection (4inch x 3inch, combining angle is 45 deg.)

Fig.4.26 Non-dimensional PSD of pressure fluctuation for 4 inch x 3 inch pipe (TPA3) at each pressure inside air chamber calculated with the fluid condition at tee connection.
Flow Condition at RO Hole				Choking Condition					
Mass Flow Rate Calculated at Process Condition in RO Hole	MF _{RO}	[kg / s]	2.52	2.24	1.96	1.68	1.40	1.12	0.980
Pressure Discontinuity through RO Hole in Case of Choking Condition	d D	[MPa]	0.850	0.755	0.661	0.567	0.472	0.378	0.331
Calculated Velocity at RO Hole	7	[m/sec]	308	308	308	308	308	308	308
Calculated Fluid Density at RO Hole	ρ_{b}	[kg/m ³]	14.0	12.5	10.9	9.35	7.80	6.24	5.46
Calculated Pressure at RO Hole	p_b	[MPaA]	0.952	0.846	0.740	0.635	0.529	0.423	0.370
Calculated Temparature at RO Hole	τ_b	[K]	236	236	236	236	236	236	236
Pressure Downstream of RO Hole	TP2	[MPaA]	0.137	0.129	0.110	0.111	0.108	0.104	0.105
Pressure Inside Air Chamber	TP1	[MPaA]	1.80	1.60	1.40	1.20	1.00	0.801	0.701

Table 4.5Investigation of flow condition at RO hole (4 inch x 3 inch, combining angle is 45 deg.)

Fig.4.27 Non-dimensional PSD of pressure fluctuation for 4inch x 3inch pipe (TPA4) at each pressure inside air chamber calculated with the fluid condition at the restriction orifice.

4.3.2.3 分岐配管径が比較的小さいときにおける圧力変動の発生メ

カニズム

オリフィスにおける流動条件およびオリフィス孔径を代表寸法として整理する手法 が、分岐配管径が比較的小さい4インチx1.5インチの配管系でも適切に圧力変動の PSDを整理することが可能か検討するため、図4.28には分岐配管径が1.5インチで合流 角度が90度の配管系を対象に、オリフィス孔部における流動条件(表4.6)およびオリ フィス孔径を代表寸法として用いて圧力変動のPSDを整理した結果を示す.図4.28は 図4.21に比べて明らかにバラつきが大きく、分岐配管径が1.5インチと比較的小さいと きにはオリフィス孔部における流動条件(表4.8)およびオリフィス孔径を代表寸法と して用い、圧力変動のPSDを整理するのは不適切であると考えられる.したがって、 分岐配管径が比較的小さい場合は分岐管端部の流動条件および分岐管内径を代表寸法 として用いて、圧力変動のPSDを整理することが適切であると考える.以上の検討か ら、合流配管下流で発生するランダムな周方向振動の加振源は、配管合流部の流れの乱 れに起因する場合、および、オリフィスのような流れを制限する装置から発生する乱れ に起因する場合の2つがあると考えられる.

Flow Condition at RO Hole			Choking Condition						
Mass Flow Rate Calculated at Process Condition in RO Hole	MF _{RO}	[kg / s]	1.96	1.68	1.40	0.841	0.701	0.631	0.561
Pressure Discontinuity through RO Hole in Case of Choking Condition	dΓ	[MPa]	0.661	0.567	0.472	0.213	0.189	0.166	0.142
Calculated Velocity at RO Hole	7	[m/sec]	308	308	308	308	308	308	308
Calculated Fluid Density at RO Hole	ρ_{b}	[kg/m ³]	10.9	9.35	7.80	3.51	3.12	2.74	2.35
Calculated Pressure at RO Hole	ρ_b	[MPaA]	0.740	0.635	0.529	0.238	0.212	0.186	0.159
Calculated Temparature at RO Hole	\mathcal{T}_{b}	[K]	236	236	236	236	236	236	236
Pressure Downstream of RO Hole	TP2	[MPaA]	0.358	0.308	0.258	0.124	0.116	0.110	0.106
Pressure Inside Air Chamber	TP1	[MPaA]	1.40	1.20	1.00	0.451	0.401	0.351	0.301

Table 4.6Investigation of flow condition at RO hole (4inch x 3inch, combining angle is 45 deg.)

Fig.4.28 Non-dimensional PSD of pressure fluctuation for 4inch x 1.5inch pipe (TPA3) at each pressure inside air chamber calculated with the fluid condition at the restriction orifice.

4.3.3 分岐配管径および合流角度がVnを用いた評価に与える

影響

4.3.3.1 オリフィス孔部の流動条件およびオリフィス孔径を代表寸

法としてVnを計算した評価

前章で述べた通り,配管内の圧力変動はオリフィスのような流れを制限する装置か ら発生する乱れに起因する場合と,配管合流部の流れの乱れに起因する場合があり,前 者の場合はオリフィス孔部の流動条件およびオリフィス孔径を代表寸法として,また, 後者の場合は分岐管端部の流動条件および分岐管内径を代表寸法として整理すること が適切であると考えられることがわかった.本節ではまず,式(4.3)に示す振動応力 評価指標Vnを用いて振動応力を評価する際に,流動条件および代表寸法として分岐管端 部もしくはオリフィス孔部のどちらを適用するのが適切と考えられるか検討する.図 4.29に横軸をオリフィス孔部における流動条件およびオリフィス孔径を代表寸法とし て計算した振動応力評価指標Vnにして,縦軸に合流角度45度のときに計測された各配管 系の振動応力を示す.ここで,ランダム振動の場合,前章で説明したようにRMS値の3 倍を用いることで最大値を概ね評価できるため,図4.29の振動応力は計測された振動応 力のRMS値を3倍にして示している.図4.29からオリフィス孔部における流動条件およ びオリフィス孔径を用いて計算した振動応力評価指標Vnおよび計測された振動応力と の間には一貫性がなく,振動応力を評価する際にはオリフィス孔部における流動条件お よびオリフィス孔径を用いて計算することは不適切であると考えられる.

