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Abstract—SOFL formal specifications have been proved to be
useful and expressive enough in describing functional
requirements for software development. Based on SOFL formal
specifications, many techniques have been proposed to provide us
with effective solutions for software verification and validation.
To support these techniques, a tool support for analysis of
specifications is necessary. However, such a tool is still not
available. In this paper, we present our work on a supporting
tool. The tool supplies two fundamental functions: syntactic
analysis of SOFL formal specifications and automatic generation
of functional scenarios. By syntactic analysis, we can get syntactic
information of SOFL specifications. The tool can create an xml
file for storing and reusing the syntax information. Functional
scenarios are well-structured predicate expressions, which could
be derived from formal specifications. Many formal specification-
based techniques require the generation of functional scenarios.
Our tool also supports automatic generation of functional
scenarios on the basis of the syntactic information.

Keywords—SOFL, Formal specifications. Syntactic Analysis,
Functional scenarios.

I. Introduction

SOFL formal specifications generally consist of two parts:
modules and corresponding CDFDs (Control Data Flow
Diagram). Modules are responsible for precisely defining the
requirements and CDFDs provide a graphic explanation of the
cooperation of processes in each module. Because SOFL
benefits both the advantages of formal notations and graphic
expressions, SOFL has the "talent" to describe both functional
requirements and the architecture of software. In addition,
based on SOFL formal specifications, many techniques have
been proposed to provide us with effective solutions for
software verification and validation. SOFL could be used
practically in real software development.

However, compared with some other formal languages,
SOFL is restricted by tool supporting, especially for some
fundamental functions. In order to make it more practical, we
hence implemented a supporting tool for SOFL. This tool can
supply two fundamental ftinctions: syntactic analysis of SOFL
formal specifications and automatic generation of functional
scenarios. By syntactic analysis, we can obtain syntactic
information of SOFL formal specifications. The tool can create
an xml file for storing and reusing this syntax information.

Functional scenarios are well-structured predicate expressions,
which could be derived from formal specifications. Many
formal specificationbased techniques require the generation of
functional scenarios [1][2]. In our tool, we also realized
automatic generation of functional scenarios on the basis of
syntactic information. Our work is expected to be effective in
reducing time and budget by a large margin in applying SOFL
to a real software development.

The remainder of this paper is organized as follows. Section
2 talks about the background of our work including features of
SOFL, definition of functional scenarios and brief introduction
to strategy design. Section 3 describes the details of our tool,
which includes two core components: a parser for SOFL and a
processor for generating flinctional scenarios. Section 4
mentions some related work. Section 5 makes a conclusion of
our current work and points out how it could support future
research.

II. Background

SOFL is short for Structured Object-based Formal
Language, which was firstly proposed in Liu's paper [3]. In
order to make it more adaptable for practical software
development, the designer considered overall the advantages of
formal notation, structured methods and object-oriented
method, and successfully found out a complementary approach
to integrate these three ideas into one formal language. Formal
specifications written in SOFL should be encapsulated in a
series of modules. Each module represents a high-level system
or low-level sub-system and one module also could be
decomposed further to lower-level modules. In each module,
we should abstract all involved resources, declare them by
classifications and define the main processes (operations) to
complete the functionality. For each process, it uses pre
condition to describe the assumed initial state and post
condition to clarify the expected final state. Pre- and post
conditions are common predicate expressions, in which sub-
predicate clauses could be connected by logic connectors
without no regular pattern.

As mentioned before, SOFL formal specifications are
synthesis of many kinds of descriptions, including description
for resources' definition and declaration, description for
operation, while functional scenarios are predicate expressions
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which have been well classified and partitioned according to
informationmainly extracted from operations.

In order to generate functional scenarios from formal
specifications, firstlywe need to clarify the format of operation
specification and the concept of functional scenario. Here for
simplicity, we adopt Liu's notation in [4] for operations of
SOFL formal specifications.

Definition 1: Let OP(OP ;OP )[OP ;0P ,1 denotes
^ IV' ov' !• jm*' post J

an operation of SOFL formal specifications, in which 0P.^_
represents set of input variables whose values should not be

changed by this operation, and 0P^^_ represents set of output
variables whose values could be newly produced or updated by

this operation, and 0P„.,. represent pre- and post
conditions of respectively.

