EBARFEZMERE VYRS b

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-02-07

Algorithm Rebuilding and Performance
Optimization of MapReduce in Hadoop

Zhao, Ben

(HpRZE / Publisher)

EHARFEXRFRIERE 2R

(M=t4 / Journal or Publication Title)

FEBRARZRZRACE. FRHMZMERE /| ERKRERFERLE. FHRAFEMAR

1

(% / Volume)
9

(BB ~_R—< / Start Page)
61

(87— / End Page)
66

(RITHE / Year)
2014-03

(URL)
https://doi.org/10.15002/00010523

Algorithm Rebuilding and Performance
Optimization of MapReduce in Hadoop

Zhao Ben
Computer and Information Science, Hosei University
Tokyo, Japan
Email: ben.zhao.3m@stu.hosei.ac.jp

Abstract—As a core component of Hadoop that is a cloud
open platform, MapReduce is a distributed and parallel
computing model based on mapping function for processing and
generating large data sets. MapReduce abstracts business logic
from implementation details, and provides powerful interfaces
for programmers to use. It can mask the underlying specific
implementation processes and efficiently reduce the distributed
and parallel computing difficulty, and has high reliability, high
scalability, high efficiency, high fault tolerance features. However,
MapReduce mechanism itself is not perfect and mature, and
needs to be improved the efficiency further. According to
analyzing mapreduce principles and performance indicators, in
heterogeneous environments, unreasonable resource scheduling,
data transmission and system parameters are summarized. By
rebuilding algorithms and optimizing performances, sliding
window scheduling algorithm (SWSA), changing transfer
protocol from HTTP to UDT and optimization of system
configuration parameters are proposed. At last, this paper
compares performance difference of MapReduce before
optimization with after optimization. The algorithms are verified
by experiments, rebuilding and optimization greatly improve
performance of hadoop.

Keywords—MapReduce; Hadoop; cloud computing; scheduling
algorithm; transmission protocol; system parameter

I. INTRODUCTION

Under the stimulation of increasing the amount of users and
data processed, problems of Internet applications follow. On
the one hand, the vast amount of data requires huge scale
storage resources as a basis. On the other hand, as net
application dependent on data is increasing, the demand of
capacity of processing massive data grows, the cost of
maintaining data storage and processing data is increasingly
higher. Under the application requirements of resources and
computing capacity and related technology development, cloud
computing as a new model is put forward [1].

Cloud computing [2][3] is an internet-based service
commercial calculation model, which cloud be dynamically
increased, used and delivered, and usually involves some
dynamic, scalable and virtualized resources (computing power,
storage space and information services) that are provided by
Internet.

Hadoop developed by Apache, is an open-source
distributed architecture. MapReduce is a parallel computing
and distributed computing model of cloud computing for
calculating and processing big data, meanwhile it is also a core
sub-project of Hadoop [4].

In this paper, by rebuilding algorithm and optimizing
performance, efficiency of processing big data in isomorphic
and heterogeneous environment is improved.

II. CURRENT TECHNOLOGIES AND THEIR OPTIMIZATION

A. Current technologies

Custer Computing
.//,

—

{virtualze From mudti<comguter o
one computer, Improve computing poneyabiity)

virtuakize From cre computer to muthcomputer,
Inereaseresource vtizition rate)

Fig. 1 Introduction of cloud computing

Cloud computing is a product of integration and
development of traditional computer and network technology,
such as parallel computing, distributed computing, grid
computing, utility computing, virtualization and so on. And in
virtualization technology, it includes cluster computing
(virtualize from multi-computer to one computer, improve
computing power ability) and partition computing (virtualize
from one computer to multi-computer, increase resource
utilization rate).

Cloud computing has three types (public cloud, private
cloud, hybrid cloud) and a three-tier service structure that
includes laaS (Infrastructure as a Service), PaaS (Platform as a
Service), SaaS (Software as a Service). Meanwhile, cloud
computing has the characteristics of accessing any services at
anytime, anywhere, with any devices.

