
PDF issue: 2025-07-13

HBase Write Performance Optimizations

Lu, Haomin

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編 / 法政大学大学院紀要. 情報科学研究科
編

(巻 / Volume)
9

(開始ページ / Start Page)
67

(終了ページ / End Page)
72

(発行年 / Year)
2014-03

(URL)
https://doi.org/10.15002/00010524

HBase Write Performance Optimizations
Lu Haomin

CIS, Hosei University
E-mail:haontin.lu.9z@stu.hosei.ac.jp

Abstract—In the past few years, along with the expanaon of
the data volume and the cost of computer hardware down, the
demand of quickly hmdling huge amounts of data is driving the
riang and development of distributed computing. Database ^stem
based on the column aorage also gradually rise along widt the
vigorous development of the cloud computing technology. Many
organizations are trying to turn the traditional row aorage database
migration to the column storage database, so as to adapt to the
massive growth of data. In addition to providing a distributedfile
^aem and supporting the MapReduce computing framework,
Hadoop also provides a scalable and structured data distributed
storage system: Hadoop Database(HBase). In currently industry.
The HBase column aore data is one of the moa popular open
source products. HBase as an open source implementation of
BigTable, the userspay more attention to the performance with the
popularization ofits application.

Even though the industry has high expectations on HBase, but
it am has some disadvantages, for example: not according to the
characteristics of the column data aored in columns for efficient
data compression, compression mode does not support direct
operation data, and so on. Tlterefore, improving HBase
performance has important practical significance. This paper
analyses the principle ofHBase distributed aorage systemfirst, and
then audying HBase performance testing in-depth, and outlook on
thefuture development ofdistributed aorage syaenu

In general, HBase will provide sati^actory readperformance as
long as the cluaer memory is enough. But HBase write
performance will be rearicted by many factors. Tlterefore, this
paper mainly audies HBase write performartce. This paper
introduces HBase environmentfirstly, then attalysis ofthe principle
of HBase distributed storage ^aem, focus on HBase writing
process analyas. Tltis paper did the random write tea and data
write tea, analyze the tea results to find the influence factors for
HBase writing performance. By modifying the HBase syaem
configuration parameters, the HBase client and the code of the
writing process to achieve the goal of improve HBase write
performance. Finally, summary the application ofHBase combined
with the practical application.

Keywords—Hadoop; HBase; Writeperformance optimization;
Distributed aorage syaem; Database

1. INTRODUCTION

Cloud computing is the latest trend in the development of
IT technology, it is received extensive attention by the
academia. The development of cloud computing is based on
the distributed processing, parallel processing and grid
computing technology, cloud computing is a kind of new
method of Shared infrastructure. It can self maintain and

manage a latge of virtual computing resources (including
computing servers, storage servers, bandwidth, etc.), in order
to provide various IT services. Users can accord to the need to
pay when they use the cloud computing services, this is not

Supervisor: NOBUHIKO KOIKE, Ph.D. Professor

only reduces the barriers, but also greatly save the cost.
Because cloud computing has large potential market. Google,
IBM, Microsoft, Amazon, Sun, HP, Yahoo, Oracle and other
international well-known companies have been involved in
cloud computing. At the same time, cloud computing is
beginning to be applied in the telecommunications, finance
and other large-scale parallel processing domain [1].

The rapid development of Cloud database market greatly
affects the future development direction of database
technology, even appeared the dispute that relational database
will disappear. At the same time, many issues of cloud
database began to be concemed, such as system architecture,
data model, transaction consistency, data security and
performance optimization and so on. Because HBase is a
relatively new research field, there is a few of research to
comprehensive introduce the field. Therefore, this paper
studied on HBase performance according to the characteristics
of HBase distributed storage system, and then put forward the
optimization scheme of HBase write performance. HBase is a
distributed, scalable, big data storage product based on HDFS,
it can be used for online services with huge amounts of data.
At the moment, Facebook, Adobe, eBay, Yahoo!,Twitter,
TaoBao and other big companies are using it. Company pays
more attention to the performance when they choose the
system. The performance of HBase is very important as a
platform level product, but it can not be explained by a simple
testing, it needs based on specific data analysis to close to the
practical application[2].