Then we define functional scenarios based on criterion 1.

Definition 2: Functional scenario is a predicate expression

matched with specific pattern. Let - OP^ AC. AD. denotes
one function scenario, and each function scenario serves as one
disjunctive clause of the following disjunction:
{-OF AC, A/?,)V(-OP AC, AD.,) v...V(-CP AC AD)
^ ftrr I J / \ pre 2 2' V ^ pre n n'

. The disjunction is called a functional scenario form. In one

functional scenario, C. is called "guard condition", which

contains no output variables and satisfies

C.AC.=falsei}^])\ D. is called "defining condition",

which involves at least one output variable, and defines the
expected final state of output variables. Guard conditions and

defining conditions come from .

The algorithm, for generating functional scenarios from
formal specifications, has been discussed in Liu's paper [5]. In
order to describe the algorithm, we also need notations below:

P^.(OP, E): denotes thesetof variables from 0P„ which
occur in the predicate E.

[1... n]: denotes thesetof integers {1,2,..., n}.

A = B: means that A is the same with B both
syntactically and semantically.

Algorithm:

Step 1: Convert the post-condition to disjunctive

normal form: V V...VP , where each Pft€ [l--- n]) is a
conjunction of atomic predicates or the negation of atomic
predicates. An atomic predicate could be a relation (saying
x>y*5 + z), a boolean variable, a truth value, or a strict

quantified expression. Here if OP . = true or OP , = false
* ^ post post

, go to step 8; else go to next.

Step 2: For each P^ = P, A A... A > 1),

construct the partition for the set {R,,R.^,...,R^J
that satisfies the conditions:

(1) R e B, ^ Vl,(OP,R,) = 0,i S

(2) R,SB^^ ^^(OP.RJ 0,i e [l...m]

Step 3: For each predicate set whereA; € {1,2},

ifP^. then form the conjunction = A.^P., where

s = (i G[l...m] IR. e Bj.}; otherwise, let Q'̂ = true.

Step 4: Express P^ as the conjunction of every such

A . Here corresponds to the guard condition,

which involves no output variables in0P^_. corresponds to
the defining condition, which contains at least one output
variable.

Step 5: Construct thepartition {Aj,A^,..., A^^J for theset

{P,,P^,...,PJobtained from No 4 that satisfies the condition:

P,P Gi4^, ^ Qj = Q^ , assuming P = Q,' AQJ and

P = AQ^ , i,je [l...n], k G[l...w].

Step 6: For each , form a predicate

.assuming P;,P,,...,P are

members of A^, u^n, and each P^ =Q^ AQ!^, where Q^ is
the common guard condition and Q!^ is a defining condition.

The decorated pre-condition "OP^.^ = OP^.J" x/x] denotes

the predicate by substituting the initial state " x for the final

state X in OP .
ptT.

Step 7: Form the disjunction P^VP^ V... VP^ , which
is the functional scenarios form (FSF) for OP, where each

P denotes a functional scenario. Then go to Step 9.

Step 8: Form the conjunction OP A OP ,as the
ptv post

functional scenarios form (FSF) for OP.

Step 9: The end.

III. Our work on supporting tool

The tool consists of two core components. One is a parser
for SOFL formal specifications, and the other is a processor in
charge of automatic transformation. The parser is designed to
parse SOFL formal specifications and store syntax tree
information in an xml file for reuse. In the xml file, each tag
corresponds to one grammar node of SOFL. The processor will
take the syntax tree information (xml file) as input, generate
functional scenario forms, and store these functional scenario
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forms back into the xml file. We have defined the format of
functional scenario form in the xml file, based on the definition
of functional scenarios as we talked in section 2. Fig. 1 shows
an overview constitution of the tool.

Outline of

The Tool

Parser

For SOFL

Formal

Specification

Sjmtn* Tree
infarmt ion

(ml file)
Processor

For

Functional

Scenario

Fig. 1. This figure shows the two core components of the tool.
The parser produces the syntax tree information and creates an xml
file to store it. After this, the processor will run the algorithm for
generating functional scenarios, and store functional scenario forms
back into the xml file.