Fig.4.29 Relation between Vn and vibration stress in different branch diameter in case of piping system with 45 deg tee connection. The Vn was calculated based on the fluid condition at restriction orifice and the hole diameter of restriction orifice. 4.3.3.2 分岐管端部の流動条件および分岐管径を代表寸法と

してVnを計算した評価

図4.30に横軸を分岐管端部における流動条件および分岐管内径を代表寸法として計 算した振動応力評価指標Vnにして,縦軸は合流角度45度のときに計測された各配管系の 振動応力を示す.併せて,図4.30は最小二乗法により求めたσ = 11.35Vnの近似直線も 示している.図4.30から,分岐管の母管に対する面積比に依らず発生する振動応力はVn に比例していることが確認されたため、図4.21に示すように $0.5 \times \rho_{\mu}v^{2} + \Delta p$ で圧力変動 を整理したときにある程度バラつきが確認できるものの, 振動応力を評価する際はこの 圧力変動のバラつきは実用上は無視できると考えられ,分岐管端部における流動条件と 分岐管内径を代表寸法としてVnを計算して振動応力を評価する手法が適切であると考 える. なお, 4インチ x 0.75インチおよび4インチ x 0.25インチの配管系においては, 分 岐部直前にレデューサがあるものの,図4.30においてレデューサの有無に関わらず発生 する振動応力はVnに概ね比例している考えられることから、レデューサの影響について も実用上は無視できるものと考える.ここで、図4.30ではオリフィス孔部で発生する乱 れの影響については考慮していないが、Vnにより振動応力が良好に整理できていると考 えられる.この原因については分岐管径が比較的小さい場合は図4.24に示すとおり分岐 管端部での圧力変動が増幅されており,オリフィス孔部で発生した圧力変動より十分大 きくなっているため、分岐管端部で発生している乱れが圧力変動の支配要因となってい るためと考えられる. 分岐管径が比較的大きい場合は4.3.2節の検討からオリフィス孔部 の流動条件およびオリフィス径を代表寸法として整理するのが適切であると考えられ るが、図4.31に示すように分岐管径が比較的大きい3インチおよび4インチの実験結果に 対してオリフィス孔部の流動条件およびオリフィス径を代表寸法として整理すると, Vn と振動応力の関係に一貫性がなくなるため、このような整理は不適切と考える.この原 因を本実験結果のみから考察することは難しいが,分岐管端部の乱れに起因した圧力変 動の発生メカニズムと、オリフィス孔部の乱れに起因した圧力変動の発生メカニズムが 違い、両者の $0.5 \times
ho_{\mu} v^2 + \Delta p$ と配管内の圧力変動の比率が異なるためと推察される.図 4.30に示すように配管合流部で発生する流動励起振動に起因した振動応力は、分岐管端 部の流動条件および分岐管径を代表寸法として計算したVnにより概ね適切に評価でき, オリフィス孔部で発生する乱れの影響を考慮しなくとも実用上は問題ないと考えられ る.ただし、これは流れを制限するオリフィスから配管合流部までの距離が図4.1およ び図4.3に示すように1000mm程度と十分離れているためである可能性がある.したがっ て、通常の設計ではあり得ないがオリフィスが配管合流部近傍に設置されている場合 は, 別途オリフィスを配管合流部近傍に設置した配管系による実験を実施して, オリフ ィスで発生する乱れの影響について検討する必要があると考える.

- 4inch x 0.75inch (A1/A2=0.0566)
 4inch x 0.25inch (A1/A2=0.0146)

Fig.4.30 Relation between Vn and vibration stress in different branch diameter in case of piping system with 45 deg tee connection. The Vn was calculated based on the fluid condition at the end of the branch pipe and the branch pipe diameter.

branch diameter is 3 inch and 4 inch, the Vn was calculated based on the fluid condition at restriction orifice hole and the hole diameter of restriction orifice. In case the branch diameter is 1.5 inch, 0.75 inch and 0.25 inch, the Vn was calculated based on the fluid condition Fig.4.31 Relation between Vn and vibration stress in different branch diameter in case of piping system with 45 deg tee connection. In case the at the end of the branch pipe and the branch pipe diameter.

4.3.3.3 合流角度がVnを用いた振動応力の評価に与える影響

図4.32に合流角度90度の配管系を対象に、横軸を分岐管端部における流動条件および 分岐管内径を代表寸法として計算した振動応力評価指標Vnにして、縦軸は合流角度90 度のときに計測された各配管系の振動応力を示す.また、図4.32は最小二乗法により求 めた σ = 16.18Vnの近似直線も併せて示している.図4.32から合流角度90度のときは、 合流角度45度の配管系に比べ約1.4倍(=16.18/11.35)振動応力が大きくなることが分か った.したがって、振動応力指標Vnを用いて振動応力を評価するとき、合流管の本管が 4インチの場合は、合流角度45度の振動応力を1.4倍に補正することにより、合流角度90 度の振動応力を概ね評価することができると考えられる.ただし、本結果については 4.3.3.2節で前述のとおり、オリフィスが合流部近傍に設置されているとき、母管径が異 なるとき、および、周辺のサポート状況が異なるときには振動応力の大きさが変化する 可能性があることについて考慮する必要があると考える.

- 4inch x 3inch (A1/A2=0.608)
 4inch x 0.75inch (A1/A2=0.0566)
- 4 IIICITX 0.7 2010 (A1/A2=0.0300)
 4 Inch x 1.5 Inch (A1/A2=0.181) t2: 2.1 mm => 3.0 mm
 - * 6inch x 0.75inch (A1/A2=0.271)
- 4inch x 1.5inch (A1/A2=0.181)
 6inch x 1.5inch (A1/A2=0.0865)
- × 4inch x 1.5inch (A1/A2=0.181) t2: 2.1mm => 4.5mm

Fig.4.32 Relation between Vn and vibration stress in different branch diameter in case of piping system with 90 deg tee connection. The Vn was calculated based on the fluid condition at the end of the branch pipe and the branch pipe diameter.