In this paper, the used key technologies are MapReduce and
HDFS that are the core technologies of hadoop that is an
open-source distributed architecture based on cloud computing.

1) Work principle of MapReduce

J S| s i
J i = ,l J Reduce { 1
| J j
un Reduce Fuscrion
(1) Splits,16-64MB Run map function ertitlon M Copy(HTIV) s Final
(2) Copy splits to <ley valie>pair L““-'“""“-“. . s
nodes
Allscate putpats of mapper to relevant reducers i A Spil: bafler sae ¢ spill

Multh-Hash function pereent

[Bt Dhsks |
Spili; bulfer size ¢ spill i J Merge spill fles inta a
perrent ¥ i 2

ke
Merge spill files 10 3 J
Fig. 2 Principle of MapReduce

Principle of MapReduce is divided into five parts, that are
input, maptask, shuffle, reducetask and output. Meanwhile,
taskschedule is between input and maptask. The cluster
includes JobTracker (master node) and TaskTracker (slave
node). JobTracker is responsible for scheduling and monitoring
tasks, and TaskTracker is used to executing tasks, including
map task and reduce task.

* Input: Original big data linking to Mapreduce library
as input of user program is divided into M splits
(16~64MB), and then splits are copied to other
machines using fork within the cluster.

* Map task: TaskTracker assigned map tasks starts to
read the corresponding splits as input data. Key-value
pairs are extracted from input splits and passed to map
function as parameters. Intermediate key-value pairs
produced by map function are cached in memory.

* Shuffle: Intermediate key-value pairs as output of map
tasks are allocated to relevant reducers using
multi-hash function by partition function, cached in the
buffer and periodically written to the local disk. These
spill files including key-value pairs are sorted,
combined, merged into a file, and copied to the
corresponding reduce tasktrackers by HTTP protocol.
In one reduce tasktracker, different keys of key-value
pairs are sorted and combined, and spill files are
merged into a file.

* Reduce task: Reduce tasktracker is responsible to
running reduce funciton.

* Output: Output of reduce tasktracker is added to the
output file. When all of the Map and Reduce functions
are completed, master wakes up user program, and
MapReduce call codes that return to user program.

2) Running process of MapReduce

— B

RPC call

(SubmitJob)
Copy to
> JobStalus localhost
Creale and Supervise and
submit a job schedule a job
Schedule RPC call
(Hearlbeat)
ProcessBuilder.start()
Copy to
o ' localhost
RPC call - And
(getTask.done...) uncompress
Running a task Supervise and jar
Start a task

Fig. 3 Running process of MapReduce

3) HDFS
HDFS (Hadoop Distributed File System) is a distributed
file system and has the characteristics of high fault tolerance

[5].

HDFS is a master-slave structure, and consists of a
namenode and some datanodes. Internal mechanism is that a
file is divided into one or more blocks, which are stored in a set
of data nodes. Namenode is used to manipulate the file of file
namespace or directory operations such as open, close, rename,
and so on. It also determines the mapping between block and
datanodes. Datanode is responsible for handling read and write
requests from the file system of users. Datanodes also perform
block creation, deletion, and block copy instruction of
namenode [6].

B. Optimization of current technologies

1) Rebuilding and optimization of scheduling algorithm
(macroscopic)

In heterogeneous clusters, based on the original scheduling
algorithm, sliding window scheduling algorithm is proposed
(SWSA), can reasonably assign to the appropriate tasks, make

full use of computing resources to solve the problem of load
unbalance.

2) Rebuilding and optimization of computing process
(microscopic)
a) transmission protocol (HTTP->UDT)

Transmission mode is improved using UDT, instead of
HTTP, can improve data transmission rate from map end to
reduce end.

b) Optimization of system configuration parameters
Analysis and optimization of system parameters, including
data compression, reducing memory usage of reduce task,

map/reduce task quantity that are running on tasktrackers,
increasing the quantity of copier threads in shuffle phase.