Data is the carrier of information. With the continuous

development of information technology, the data becomes
more and more inportant in the modem society. The Data are
usually very large in the big Internet companies, so the
requirement of database capacity is very high. We adopt
traditional relational database like Oracle or SQLServer which
can meet the complicated condition query, but we will fall
down when deal with terabytes of massive data. Hadoop
platform only need to be deployed in ordinary and cheap PC to
process PB scale data. So it has very high practical significance
and application value because of high efficiency and cost
saving.

II. HBASE PROBLEMS IN WRITING

In generally, we can find many places that affect
performance through the analysis of data test results. The
HBase problems can be found according to the fllowing test.
The test objective is to find out the various HBase write
performance indicators, analysis the test results and find out

- 67 -

the HBasewrite performance problems to prepare for the write
performance optimization. There are two groups of test, one is
data writing test, another is random test.

A. Data write test

The HBase cluster include 1 master (namenode) and 5
ResigonServers (datanode), Writing 1 million of data to the
cluster (a data about I5K). Insert the same data in HBase and
HDFS.

We can see the large difference through the test results, the
test results as shown in figure 2.1, data insert time on the
HBase is about 10 times of HDFS. Why the performance we
insert data into HBase is lower than the HDFS. what is the
reason that HBase write performance is so bad. Let's study the
insert process. The figure 2.2 shows the write path of HBase.

HBase • Testxime HDFS

Figure 2.1 writing the same data into HBase and FIDFS

The process of data Inserted into HBase is: client requests
master before inserting data , master reply which region and
which resgionserver can be inserted data, then client and
resigionserver communicate to insert data, resigionserver
determines which datablock the data inserted into(region is
composed by datablock), then stored in HFile in the HDFS
(data not necessarily in the local resigionserver). One of the
factors that afTect the HBase write performance is to use put
class buffer. When we use the put class to insert data, the
default is writing a data one time by clinet and resigionserver
doing a RPC to insert the data. Since there are I million data,
many times for interprocess communication will afTect the
time. FIBase client provides a write buffer, we do a write
operation while the buffer is filled, thus reducing the number
of writing.

Region Server

Put/Delete

Irite to ffAL

Mte to oenstore

Flush to disk

Figure 2.2 HBase write path

B. Random write test

we can see from the random write test results as shown in

figure 2.3, when the client threads at around 250, the response
time is about 6ms at this point, tps is around 7.5k, it is almost
the best state, As time goes on, the performance begins to

Performance status varv irilh the number of threads

.5 3009

Figure 2.3 random write performance testresults

In the random write test, we can see some problems:
a) TPS falling is quite obvious with single mach ine region

number changed more.
b) When "hbase.Regionserver.Handler.Count" is 100 (the

default is 10), 100 thread will be blocked when pressure is big
enough, when the number of thread increase to 300 almost
enough,the TPS also reach bottleneck;

c) When datanode is few, lead to write tps low, maybe the
reason is the compact will consume too much network 10;

d) When we use gz compression that will cause heap
memory leak;

e) When the pressure and region increase, split and flush
will cause larger influence to stability of writing. When
memory is enough, we can adjust the split file size and
memstore flush size, according to the situation to decide
whether it can be adjusted or not.

C. Summary

Through the analysis of the test results, we can see the
main factors influence for writing ai« requesting number
uniform distribution. Blocking Update and Delaying appear or
not, the number of flush , HLog, DataNode, Split File Size and

111. Current hbase and problems

We found a lot of places which influence the HBase
performance through the above analysis, why they are so? For
the academic community, HBase wants to provide rich
functionality like DBMS, such as query, index and transaction
processing, there are still many issues required to be solved.
But we can find the reasons from the current HBase system.