4.4 第4章のまとめ

分岐配管の合流角度および分岐配管と母管の面積比が,配管合流部下流で発生する ランダムな周方向振動に与える影響を検討するため,合流角度および面積比を変化させ た配管系に対して実験を実施して,配管内の圧力変動と振動応力を計測した.また,こ れらの実験結果から,配管合流部下流で発生するランダムな周方向振動の評価指標 Vn の適用性についても検討した.以上の検討の結果,以下に示す知見を得た.

- (1) 配管内の圧力変動は、合流角度 90 度においても、合流角度 45 度と同じく $0.5 \times \rho_b v^2 + \Delta p$ に概ね比例する.
- (2) 加振源となる圧力変動の主要因について、分岐配管径が小さいときは配管合流 部で発生する流れの乱れに起因する、分岐配管径が大きいときはオリフィスで 発生する流れの乱れに起因する、2つの圧力変動の発生メカニズムが存在すると 考えられる.
- (3) 分岐配管径が異なる場合でも、分岐管端部における流動条件および分岐管径を 代表寸法として計算した振動応力評価指標 Vn を用いて、合流配管下流で発生す る周方向の振動応力を概ね評価できる.
- (4) 合流角度が90度の場合は,合流角度45度の振動応力を1.4倍に補正することで, Vnを用いた振動応力を概ね評価できる.
- (5) ただし、上記に示す知見はオリフィスが合流部から離れた配管系を対象に得ら れたものであるので、オリフィスが合流部から近い配管系については本検討で 得られた知見と異なる傾向になる可能性がある.

第5章 ランダム振動理論を用いた音響励起振動の評価方法

5.1 背景

ランダムな圧力変動で配管が周方向に振動する現象については第3章および第4章で 示したように流動励起振動(Flow Induced Vibration: FIV)に加えて,音響励起振動 (Acoustically Induced Vibration: AIV) に起因する現象が知られている⁽²⁾. AIV の加振源 としては大きな圧力差を伴う調節弁や安全弁から発生する騒音が一般的なものとして 知られており,周波数帯は100Hzから10000Hz⁽²³⁾のオーダーとなり比較的高周波領域と なる. そのため, 短時間で疲労破壊に至ることがあり設計段階で AIV による破損の防 止設計が要求されるようになっている. 第2章で示したとおり現在一般的に用いられて いる AIV 設計手法の多くは音響パワーレベル (Sound Power Level: PWL) と配管肉厚 比 D/t(D:配管外径, t:配管肉厚)を用いて評価している.しかしながらこの PWL と D/t を用いた評価手法は広く用いられているものの,理論的にその妥当性を検討した事 例はない.ここで、本研究で対象としている音響励起振動は安全弁出口などにおける高 流速の乱れに起因した大騒音により発生するため、 ランダムな圧力変動により配管が周 方向に振動するという観点ではAIVおよびFIVは同一であると考えられる.そのため、 本検討では第3章および第4章でランダム振動理論をもとに提案した FIV の評価基準 Vn を AIV に適用し、ランダム振動理論を用いた AIV の評価方法について検討した.ま た,このランダム振動理論を用いた AIV の評価方法については簡易的な音響計算によ りその定性的な特徴が一致することを確かめるとともに、実験によりその適切性につい て検討した.

5.2 ランダム振動理論を用いた評価方法

5.2.1 過去の破損事例および本評価手法の比較

第3章および第4章で検討した FIV の評価基準 Vn の比例関係を整理すると式(5.1) のような比例関係になる.

$$\sigma \propto \frac{F}{m \cdot f_n} \tag{5.1}$$

前述の通り、ランダムな加振力により配管が振動するという観点では AIV と FIV は 同じ現象であり、その違いは加振源のみにある.ここで、AIV の加振力は調節弁や安全 弁などで発生する騒音であり、FIV の加振力は高流速の流れに起因した乱れである.し たがって、FIV の評価基準 Vn は加振力の項を流体の運動量から騒音に起因した圧力変 動に変えることで、AIV にも適用できると考えられる.配管内の圧力変動、すなわち音 圧は式 (5.2) に示すように音響パワーWの 1/2 乗に比例し、配管径に反比例すると考え られる.

$$p \propto \frac{W^{0.5}}{D} \tag{5.2}$$

AIV に起因した加振力は式(5.2) に示す音圧 p と配管表面積との積になると考えられるので式(5.3)のように記述できると考えられる.

$$F = p \pi D L \propto L W^{0.5} \tag{5.3}$$

配管質量mについては式(5.4)により記述できると考える.

$$m = \rho_p t \pi D L \tag{5.4}$$

配管の周方向2次モードの固有振動数については式(5.5)により記述できる⁽²¹⁾.

$$f_{n} = \frac{2n \cdot (n^{2} - 1)}{\pi \cdot D^{2}} \sqrt{\frac{EI}{(n^{2} + 1)\rho_{p}t}}$$
(5.5)

式(5.5)中のIについてはリング面内の単位長さ当たり断面2次モーメントとして式(5.6)に示すように配管肉厚の3乗に比例する.

$$I \propto t^3$$
 (5.6)

式(5.5)および式(5.6)から配管の周方向2次モードの固有振動数は,式(5.7)に 示すように肉厚に比例し,配管外径の2乗に反比例する.

$$f_n \propto \frac{t}{D^2} \tag{5.7}$$

式 (5.1), 式 (5.3), 式 (5.4) および式 (5.7) からAIVによる振動応力は式 (5.8) のように記述できる.