[11. ALGORITHM REBUILDING AND PERFORMANCE
OPTIMIZATION OF MAPREDUCE

A. Sliding Window Scheduling Algorithm (SWSA)

1) Common scheduling algorithm [7][8]
a) FIFO: scheduling algorithm of traditional hadoop

b) Fair Scheduling Algorithm: Facebook proposes this
scheduling algorithm.

* Merits: fair
* Shortcoming (small job & big job): the longer running
time of every task; the lower cluster throughput; (In a

word, inefficiency). For small job: data localization
will be weakened [9].

2) Define data structure of SWSA

class JobScheduling

{
int JobID;

int JobCapacity; //Size of Job
int priority;
int TaskNum; //The number of task

float AllowedTaskNum; // AllowedTaskNum decides the
number of tasks executing in one job in one cycle

boolean RunOrNot; //Whether the job is executed.
int CurrentTaskLeft;

}

3) Implementation process of SWSA
a) Request tasks

Tasktrackers check nodes conditions. If they find free
nodes, they send request to jobtracker for allocating tasks.

b) Judge slow node or quick node
Jobtracker judges that this node is slow node or quick node.
If this free node is quick node and Backup Taskqueue is not
empty and the number of Backup Task is below upper limits,
this Backup Task is allocated to this free node and return c)
Task allocation strategy in one rotary cycle. If this free node is
a slow node, return f) The "straggler” is executed.

¢) Task allocation strategy in one rotary cycle

Jobtracker will get the first task of TaskQueue in sliding
window, and judge map task or reduce task. If this map task is
a small job (task), return d) Data localization strategy based on
small job. Then parameters of TaskQueue and JobList are
modified. If the value of CurrentTaskLeft is smaller than one,
the CurrentJobPointer will add one.

d) Data localization strategy based on small job
if there is a smaller job,

if there is a local task running in this node, then allocate it;
if Jowait <TI1,
if Tl <J.wait < T2,

else if there is a task in this rack, allocate it;

then continue to wait;

else continue to wait;

if J.wait > T2, then allocate it in any node that could
provides enough resources.

else allocate a task to BackupTaskQueue of this node.
Tl
T2 —— the time of waiting a free rack node

T1<T2 (the values of Tl and T2 need to be calculated in
massive experiments)

the time of waiting a free local node

e) Adjust the quantity of sliding window
If the pointer is pointed to the end of taskqueue of sliding
window, Jobtracker will count the average workload of all
tasktrackers.

AvgWorkLoad < LWorkLoad increase the number of
sliding window

AvgWorkLoad > HWorkLoad decrease the number of
sliding window
J) The "straggler” is executed

JobTracker calculates expected end time of all tasks. And in
below upper limits of backup task case, the “straggler” of
backup task is executed.

g) Update information
Updating information of job, and the pointer is moved to
the front of a new TaskQueue and scheduling algorithm is
executed again.

4) Parameter calculation
a) AllowedTaskNum

AllowedTaskNum value can determine the number of tasks
executed by a job in a cycle.

Average task size: AvgTaskCapacity = JobCapacity /
TaskNum

In a cycle, the quantity of data dealt with by Jobli] is Q[i]:
q[i] = AvgTaskCapacity[i] * AllowedTaskNum([i]

So in a cycle, the total quantity of data dealt with is Q: Q
=% AvgTaskCapacity[i] * AllowedTaskNum[i] (i=1...n)

Because priority [i] of Job[i] is proportional to q[i] of Jobli]

So AllowedTaskNum[i] * AvgTaskCapacity[i] / Q =
priority[i] / Z priority[i] (i=1...n)

Usually, the number of Map Task is far much than Reduce
Task’s. We can use the ability of dealing with data of Map

Task instead of Task (TaskAbility). And data block in HDFS is
called "BlockCapacity".

So Q = Max (TaskAbility * BlockCapacity, Num*
blockSize * JobNum), (Num is the average quantity of tasks
executed in a job in a cycle)

In the end, AllowedTaskNum[i] = Q * priority[i] /
(AvgTaskCapacity[i] * Z priority[j]) G=1...n)
b) LWorkLoad & AvgWorkLoad & HWorkLoad
If the number of sliding window is increased, (JobNum +
Increment) * Num / TastAbility <= HWorkLoad;

Increment = (HWorkLoad - AvgWorkLoad) * TaskAbility
/Num.