- 68 -

This chapter analyses the architecture and read and write
process of HBase. Our understandings of the performance
problems will be more clearly after understanding the current
HBase.

A. HBase architecture

HBase is an open source implementation of BigTable, the
architecture is similar to BigTable. Figure 3.1 shows the
architecture, the HBase architecture including Client,
Zookeeper, Master, RegionServer and Store, specific functions
are as follows:

1)Client: Contains access interface ofhbase, client maintains
some cache to speed up access to hbase, such as the regione
location information.

2)Zookeeper: a)Ensure that there is only one master in the
cluster at any time, b) Store all addressing entranceofRegions.

c)Monitor Region Server state real-time, send notification of
region server online and offline information to Master real
time. d) Store schema of Hbase, including table, column
family of each table.

3)Master: a) Distribute region for region server, b)
Responsible for the region server load balancing, c) Find
failure region on the server and redistribute it again, d)
Recovery junk fileson GFS. e) Processing schema update
request

4)Region Server: a) Region server maintains regions that
Master assigned to it, dealing with the I/O requests ofegion. b)
Region server responsible for Region segmentation in the
running process which becomes too large.

5)Store: Store is the core of HBase storage, is composed of
MemStore and StoreFiles. The user written data will put into
MemStore, data will be stored in a StoreFile when the

MemStore is full, the StoreFile will be stored in the HFile of
HDFS files system[3].

Client Zookeeper Uaster

Resion sovor cluster

Region sever

Region sever

Region sever

Region

Store

menStore

StorePile

Region

Region

Storo

nenfitore

Store

meoStoro

I HFIio I I HFiie | | HFlie | | HFlie |

Figure 3.1 HBase architecture

B. HBase read and write process

As mentioned above, HBase uses the MemStore and
StoreFile to update tables. Data is written to the LogfWAL log)
and memory (MemStore) firstly , the data in MemStore is
sorted, when MemStore accumulate to a certain threshold, it

will create a new MemStore, and the old MemStore is added
to the flush queue, flush to disk to become a StoreFile from a
separate thread. At the same time, the system will record a
redopoint in zookeeper, said the moment before changes are
persistent. When the system accident occurred, may lead to the
data in memoiy (MemStore) loss, using the Log (WAL log) to
restore checkpoint data in this time. The previously mentioned
StoreFile is read-only, once created can not be modified.
Therefore the HBase update is actually increasing operation.
When a Store StoreFile reached a certain threshold, it will
cany out a combined (major compact), will be on the same
key revision merged together, forming a large StoreFile, when
reaching a certain threshold size of StoreFile, and split for the
StoreFile, divided into two StoreFiles. Because the table is
updated continuously add, handle read requests, the need for
StoreFile and MemStore all access to Store, they will be in
accordance with row key to merge, because StoreFile and
MemStore are sorted, and StoreFile with memory index, the
process ofthe merger is still relatively fast[4].

C. Summary

This chapter analysed HBase in-depth. We understand the
principle of the causing low write performance reasons by
leaming current HBase. This made a theoretical preparation
for the following optimizations.

IV. Hbase write optimizations and experiments

We found some bottlenecks of the system through the
analysis of random test and data test above. This chapter is
mainly about optimization. The following is system level
parameter configuration optimization and client design
optimization to solve these problems. Test optimization effects
are shown through the HBase cluster.

A. Test environment

1) Software environment
ubuntu 12.04 LTS; hadoop-1.1.2; HBaseO.94.8
2) Hardware environment
HBase cluster have 6 machines, one as Master, the other 5

as the region servers, physical memory is 24G, they are in the
same room and connect each other through router.