$$\sigma \propto \frac{F}{m \cdot f_n} \propto W^{0.5} \cdot \left(\frac{D}{t}\right)^2 \frac{1}{D}$$
(5.8)

式(5.8)は一般的にAIVの防止設計に用いられる音響パワーWおよびD/tに加え,配 管径がAIVの振動応力に影響する可能性があることを示している.式(5.8)の両辺に対 数をとり20を乗ずると式(5.9)のような関係が導かれる.

$$20\log_{10}\sigma = 10\log_{10}W + 20\log_{10}\left(\frac{D}{t^2}\right) + C$$
(5.9)

音響パワーWと音響パワーレベルPWLの関係は10log₁₀Wで記述できるため,式(5.9)から式(5.10)を導くことができる.

$$PWL = -20\log_{10}\left(\frac{D}{t^2}\right) + 20\log_{10}\sigma - C$$
(5.10)

ここで振動応力 σ を振動応力の許容値 σ_{limit} とすると、式(5.10)内のPWLは音響パワーレベルの許容値PWL_{limit}となり、式(5.10)から式(5.11)を導くことができる.

$$PWL_{\text{limit}} = -20\log_{10}\left(\frac{D}{t^2}\right) + 20\log_{10}\sigma_{\text{limit}} - C$$
(5.11)

式 (5.11) はPWL_{limit}が D/t^2 の関数であることを示唆している. この関係については B.Bruce ⁽¹⁷⁾ も同様にPWL_{limit}が D/t^2 で整理できることを示している.

式(5.11)の定数項20log10のimit - CをCarucciおよびMuller⁽²⁾が報告した破損事例から 20log10のimit - C=185と仮定すると、図5.1に示すような式(5.11)から得られる許容PWL 曲線と過去の破損事例との比較が得られる.図5.1からランダム振動理論を用いて得ら れた許容PWL曲線は過去の破損事例と矛盾していないことがわかる.したがって、式 (5.11)はAIV評価手法の一つとして使用できる可能性があることが分かった.

Fig.5.1 Comparison between Past Examples Data in Carucci and Mueller⁽²⁾ and Limit Curve Obtained from Equation (5.11)

5.2.2 現行の評価手法における許容値の修正方法

図 5.2 では Eisinger⁽²⁴⁾により提案された AIV の評価手法を示す. ここで図 5.2 に示す 評価手法では D/t により許容 PWL を定めている.ここで図 5.2 に示す評価方法の配管径 に対する適用範囲を考えるとき,最小の配管径として 10 インチの事例が用いられてい るが,この事例は許容値から大きく離れているため図 5.2 に示す評価手法が 10 インチ 以上から適用可能と解釈することはできない.したがって,図 5.2 では許容値から比較 的近く,かつ,破損していない事例のうち最小の配管径は 14 インチなので,図 5.2 に 示す評価手法は 14 インチ以上から適用可能と考えられる.一方,式(5.11)では D/t に加えて配管径が大きくなると許容 PWL が大きくなることを示唆している.そこで, 本検討では図 5.2 に示す評価手法を 14 インチ以下の配管径にも適用するため,式(5.11) をもとに配管径を用いて許容 PWL を修正する方法を提案する.仮に図 5.2 に示す評価 手法が 16 インチ以上で適用可能であると仮定した場合,8 インチの許容 PWL は式(5.12) および図 5.3 に示すように 16 インチの許容 PWL から 6dB 減じることで得ることができ る.

$$\Delta PWL_{\text{limit}} = PWL_{16"} - PWL_{8"} = -20\log_{10}\left(\frac{D_{8"}}{D_{16"}}\right) = 6dB$$
(5.12)

*Point F failure attributed to severe weld undercutting at a small connection. No abnormal experience after quality welds achieved.⁽²⁾

Fig.5.2 AIV Risk Evaluation Chart Proposed by Eisinger with Past Failure Data⁽²⁴⁾

*Point F failure attributed to severe weld undercutting at a small connection. No abnormal experience after quality welds achieved⁽²⁾.

Fig.5.3 Example of Correction of Allowable Limit with Eisinger's AIV Screening Method for 8" Pipe

5.3 従来の音響計算手法による配管径が与える影響の検討

5.3.1 評価方法

第5.2章で述べたランダム振動を用いた AIV の評価手法では D/t が同じ場合でも,配 管径が大きくなると許容 PWL が大きくなることを示唆していた.そこで,本章では従 来の音響計算手法を用いても同様の傾向が確かめられるか検討し,ランダム振動を用い た AIV の評価手法の適切性について検討した.振動応力は配管表面の振動速度に比例 し,配管表面の音圧レベルは配管表面の振動速度に比例する.したがって,配管表面の 音圧レベルは配管表面の振動応力に比例するため,配管表面から放射される音圧レベル

(Sound Pressure Level: SPL)を用いて AIV により発生する振動応力が評価できること が報告されている⁽²⁵⁾.そこで、本章では PWL および *D/t* が一定で配管径のみを変化さ せたときの配管表面の SPL を、従来の音響計算手法を用いて計算し、配管径が AIV に 与える影響の検討を実施した.以下に、本検討の流れを示す.