Simply, if the number of sliding window is decreased,
Decrement = (AvgWorkLoad - LWorkLoad) * TastAbility /
Num

c) threshold of progress value(judge “straggler”)
This new method is based on Recent End Time (RET).

Principle of speculative execution: executing the backup
task that is expected to preform for the longest time.

Because ProgressValue that is used for judging speed
degree among tasks has blindness.

So I use “ProgressQuotiety” for meaning average speed.
And ProgressQuotiety = ProgressValue / T

In the end, RET = (1 - ProgressValue) / ProgressQuotiety

d) ThresholdOfSlowNode(judge which tasktracker s
slow node or quick node)

This method is to set slow node threshold. If the speed of
node is lower than its Threshold, this node is a slow node,
otherwise it is a quick node.

Threshold = XX ProgressValue[i](Task[j]) * 30% / n;
(i=l...n,and n is the number of nodes ; j = 1...m and m is the
number of tasks executed in every node)

B. UDT (change transmission protocol)

1) Introduction of UDT

UDT (UDP-based Data Transfer Protocol) is a kind of
Internet data transfer protocol. UDT is built on the UDP, and
introduces new congestion control, and data reliability control
mechanisms. It is a two-way connection-oriented application
layer protocol and also supports reliable data streaming and
partial reliable datagram transmission. As UDT is implemented
completely on the UDP, it can also be used in other application
areas addition to the high-speed data transmission.

2) Reason of changing from HTTP to UDT

HTTP (HyperText Transfer Protocol) is a TCP-based and
most widely used network protocol on the [nternet, and belongs
to request/response model.

HTTP completes connection through three segments, this
process is called three-way handshake (three-way handshake).
And for every http request, a connection needs to be
established, which greatly reduces data transfer speed.
However UDT with these characteristics could compensate for
the lack of HTTP and is more suitable for transferring intensive
large data sets [10][11].

3) Program of UDT
12 Package Explorar X | -
1 | ~
* aziudt-java 0.3 - ENAPIHOT
v Mmare

| I3 Package Explorer IZ | e

IR -~
¥ 22 udt-jave- 0.3 - INAPSHOT
rc

) L
N LOTSoCke.tava

GEEEBB y vy v v v v rv g

\AAARA]

A2
11

JRE Systam Library avast 1,71 > DA INE System Library avase - 1.7]
T ens: =t

13 eICEnsE S

Y L5 ucInse

P mEADME L5 neADME

C. Optimization of system parameters

Hadoop has nearly 200 system configuration parameters,
and parameter optimization can effectively improve speed and
efficiency [11].

1) data compression
Data compression for outputs of map task

The method to start this function:
mapred.compress.map.output: true

compress mode:
mapred.map.output.compress.codec: Gzip/lzo

According to test of the actual cluster, so we can draw the
following conclusions:

* compression and decompression performance of LZO
file is much better than Gzip files.

¢ For the same text file, Gzip compression reduces
significantly disk space ratio better than LZO
compression.

Therefore, we need to use the right compression algorithm
under the appropriate environment. Usually, Gzip algorithm is
typically used to compress file, because the purpose is to
reduce the quantity of the file transmission and bandwidth
costs.

2) reduce memory usage of reduce task
To reduce the needs of memory for reduce task and set
more memory space for storing outputs of map task.

Mapred.inmem.merge.threshold
Mapred.job.reduce.input.buffer.percent

The default of this threshold is 0.8, and this threshold could
be adjusted from 0.8 to 0.95. And when the data in the buffer
reaches this threshold, the background thread will sort this data
by key in the buffer, then write them to disk.

3) adjust map/reduce task quantity

{map/reduce}.tasks.maximum:

The maximum number of map / reduce task running on the
tasktracker, and generally value is (CoreNum_Per_Node) / 2 ~
2 * (CoreNum_Per_Node)

4) increase the quantity of copier threads in shuffle phase
The purpose is to improve the speed of transferring big data
in the shuffle phase.