A. Parserfor SOFLformal specification

When we are to develop a parser for a specific language,
generally the first task is to know what kind of lexical symbols
are legal and how they are arranged in a reasonable way,
defined by the grammar. The two questions determine the
design ofstrategy for the most importantparts of the parser.

We have made a summary about all legal classifications of
symbols that could be accepted by SOFL. They are listed as
follows in chart 1.

Chart. 1. All legal classifications of symbols in SOFL.

Key value 1 2 3 4

Classification Enumeration Character Strins Number

Key value 5 6 7 8

Classification Identifier Key word Comment Separator

We pick the "identifier" to explain that identifiers in SOFL
should maintain what kind of features and how we construct

the acceptor to receive an identifier from the texture stream.
The "identifier" should start with an English letter and after
that could consist of letters and digits (from 0 to 9). This rule
can be described in an alternative way, which is more
intuitive. We build a finite state machine for accepting
"identifier" in SOFL as figured in fig. 2.

Fig. 2. The figure shows finite state machine for identifier.
For the grammar of SOFL, also could referred to Liu's

publication, we find that it is defined by top-down
architecture. In the most top level, the formal specification is
abstracted in one grammar node, which is called
"specification". The "specification" is decomposed to some
grammar nodes in the lower level, which are restricted to list
in order. Continuously, all grammar nodes could be
decomposed further and at last reach the terminal node, which
are symbols that could be accepted directly by lexical

analyzer. We pick up one part of the grammar to give a
straightforward image.

One part of the grammar defining the module of SOFL:
Module ::=

"module" Identifier [ 'T (Identifier | "SYSTEM"
Identifier)]

Module_body
"end_module"

Module_body
["const" Const_declaration ";" ]
["type" Type declaration ";" ]
["var" Var_declaration ";" ]
["inv" lnv_definition ";" ]
["behav" Behavior ";" ]
Process_function_specifications

Here we use some notations, in which double quotation
marks quote a terminal node (a symbol), brackets mean the
content is optional, round brackets and vertical bars cooperate
to imply a multiple selection. We can find that this kind of
description is easy to understand for readers, but not suitable
for syntactic analysis program. So the first work for us is to
rewrite the grammar to make it adaptable for realization. The
translation is like the following.

Module -> "module" Identifier SI ";" Module_body
"endmodule"

51 ->epsilon|"r S2
52 -> Identifier | "SYSTEM_" Identifier
Module_body -> S3 S4 85 S6 S7

Process_function_specifications
53 -> epsilon | "const" Const_declaration ";"
54 -> epsilon | "type" Type_declaration
55 -> epsilon j"var" Var_declaration ";"
56 -> epsilon j"inv" Inv definition ";"
57 -> epsilon j"behav" Behavior ";"
Notations used here is almost the same with the ahead.

Each line of these sentences is called "grammar deduction
formula". In each formula, it contains only nonterminal
grammar nodes and terminal nodes. Terminal nodes are
symbols which could be accepted by lexical analyzer and
nonterminal nodes are able to be coded as methods which are

responsible for the syntactic analysis of according units.
So far, we have got an overview about the question

domain of the parser. The next step is to design for the
implementation. If we view the parser as a software project,
we need to decompose the whole task and depict the
architecture of the software. Fig. 3 shows the architecture of
the parser.

Lexical Syntactic Typo XUL File

Analyier Analyzer Generator Constructor

Finite

State

Machine

Except ion
Kandiina

rop'<lo«n
Syntdx

Analysi:*

Sjrtbol
Register

Except ion
Kcindling

Tjpo
Chock

Tjpe
Cmoratc

Kdw

Xal.Node

Fig. 3. The figure shows the whole architecture of the parser.
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The parser includes four components, lexical analyzer,
syntactic analyzer, type generator, and xml file constructor.
Each component could be decomposed to the third level, of
which these are able to be implemented by program units. The
core functionof a parser is syntactic analysis. As we explained
before, the feature of SOFL's grammar determines that top-
down analysis strategy is convenient. During the approach of
syntactic analysis, we also need to register all symbols and
make a symbol table for potential semantic analysis to some
extent. Beside of these, we need to design a robust mechanism
for exception handling and recovery. We use Fig. 4 to explain
the main procedureof top-down syntax analysis.

ivmioal

8#c«»iir# «ad

bufftsr o tokvo

•tiicli tkductictfi

fonauld

NO

[yes

9 ihtf cvit gruBeu
»odc
rn i nft

Accept the
tcr&ical syirfsol

Fig. 4. The figure shows how top-down syntactic analysis works.