- 表 5.1 に示すように PWL および D/t が一定の条件で異なる 5 つの配管径を仮定する.
- (2) 配管内部の SPL を PWL および配管断面積を用いて計算する
- (3) 配管表面の SPL を, 配管内部の SPL から配管壁面による透過損失を減じて計算す る
- (4) 配管表面の許容 SPL を 136dB (C)⁽²⁵⁾ と仮定し,配管表面の SPL と比較する

配管壁面による透過損失は式(5.13)を用いて計算することができる⁽²⁶⁾.

$$TL = 10\log_{10}\left\{1 + \left(\frac{\pi f_c \rho_p t}{\rho_g c} \cos\theta\right)\right\}$$
(5.13)

ここで中心周波数 f_c は一般的なバルブ騒音の中心周波数 1000Hz を仮定した.またバルブ騒音はランダム性を有していると考えられるため,壁面への入射角度 θ についても 0度から 90度までランダムに入射すると考えられる.このとき式 (5.13)は式 (5.14)のように表せる⁽²⁶⁾.

$$TL_{R} = TL_{0} - 10\log_{10}(0.23TL_{0})$$
(5.14)

配管内部の音圧 pin は配管断面積と PWL から式(5.15)を用いて計算できる.

$$p_{in} = \sqrt{\frac{\rho_g a_c \times 10^{PWL/10} \times 10^{-12}}{A}}$$
(5.15)

配管内部の音圧レベルL_{pin}は式(5.16)を用いて計算できる.

$$L_{p_{-in}} = 20\log_{10}\left(\frac{p_{in}}{2 \times 10^{-5}}\right)$$
(5.16)

配管表面の SPL は式(5.16) により計算される配管内部の SPL と式(5.14) により計算される透過損失を用いて,式(5.17) により計算できる.

$$L_{p_{out}} = L_{p_{out}} - TL_R \tag{5.17}$$

5.3.2 評価結果

表 5.1 に式(5.13)から式(5.17)に示す音響計算により計算した配管表面の SPL を 示す.本検討では配管径の影響を検討するため,PWL および D/t はそれぞれ 166dB,60 で一定にしている.表 5.1 に示すように配管径が大きくなると,配管表面の SPL が減少 していることが分かる.また,本計算においては配管径が 12 インチの場合のみ SPL の 許容値 136dB(C)を超過していることが分かる.これは配管径が小さくなると配管断面 積が小さくなり同じ PWL に対して音圧が大きくなること,また,D/tが60で一定のた め配管径が小さくなると相対的に配管肉厚が薄くなり透過損失が少なくなることが原 因となっている.したがって,現行の評価手法では PWL とD/tが同じ場合は AIV によ る疲労破壊のリスクは変わらないが,本検討の結果からも第5.2章で述べたとおり,PWL とD/tが同じ場合,配管径が小さくなると AIV による疲労破壊のリスクが高まると考え られる.

Pipe Size	(inch)		12	18	24	30	36
D/t	(-)		60	60	60	60	60
Pipe Wall Thickness	(mm)		5.08	7.62	10.16	12.70	15.24
Assumed PWL (equal to limit level)	(dB)	(1)	166	166	166	166	166
Pipe Transmission Loss for Acoustics	(dB)	(2)	39	42	45	46	48
Sound Pressure of Pipe Inside	(Pa)	(3)	15435	10290	7717	6174	5145
SPL of Pipe Inside	(dB)	(4)	178	174	172	170	168
SPL of Out Side Surface	(dB)	(4) - (2)	139	132	127	123	120
SPL Limit at Out Side Surface	(dB)	(5)	136	136	136	136	136
Evaluation			Larger than SPL Limit	Less than SPL Limit	Less than SPL Limit	Less than SPL Limit	Less than SPL Limit

 Table 5.1
 Calculation Results of Acoustic Conventional Calculation

5.4 実験による検討

5.4.1 実験方法

第5.2 章および第5.3 章では PWL および D/t が同じ場合, 配管径が小さくなると AIV による疲労破壊のリスクが大きくなることを述べた.本節では実機においても同様の傾 向が確認できるか確かめるために実施した、実験の結果を記述する.表 5.2 に実験ケー スを,図 5.4 には実験機器を,また,図 5.5 には実験系の概観を示す.本実験ではエア チャンバから流れてくる圧縮空気がボール弁下流に設置されている単孔(φ 30)の Restriction Orifice を通り過ぎるときに発生する騒音を AIV の加振源として実験を行った. 配管のサポートについては図 5.4 に示す 3 か所に, 振動になるべく影響を与えないよう、 配管とサポートの間にはゴムシートを挟んで設置した. 試験配管は4インチと6インチ で D/t は両者とも 23.3 に揃えてある. 圧力損失および流量は Restriction Orifice によりほ ぼ定められるため Restriction Orifice 下流の PWL は4インチ配管および6インチ配管に おいてほぼ同じ値となる.本実験では振動を周方向に設置したひずみゲージ(東京測器 研究所製:モデル UFLA-1-350-11)により計測を行った.図 5.6 にはひずみゲージの周 方向の設置位置を示す.図 5.6 に示すように,配管半周側の周方向に9箇所のひずみゲ ージを設置して、振動の最大値を捉えられるようにした.なお、配管内の圧力は圧力セ ンサ(KYOWA 製:モデル PG-U)を用いて、圧力変動は圧力変動センサ(PCB 製:モ デル M106B)を用いてそれぞれ計測した.実験の手順については①~④に示す手順で 圧力変動と振動(動ひずみ)の計測を行った.

- ① エアチャンバ内の空気を加圧する
- ② ボール弁を開放して圧縮空気を放出する
- ③ Restriction Orifice により騒音を発生させる
- ④ 騒音により発生した圧力変動と振動(動ひずみ)をそれぞれのセンサで計測する

Pipe Size	O.D.	Wall	Schedule	D/t
		Inickness		
4 inch	114.3mm	4.9mm	Sch 20	23.3
6 inch	165.2mm	7.1mm	Sch 40	23.3

Table 5.2Experiment Cases

Fig.5.4 Experimental Setup. The pressure fluctuation is measured by pressure fluctuation sensors which are described as "TPA" in the above Figure. The static pressure is measured by pressure sensors which are described as "TP" in the above Figure.