Mapred.reduce.parallel:

The number of copier threads is 5 (the default value). For
the larger cluster, this value can be adjusted to 10 ~ 25.

IV. EXPERIMENTS AND RESULTS

A. Analysis of performance indicators
1) Task response time
2) Fairness
3) Accelerate Ratio

4) Fault Tolerance

B. Experiments
1) Test environment
a) Set up environment

siavel

wiaved

Fig. 4 Cluster topology

b) Cluster information

n Function i Hos Name Hardware and Software Configuration
i MEMORY DISK s
I raster 192105 1o | shaoben Iter Cors2 €1 4s 155 AGil Ubunm
4 T2001pm 12041 TS
2 sdavel 192 168 4,11 [o 155460 Uity
7 20trpm 1204118
slavel 192 168 512 | hosail e 159 n
7200t
4 slaved 192 168 5 13] hoseiss 4 159 SH
E slaved 1t ins 14 bosail2 88
slaves 192 on 15| bosaidd A
saven | 192 163 L6 | lene-ubun 0
. say 192168145 hoscitt Inter Core 47 LIE]
2oGHZ 12001pem
saven | 192ies bin] bossiTT Iener Cote 17 “ T Ubunmw
ERET Pa T Ape 12040 TS

Fig. 5 Cluster configuration information
¢) Used sofiware information
Hadoop: Hadoop 1.1.2

Eclipse: eclipse-jee-indigo-SR2-linux-gtk-x86 64.tar.gz
JDK: JDK 1.7.0_25

2) Test methods and Test results
a) Sliding Window Scheduling Algorithm (SWSA)
* One Job: (Data size is 5.16GB)

Run Time(s) One Job
800

700

600

500

400 |

300

200

100

FIFO and SWSA
FIFO 8SWSA
Fig. 6 Efficiency comparison of one job

Efficiency promotion: (707-472)/707=33.2%

* Multi jobs (the same priority)

Multi jobs (the same priority)

2000
1800
1600 7
— 100 7z
E—f 1200 : :,‘)
= 1000 A v
Z:]00 Z FIFQ
= 600 ~ “SWsA
oo ' = - '
200 /I Z -z I - 7
Job1 Job2 Job3 Jub4 Joh5 Job6
JoublD
Fig. 7 Efficiency comparison of multi jobs with the same priority
The total run time of using FIFO: 5537s
The total run time of using SWSA: 3606s
Efficiency promotion: (5537-3606)/5537=34.9%
* Multi jobs (different priority)
Multi jobs (different priority)
2500
2000 A
% 1500
g 1000 Hiko
" EWSA
500 2 4
R 'R B
Job1 Job2 Joh3 Joba JobS Jub6
Jobld
Fig. 8 Efficiency comparison of multi jobs with different priority
The total run time of using FIFO: 59555
The total run time of using SWSA: 2878s
Efficiency promotion: (5955-2878)/5955=51.7%
b) UDT (change transmission protocol)
Change transmission protocol
1800
1600
1400 |
= 1200
£ 1000
T 800 wrre
£ s00 =upp
400 |
200
0
5.12G0 103268 20.64G8
Data Size

Fig. 9 Efficiency comparison of changing transmission protocol

Efficiency promotion (5.12GB): (725-647)/725=10.8%
Efficiency promotion (10.32GB): (992-831)/992=16.2%
Efficiency promotion (20.64GB):(1611-1204)/1611=25.3%

¢) Optimization of system parameters
Set value of system parameters:

* Data compression

Mapred.compress.map.output: true

compress mode:

mapred.map.output.compress.codec: Gzip

* Reduce memory usage of reduce task
Mapred.inmem.merge.threshold
Mapred.job.reduce.input.buffer.percent: 0.95

* Adjust map/reduce task quantity

The number of map in cluster is 18.

The number of reduce in cluster is 2.