3) Test data description
Data Type: One month access log ofa Chinese video site.
Data Structure: A row of nine columns, including user access
page, keywords and otheruser informations.
Data Size: Data is 1 million(each data about 15K), the total is
about 15G.

4) Test method
Each test is divided into 3 groups, the first group startups

1 regionserver, the second group startups 3 regionservers, the

- 69 -

third group startups 5 regionervers. Each test is consists of
configuration modified before and after. Each test is written
into 1 millions of data to the HBase cluster (a data is about
I5K), the abscissa represents different case, the vertical
represents the write time.

B. Cancel automaticflush

1) Configuration
Cancel the automatic flush, the configuration content is

shown below:

htable.setAutoFlush(false);
2) Test results

Region Server I 3 5 Average

Tinie(s)

Default 3211 2601 1901 2571

Modified 1812 1117 903 1277.3

3) Principle
If we set autoflush=false. When client submits delete or

put request. Firstly, the request will be cached in the client
until the data over 2M (the default size of hbase client write
buffer), after that requests are submitted to regionserver.
regionserver returns information to client after receiving delete
or put request. In such a situation, the communication between
clientand regionserver is intermittent.As shown in figure 4.1.
The default is automatic flush, the request communication
between client and regionserver will not stop, every request
will be sent to regionserver. The first thing what the
regionserver to do is to write Hlog when the regionserver
receives the request. This spends a lot of time.

Client Region Server

Put/Delete

Hbase. client, write. buffer=2M(Defiant)

Return Info

Figure 4.1 auto flush path

4) Observation
In order to improve the writing speed of HBase, many

developers set autoflush=false. But we need to be careful in
the situation. The reason is: when we set the autofIush=false,
if the cache can't get to the size we set and client crashes in
this time. Data can not be sent to regionserver and it will be
lost. Tt is can't be accepted for the zero tolerance online
services.

C. Optimize the write bufljer size

1) Configuration
In the situation of canceling auto flush, adjust the buffer

size to improve write performance. The buffer size in the code
is set6M. The configuration content is shown below:

HTable htable = new HTablefconfig, tablename);

htable.setWriteBufiferSize(6 * 1024 * 1024);

htable.setAutoFlush(false);

2) Test results

Region Server 1 3 5 Average

lime(s)

DefauIt(2M) 1012 1117 903 1277.3

Size=6M 782 690 597 689.6

Size=20M 2419 3127 2670 2738.6

Size=IOOM 3270 4012 3793 3751.6

3) Principle
HBase Client send request to regionserver until the buffer

accumulating to the set size. It can reduce connection times
between client and regionserver. But the buffer size is not the
bigger the better. On the one hand, we set auto flush false
before setting the buffer, the data will be lost when client
cashes (mentioned above); on the other hand, although the
connection times reduced, but if buffer size is too large, that
will spend a lot of time when the data accumulated to the set
size. Therefore, we need to set different buffer size in different
applications. In This data test, we found 6M is the best.

4) Observation
We set the buffer size after setting auto flush false, then

setting the write buffer size for lOOM, 20M, 6M. We can see
the write time obviously improved when the buffer size is 6M.
HBase client sends request to regionserver until the data
accumulated to set buffer size, the benefit is reducing the
number of connection times. But why the write time is longer
when we set 20M and 200M, the reason is the data are
accumulated to the set size need a lot oftime. Therefore buffer

size is not the bigger the better, which size will be set need
consider different situations.

D. Optimize the number ofRPC handler

I) Configuration
Increasing the number of RPC (Remote Procedure Call)

handler by modify the HBase regionserver handler count in
hbase-site.xml. The default count is 10. We changed it to 100
and 500. The configuration content is shown below:

<property>

<name>hbase.regionserver.handler.count</name>

<value>l 00</vatue>

</property>

2) Test results

- 70 -

Region Server 1 3 5 Average

Time(s)

DefauItClO) 3211 2601 1901 2571

Count (100) 2313 1678 1501 3913.3

Count(500) 3609 4012 4119 1830.6

3J Principle
Theconfiguration defines the number of each regionserver

RPC Handler. Regionserver receives and processes external
request through RPC handler. So if we increase the number of
RPC handler we can improve the ability of HBase receiving
and processing the request.