Fig.5.5 Overview of experimental setup

Fig.5.6 Measuring Point of Strain for Circumferential Direction

5.4.2 実験結果

図5.7および図5.8に計測された圧力変動とひずみの時系列波形をそれぞれ示す.また,図5.9および図5.10には計測された圧力変動とひずみの発生頻度をそれぞれ示す.図 5.7および図5.8から計測された圧力変動とひずみにはランダムな特性を有していることがわかる.また,図5.9および図5.10から計測された発生頻度の分布は正規分布に近いことがわかる.ランダムな特徴を有しているときはその発生頻度が正規分布に従うことから⁽²⁰⁾,図5.9および図5.10からも本実験系で計測されたAIVに起因した圧力変動と振動は典型的なランダムな特徴を有していることがわかる.

表5.3にはRestriction Orifice上流の圧力が28bargのときの計測結果を示す.ここで、 Restriction Orifice下流のPWLについては式(5.18)を用いて算出している⁽²⁾.表5.3に示 すようにRestriction Orifice下流のPWLは4インチ配管および6インチ配管の両者において ほぼ同じである.また前述のとおりD/tについても4インチ配管と6インチ配管の両者で 同じである.一方,計測されたひずみの大きさは4インチ配管において8.86 μ strainに対 し6インチ配管では4.51 μ strainと小さくなっている.したがって、第5.2章および第5.3 章で述べたPWLおよびD/tが同じとき,配管径が小さくなるとAIVによる疲労破壊のリ スクが高くなることが,本実験により確かめられた.

$$PWL = 10\log\left\{MF^{2} \times \left(\frac{p_{1} - p_{2}}{p_{1}}\right)^{3.6} \times \left(\frac{T}{Mw}\right)^{1.2}\right\} + 126$$
(5.18)

Fig.5.7 Time History of Measured Pressure Fluctuation (at TPA1: Upstream Pressure of RO (TP1) is 28barg)

Fig.5.8 Time History of Measured Strain (at TPA1: Upstream Pressure of RO (TP1) is 28barg)

Fig.5.9 Probability of Occurrence of Measured Pressure Fluctuation (at TPA1: Upstream Pressure of RO (TP1) is 28barg)

Fig.5.10 Probability of Occurrence of Measured Strain (at TPA1: Upstream Pressure of RO (TP1) is 28barg)

Pipe Size	(")	4	6
D/t	(-)	23.3	23.3
Thickness	(mm)	4.9	7.1
Up Stream Press.	(barg)	28.00	28.00
Down Stream Press.	(barg)	0.80	0.15
Mass Flow	(kg/sec)	4.16	4.16
Calculated PWL	(dB)	149	150
Sound Pressure of Pipe Inside Obtained by Calculated PWL	(Pa rms)	6335	4561
Measured Sound Pressure of Pipe Inside (TPA3)	(Pa rms)	18109	5152
Measured Strain	(µ ST rms)	8.86	4.51

Table 5.3Experiments Results

5.5 流動励起振動(FIV)が音響励起振動(AIV)に与える影響

第3章および第4章で検討した流動励起振動(FIV)および本章で検討したAIVは大流 量・高差圧の薄肉配管で大きな振動が発生することが知られている.前述のとおり CarucciおよびMullerはAIVによる配管破損事例を報告しているが、そのほとんどは配管 合流部で発生している⁽²⁾.これらの配管破損事例において配管合流部の分岐配管端部 における流速は非常に速く、音速もしくは音速に近いと考えられる.これはCarucciおよ びMullerにより報告されたAIVによる配管破損事例は、AIVに加えてFIVによる振動が発 生し破損した可能性があることを示唆している. この観点から, FIVによる影響を検討 するため第3章で提案したVnをCarucciおよびMullerが報告した配管破損事例に適用し た. 図5.11にVnをCarucciおよびMullerの配管破損事例に適用した結果を示す. ここで、 CarucciおよびMullerは破損事例「A」および「B2」以外はその分岐配管径を記述してい なかったため,破損事例「A」および「B2」以外では分岐配管端部の流速がマッハ数で 0.5から1.0になるように分岐配管径を仮定した.図5.11から配管が破損した事例のVnは、 配管が破損していない事例のVnに比べて明らかに大きいことがわかる.この結果は疲労 破壊がAIVだけでなくFIVの影響も寄与して発生した可能性を示唆する.したがって、 今後は配管合流部における高流速に伴う振動に起因した疲労破壊のリスクを適切に評 価するためには、AIVに加えてFIVの影響を考慮する必要があると考えられるため、さ らなる検討を続けていく必要があると考える.

Fig.5.11 Application Results of Vibration Index Shown in Section 3 and Section 4 to Failure and No Failure Cases in Carucci and Muller Paper⁽²⁾

5.6 第5章のまとめ

AIV による疲労破壊のリスクを適切に評価するため、ランダム振動理論を用いて理論的に AIV の疲労破壊のリスク評価手法を検討した.また、AIV に起因した疲労破壊では FIV も影響していると考えられるため、Vn を AIV の疲労破壊事例に適用して、FIV の影響について検討した.以上の検討の結果、以下に示す知見を得た.

- (1) ランダム振動理論から得られた許容 PWL 曲線は過去に報告された AIV の破損事 例に矛盾していないため、AIV リスク評価手法の一つとして適用できると考え られる.
- (2) PWL と *D*/*t* が同じ時,配管径が小さくなると AIV により発生する振動応力が大きくなる.
- (3) 上記の配管径が小さくなると振動応力が大きくなる傾向については, 簡易的な 音響計算および実験でも同じ傾向が確認された.
- (4) 現行の評価基準の適切性については14インチ以下の配管では確認されていない と考えられる.本検討で提案した評価手法は14インチ以下の配管に対して現行 の評価基準を補正することができる.
- (5) Carucci および Muller が報告した AIV による配管破損事例は AIV に加えて FIV が影響していたと考えられる.したがって、今後は配管合流部における高流速 に伴う振動に起因した疲労破壊のリスクを適切に評価するためには、AIV に加 えて FIV の影響を考慮する必要があると考えられるため、さらなる検討を続け ていく必要があると考える.