* Increase the quantity of copier threads in shuffle phase
Mapred.reduce.parallel: 10

Optimization of system parameters

L8O
1600
1100
1200
1000

800 Before optimization

600

400

200 1
0 :

5.12G6B 10,3268
Data Size

Run Time(s)

= After optimization

20.64GB

Fig. 10 Efficiency comparison of operating system parameters
with different data size

Efficiency promotion (5.12GB): (725-593)/725=18.2%
Efficiency promotion (10.32GB): (992-774)/992=23%
Efficiency promotion (20.64GB):(1611-1114)/1611=30.9%

d) Integrated system test
The number of slave node is from 2 to 6; Data size includes
5.12GB, 10.32GB and 20.64GB.

Integrated system test (Data size is 5.12GB)

2000
1800
1600
1400
1200
1000
800
600
400
200
0

w0l Hadoop

Run Time{s)

=S=Noew Hadoop

The number ol slave

Integrated system test (Data size is 10.32GB)
3000

2000

1500

Run Timeis)

st Old Hadoop

1000 —New Hadoop

500

0

The number of slave

Integrated system test (Data size is 20.64GB)

4500

4000

3500

= 3000

E 2500
g 2000 et Ol Hadoop
% 1500 == New Hadoop

1000

500

o

The number of slave

Fig. 11 12 13 Efficiency comparison of integrated system
with different the quantity of slave node and different data size
The degree of performance improvement will increase,
when the amount of data and the number of computer in the
cluster increase.

V. CONCLUSIONS

In this paper, rebuilding scheduling algorithm (SWSA)
improve task respond speed, load balance and fairness in the
scheduling process of MapReduce. Meanwhile, it proves that
new scheduling algorithm (SWSA) has scalability in the cluster.
By replacing the transfer protocol and optimizing system
configuration parameters, they improve further performance of
MapReduce. In short, through this research, the study of this
paper could prove that it is helpful to improve the performance
of mapreduce.

ACKNOWLEDGMENT

The author would like to thank Professor Koike for his
patiently guide and advice to this research. Also the author
would like to thank CIS of Hosei University for supporting.

REFERENCES

[1] G. Yang, “The Application of MapReduce in the Cloud Computing,” in
2011 2nd International Symposium on Intelligence Information
Processing and Trusted Computing (IPTC), 2011, pp. 154-156.

[2] "Cloud computing," Baidu Baike. 14-Jul-2013.

[3] “Cloud computing,” Wikipedia, the free encyclopedia. 14-Jul-2013.

[4] White T, Hadoop Definitive Guide, Beijing: Tsinghua University, 2010.

[5] A. Oriani and 1. C. Garcia, “From Backup to Hot Standby: High
Availability for HDFS,” in 2012 IEEE 3Ist Symposium on Reliable
Distributed Systems (SRDS), 2012, pp. 131-140.

[6] "HDFS," Baidu Baike. 14-Jul-2013.

[7] S. Selvarani and G. S. Sadhasivam, “Improved cost-based algorithm for
task scheduling in cloud computing,” in 2010 [EEE International
Conference on Computational Intelligence and Computing Research
(ICCIC), 2010, pp. 1-5.

[8] Zhang Mimi, "Performance analysis and improvement optimization of
MapReduce model in Hadoop," University of Electronic Science and
Technology of China, 2010.

[9] Q. Cao, Z.-B. Wei, and W.-M. Gong, “An Optimized Algorithm for
Task Scheduling Based on Activity Based Costing in Cloud Computing,”
in 3rd International Conference on Bioinformatics and Biomedical
Engineering , 2009. ICBBE 2009, 2009, pp. 1-3.

[10] R.K.L.Ko, M. Kirchberg, B.-S. Lee, and E. Chew, “Overcoming Large
Data Transfer Bottlenecks in RESTful Service Orchestrations,” in 2012
IEEE 19th International Conference on Web Services (ICWS), 2012, pp.
654-656.

[11] Peng Fuquan, Jin Canghong, Wu Minghui and Ying Jing,"Optimization

and reconstruction shuffle in MapReduce", China SciencePaper,
Vol7,No.4,April,2012.