4) Observation
The write performance improved when the handler number

is 100, but when the handler number is set to 500, the
performance decrease. Because the handler number is not the
bigger the better, that depends on the hardware of node.
Therefore, setting the right number of handler needs to
consider the hardware of different situations.

E. Cancel the WAL(write aheadlog)

1) Configuration
Cancel the WAL(write ahead log), The configuration

content is shown below:

Put put = new Put(rowKey);

put.setWriteToWAL(false);

2) Test results

Region Server 1 3 5 Average

Timefs)
Default 3211 2601 1901 2571

WAUfalse) 2801 2019 1601 2140.3

3) Principle
HBase will record operation information in WAL before

writing data, then use the memstore to temporarily store data,
sort the data, in the last write to the HFile. As shown in figure
4.2. WAL records the operation information of memory, we
can reduce the disk seek time if we close WAL, so the time
become short.

Region Server WAL memstore HFile

Write to WAL

Write to Denstore

Flush to disk

Figure 4.2 data flush path
4) Observation
We can improve the write performance by shutting down

the WAL(write ahead log). But in generally, we do not
recommend improving the writing performance by closing

WAL, because HBase will put operation information to WAL
before writing data to ensure HBase can based on the WAL
record to recovery data in abnormal conditions.

F. Optimize the number ofcompaction thread

1) Configuration
Increase the value of attributes below to raise the number

of compaction thread. The default value is 1, set it to 2. The
configuration content is shown below:

</property>
<property>

<name> hbase.regionserver.thread.compaction.small
</name>

<value>2</value>

</property>
<property>

<name>

hbase.regionserver.thread.compaction.large</name>
< value>2</value>

</property>

2) Test results

Region server I 3 5 Average

Tlmefs)

Default(l) 3211 2601 1901 2571

IVIodified(2) 1568 1391 891 1283.3

3) Principle
If we open the HMaster web to check the number of

request for each region server when we are inserting data .
We'll find out the request number some regionservers receive
is 0 sometimes. Maybe the regionserver is compacting the data
lead to this situation. Compaction process will block the
writing speed. Therefore, increase the number of threads of
compaction can improve the processing speed and speed up
the process ofwriting[5].

4) Observation
When we find the request number which some

regionservers received is 0 sometimes. Maybe the reason is
that client doesn't send request to regionservers. Therefore, we
should ensure the write request in the regionservers is roughly
average distributed in most of the time when we check the
number of request in each regionserver through HMaster web.
In such a situation, we consider the compaction.

G. Create empty region advance

1) Configuration
By default, the size of region is 256M B. We can adjust the

value through xml code "hbase.hregion.max.filesize" in the
hbase-site.xml. The test data is 1 million(each data about 15K),
that needs 58 regions to store. The number of region is about
1/3 to 1/2 of the total amount according to the experience. So
we created 30 empty regions in advance. The following is an
example ofcreating region in advance.

- 71 -

public static boolean createTable(HBaseAdmin admin,
HTableDescriptor table, byte[][] splits)
throws lOException {
try{
admin.createTable(table, splits);
return true;

} catch (TableExist***ception e) {
logger.infoC'table " + table.getNameAsStringO + "already
exists");
// the table already exists...
returnfalse;
}
}

Region server I 3 5 Average

lime(s)

Default 3211 2601 1901 2571

Create region

advance

1568 1391 891 1283.3

3) principle
HBase takes some measures to sort when HBase write data,

this is the merging and splitting mechanism of HBase. The
basic unit of HBase expansion and load balancing is region.
Region is a collection of rows. When region reach a certain
size, the region will split automatically. For a table (HTable),
there is only one region fist. When the data scale increase, the
system will monitor this table to ensure that data will not over
configured size. Ifsystem find that the table size over the limit,
the region will be divided into two regions which size are
roughly equal. Therefore, creating regions according to the
amount of data and row key rules in advance can greatly
reduce the number ofregion split times[6].