第6章 結論

本章では、これまでに述べた研究成果を総括し、本研究の結論ならびに今後の課題に 関して述べる.

第1章では本研究の背景を説明して、研究の目的について概説した.また、本論文の 構成および流体関連振動の分類についても説明した.高流速の乱れに起因した流動励起 振動は円柱や平板などに対してはランダムな特性を考慮した評価方法が提案されてい るが、合流配管に対して検討された事例はない.また、安全弁などで発生する大騒音に 起因して配管が振動し破損にいたる音響励起振動については評価手法がいくつか提案 されており、実際にプラントを設計する際にも用いてられているが、これらの評価手法 については理論的に検討されていないことを説明した.したがって、本研究では配管合 流部において高流速の乱れに起因した流動励起振動および安全弁などで発生する大騒 音に起因した音響励起振動について、ランダム振動理論をもとに理論的に検討し、実験 によりその適切さを検討することを目的とした.

第2章では現状の音響励起振動の設計手法とその問題点について説明した.音響励起 振動による配管破損事例は Carucci および Muller が報告した事例がほとんどであり,現 在でも音響励起振動の評価方法を検討する際はこれらの配管破損事例が参照されてい る.また,音響励起振動による配管破損の可能性を評価する際は,加振力としての指標 である PWL と,構造側のパラメータとして D/t (D:配管直径, t:配管肉厚)が用いられ ることが一般的である.現在,一般的に用いられている評価方法は Carucci および Muller により報告された配管破損事例をもとにした設計曲線と EI guideline により提案された 設計曲線の2つがあるが,これらの評価方法は理論的な検討が実施された事例が確認で きないため,配管径などに対する適用範囲については検討する必要があると考える.

第3章では配管合流部で発生する流動励起振動の特徴を把握するため,圧力・流量条件を変化させ,配管内の圧力変動および周方向の振動を計測した.また,本実験結果,および,ランダム振動理論から,振動応力を評価できる指標として Vn を考案し,以下に示す知見を得た.

- (1) 配管合流部で発生するランダムな周方向振動はリングのような 2 次元的な挙動 を示し、その固有振動数は、円形リングの式を用いて評価できる.
- (2) 合流部下流側のランダムな圧力変動の RMS 値は $0.5 \times \rho_b v^2 + \Delta p$ (流体の動圧 + チョーキング発生時における配管合流点の圧力不連続量) に比例する.
- (3) 配管合流部でチョーキングが発生しないとき,配管合流部の流れの乱れに起因 した圧力変動はストローハル数 0.17 程度のピークを持つ.ただし,このピーク が圧力変動の RMS 値に与える影響は少ない.
- (4) 本研究で考案したランダム振動応力の評価指標 (Vn) は、本実験により計測され

たランダム振動の応力の大きさと比例する.

第4章では流動励起振動において分岐配管の合流角度および分岐配管と母管の面積比 が,配管合流部下流で発生するランダムな周方向振動に与える影響を検討するため,合 流角度および面積比を変化させた配管系に対して実験を実施して,配管内の圧力変動と 振動応力を計測した.また,これらの実験結果から,配管合流部下流で発生するランダ ムな周方向振動の評価指標 Vn の適用性についても検討し,以下に示す知見を得た

- 配管内の圧力変動は、合流角度 90 度においても、合流角度 45 度と同じく
 0.5×ρ_bv² + Δp に概ね比例する.
- (2) 加振源となる圧力変動の主要因について、分岐配管径が小さいときは配管合流 部で発生する流れの乱れに起因する、分岐配管径が大きいときはオリフィスで 発生する流れの乱れに起因する、2つの圧力変動の発生メカニズムが存在すると 考えられる.
- (3) 分岐配管径が異なる場合でも、分岐管端部における流動条件および分岐管径を 代表寸法として計算した振動応力評価指標 Vn を用いて、合流配管下流で発生す る周方向の振動応力を概ね評価できる.
- (4) 合流角度が90度の場合は、合流角度45度の振動応力を1.4倍に補正することで、
 *Vn*を用いた振動応力を概ね評価できる.

第5章では音響励起振動(AIV)による疲労破壊のリスクを適切に評価するため、ランダム振動理論を用いて理論的にAIVの疲労破壊のリスク評価手法を検討した.また、AIVに起因した疲労破壊ではFIVも影響していると考えられるため、VnをAIVの疲労破壊事例に適用して、FIVの影響について検討し、以下に示す知見を得た.

- (1) ランダム振動理論から得られた許容 PWL 曲線は過去に報告された AIV の破損事 例に矛盾していないため, AIV リスク評価手法の一つとして適用できると考え られる.
- (2) PWL と *D*/*t* が同じ時,配管径が小さくなると AIV により発生する振動応力が大きくなる.
- (3) 上記の配管径が小さくなると振動応力が大きくなる傾向については, 簡易的な 音響計算および実験でも同じ傾向が確認された.
- (4) 現行の評価基準の適切性については14インチ以下の配管では確認されていない と考えられる.本検討で提案した評価手法は14インチ以下の配管に対して現行 の評価基準を補正することができる.
- (5) Carucci および Muller が報告した AIV による配管破損事例は AIV に加えて FIV が影響していたと考えられる.したがって、今後は配管合流部における高流速 に伴う振動に起因した疲労破壊のリスクを適切に評価するためには、AIV に加 えて FIV の影響を考慮する必要があると考えられるため、さらなる検討を続け ていく必要があると考える.

以上の検討から高流速の乱れに起因した合流配管において周方向に発生する流動励起 振動および安全弁などで発生する大騒音に起因した音響励起振動についてはランダム 振動理論をもとに導いた振動応力評価指標 Vn により,その振動応力を適切に評価でき ることが分かった.