4) Observation
We can see the writing performance improved a lot

through the test data. In order to improve writing performance,
HBase official advises to create region in advance, this
concept is called pool. But the number of region is not the
more the better, because too much region can also reduce
performance. The number of region is about 1/3 to 1/2 of the
total amount according to the experience. In most cases, the
region split has great influence to write performance. We can
reduce region split from creating region in advance, there is
another way, that is to increase "hbase.hregion.max.rilesize".
Increasing the size of region file reasonably can also reduce
split times, improving writing performance.

H. Summary

We can improve the performance through system
configuration parameters adjustment. In addition, the design of
client also has great influence to the writing performance. We
reached the purpose of optimization by adjusting system
parameters and client design. In addition, there are many other
places can be optimized to improvethe write performance. For

example, uniform distribution write pressure in each
regionserver and adopt distributed manner to insert data into
the program and so on, are also belongs to optimization
content.

V. Conclusion

This thesis introduced HBase framework, characteristics,
model, data access method and key algorithm, detailed
analyzed of the HBase write path. Based on the understanding
of the HBase, then do the HBase performance optimization.
Because of the performance of HBase is mainly limited to the
writing process, so this paper did a large number of
optimization about writing performance according to these
characteristics. We got satisfactory results in the last.

This paper found some problems in the process of HBase
data write test and random testing, we found the reason
through the analysis of performance problems. We discovered
problems and make optimization on the system configuration
and design of client. The optimizations mainly include the
cancel automatic write, close WAL, adjust buffer size,
increase the count of RFC handler and compaction thread, and
create the region in advance. After the optimization, we did
the test to prove the optimization effective. Provide a basis for
the research and application of HBase.

In this paper, the optimization of HBase is not completely,
although read performance of HBase will have high efficiency
when there is enough memory, but there are still some spaces
to improve. In addition, there are still issues affect
performance in many places in the system configuration, the
client design and the logic structure. And the optimization is
different in different situations, it is still need to be pay
attention to. We hope we can continue to study these problems
in the future.

VI. ACKNOWLEDEGMENT

In the process of writing thesis, I got a lot of help from
other people, so that I can complete thesis successftilly. First
ofall, 1would like to thank my supervisor professor Nobuhiko
KOIKE. This paper is completed under his guidance. In
addition, 1 got many advices from my classmates and other
professors, I also sincere thank all ofthem.

VII. References

[1] Haijle Ding,Yuehui Jin.Yidong Cui,Tan Yang. DISTRIBUTED
STORAGE OF NETWORK MEASUREMENT DATA ON HBASE[A].
2012:5.

[2] ^ . The Temporal Mechanisms in HBase[J]. Journal of
Computer Science andTedinology, 19%,04:365-371.

[3] Shengmei Luo,Qing He,Lixia Liu,Xiang AoNing Li,Fuzhen Zhuang.
Parallel Web Mining ^stem Based on Cbud Platform[J]. ZTE
Communications,2012,04:45-53.

[4] HBase, http://hbaseapache.oig/

[5] Jun-Ki MinAIi-Yomg Lee. DICEAn Effective Query Result Cache for
Distributed Storage Systems[J]. Journal of Compiler Science &
Technology,2010,05:933-944.

[6] Shi Huijun,Rao Ruonan. Scalable Distributed RDFS Reasoning using
MapReduce and Bigtable[A]. IEEE.Pn)ceedings of 2011 4th IEEE
Intemational Conference on Computer Science and Infomiation
Technology(ICCSIT 2011) VOL03[C].IEEE:,2011:4.

- 72 -