なお,流動励起振動に関する検討については母管径が4インチの配管系のみを対象に 実施したものであり,今後,本検討により導いた Vn を用いた振動応力の評価方法を4 インチ以外の母管径を有する配管系に適用していくためには,追加で実験を行うか流体 構造連成解析などの詳細解析によりパラメータスタディを実施することが今後の課題 として考えられる.また,音響励起振動については,報告されている配管破損事例は流 動励起振動の影響を受けている可能性があるため,流動励起振動が音響励起振動に与え る影響について詳細に検討を実施していくことが今後の課題と考えられる.
- (1) Guidelines for avoidance of vibration induced fatigue failure in process pipework 2nd edition published by the energy institute (2008).
- (2) V. A. Carucci and R. T. Mueller, Acoustically Induced Piping Vibration in High Capacity Pressure Reducing Systems, PVP. (1982)
- (3) Au-Yang,M.K. and Jordan, K.B., Dynamic pressure inside a PWR-A study based on laboratory and field test dara, Nuclear Engineering and Design, Vol.58 (1980), pp.113-125.
- (4) 日本機械学会基準,配管内円柱状構造物の流力振動評価指針,JSMES 012 (1998).
- (5) Blevins, R.D., Flow-induced vibration 2nd edition, Van Nostrand Reinhold (1990).
- (6) 在原 広敏, 岡田 徹, Dynamics and Design Conference 2009 論文集 (2009).
- (7) Nakamura, T., Shiraishi, T., Ishitani, Y., Watakabe, H., Sago, H., Hujii, T., Yamaguchi, A. and Konomura, M., Flow-induced vibration of a large-diameter elbow piping based on random force measurement caused by conveying fluid (visualization test results), PVP2005-71277 (2005).
- (8) Hirota, K., Ishitani, Y., Nakamura, T., Shiraishi, T. and Sago, H., Flow-induced vibration of a large-diameter elbow piping in high reynolds number range; random force measurement and vibration analysis, Flow Induced Vibration (2008).
- (9) Shurtz, T., Maynes, D. and Blotter, J., Analysis of induced vibrations in fully-developed turbulent pipe flow using a coupled LES and FEA approach, FEDSM-ICNMM2010-30477, ASME (2010).
- (10) Rob Swindel, Acoustically induced vibration development and use of the 'Energy Institute' screening method, inter-noise 2012 (2012)
- (11) Timothy C. Allison, Neal Evans, Nathan Poerner, An efficient finite element analysis method for acoustic induced vibration analysis, inter-noise 2012 (2012)
- (12) Neal Evans, David Arnett, Tim Allison, Nathan Poerner, Practical application of AIV analysis methods for screening, qualification, and redesign of complex piping systems, inter-noise 2012 (2012)
- (13) Bill Skailes, Shi-Song Ngiam, A finite element modal analysis approach to assess piping failures due to acoustically induced vibration, inter-noise 2012 (2012)
- (14) Dan Lin, Ajay Prakash, Philip Diwakar, Bertito David, Acoustic fatigue evaluation of branch connections, Proceedings of the ASME 2014 Pressure Vessels & Piping Conference, PVP2014-28140 (2014)

- (15) Arindam Ghosh, Yaying Niu, Rajesh Arjunan, Difficulties in predicting cycles of failure using finite element analysis of acoustically induced vibration problems in piping systems, Proceedings of the ASME 2014 Pressure Vessels & Piping Conference, PVP2014-28325 (2014)
- (16) Shigehiko Kaneko, Tomomichi Nakamura, Fumio Inada, Minoru Kato, Flow-Induced Vibrations Classifications and lessons from practical experiences 1st edition, Elsevier 2008
- (17) Robert D. Bruce, Arno S Bommer, Thomas E. Lepage, Solving AIV problems in the design stage, inter-noise (2012)
- (18) J.Adin Mann III, Allen C. Fagerlund, Daniel Eilers, AIV evaluation with sound pressure and fabrication quality standards Proceedings of the ASME 2013 Pressure Vessels & Piping Conference, PVP2013-97599 (2013)
- (19) Wachel, J.C. and Bates, C.L., Escape Piping Vibration while Designing., Hydrocarbon Processing, pp.152-156 (1976)
- (20) Ansys advantage, ランダム振動解析による疲労評価, Vol.2 Issue-3 (2008).
- (21) 日本機械学会,機械工学便覧 基礎編 α2-105 (2007).
- (22) Paul, W., Thomas, P., and Keith, O., Random vibrations theory and practice, DOVER Books (2006).
- (23) Ahmed H. Dweib, Power spectrul density analysis of acoustically induced vibration I piping systems, Proceedings of the ASME 2012 Pressure Vessels & Piping Conference, PVP2012-78422 (2012)
- (24) F.L. Eisinger, Designing Piping Systems Against Acoustically Induced Structural Fatigue PVP Vol.119 p.379 (1997)
- (25) Price, S. M., and Smith, D R., Proc., Sources and Remedies of High-Frequency Piping Vibration and Noise, Proceedings of 28th Turbomachinery Symposium (1999)
- (26) M. P. Norton, Fundamentals of Noise and Vibration Analysis for Engineers, Published by Cambridge University Press (1989)

謝辞

本研究は法政大学大学院理工学研究科機械工学専攻 御法川学教授のもと実施されま した。御法川教授には常に適切に且つ暖かくご指導いただきましたことに心より御礼申 し上げます。

千代田化工建設株式会社 井土久雄氏、林慈朗氏には研究を遂行する上で貴重なご助 言をいただきました。前川宗則氏には研究のまとめ方などにおいて有意義なご助言を頂 きました。また、山口和也氏、石神隆寛氏には実験のデータ取得および分析に際して多 大な協力をいただきました。ここに改めて皆様に感謝の意を表します。