Because terminal nodes could be directly provided by
lexical analyzer, terminal grammar nodes usually are easy to
deal with, and do not need to make methods for them. In Fig.
5, we focus on how to deal with nonterminal grammar nodes.
As we mentioned previously, nonterminal grammar nodes
should be realize as methods, according to the grammar
deduction formulae. So when we are faced with multiple
selections about which formula to use and cannot recognize it
based on the left-most symbol, we choose to look forward
more symbols for help.

B. Processorfor generatingfunctional scenarios

After the work of parser, an xml file is created for the
storage of syntax tree information. Each section, in the formal
specifications, could be extracted separately from this file. As
we have analyzed before, functional scenarios are
correspondingdirectly to the section of process in one module.
At this stage, we are able to visit all well-classified information
that may help for generating functional scenarios.

The processor will take this kind of xml file as input and
generate functional scenarios for each process. At last, we shall
organize the functional scenarios into fonctional scenario forms
(FSF), and append FSF to its' appropriate position in the xml

file. In this way, we can get access to both information of each
process and its correlated FSF.

So far we have been clear about the input and output of this
processor. Considering about the algorithm which has been
explained in section 2, the first task should be transforming
post-condition into disjunctive normal form (DNF). From now
on, we are willing to take a predicate ((aV b) Ac) (d e)
as example to demonstrate how we implement the algorithm.
The predicate stands for post-condition of a process, in which
a, b, c, d and e are atomic predicates. It may seem simple, but
we think it is fine and enough to represents general situations
when we face with this matter.

First of all, we shall build a syntax tree fi-om what is stored
in xml file. In this case, the syntax tree should look like Fig. 5.

Fig. 5. The syntax tree of the example post-condition.

The algorithm for transforming post-condition to DNF is
arranged as following:

Step I: Search nodes of the syntax tree in root-first order,
and for each node if the value of currently visited node is
"<=>", replace the node with sub-tree like following

© ^
\rlithtC1illd

l*rtUtl(K XJ^lQiild

UftOit'^fi AiRhiChUd

Fig. 6. Replace all "<=>" nodes in the syntax tree.

Step 2: Search nodes of the syntax tree in root-first order,
and for each node if the value of current node is replace
the node with sub-tree like the following

Fig. 7. Replace all "=>" nodes in the syntax tree.
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Step 3: Search nodes of the syntax tree in root-first order,
and for each node if there exists "not" disorder, that means
"not" node's child is not atomic predicate, replace the node
with sub-tree like the following

not

and

not

not

(0not

Fig. 8. The figure shows how to deal with "not" disorder.

Step 4: Search nodes of the syntax tree in root-first order,
and for each node if there exists "and/or" disorder, that means
"or" node becomes the child of "and", replace the node with
sub-tree like the following

thtChlld

loflO

UftChHd/ XtriitOilM

Fig. 9. The figure shows how to deal with "and/or" disorder.

Since the post-condition has been transformed into DNF,
considering of the data structure we used, we have got a binary
tree, in which "or" nodes are ancestors of "and" nodes and
"not" nodes should be connected directly with atomic predicate
nodes.

In case of the example we mentioned before, the following
figure give a view of the final syntax tree, which has been
transformed into disjunctive normal form. It contains no "<=>"
nodes and "=>" nodes. In addition, it involves no "not"
disorder and "and/or" disorder. For "not" nodes, they are
connected with atomic predicate directly. And in the following
figure, "not" nodes are combined to atomic predicates.

Fig. 10. The figure shows DNF ofthe example post-condition.

We can easily find out each conjunction clause, which is a
sub-tree whose root is the first "and" node. There exist six
conjunction clauses in the DNF. They are a A c A ->d,
bAcA->d, aAcAe, ftAcAe, ->aA-^bAdA-^e, and
—>c Ad A-^e.

According to the algorithm of generating functional
scenarios, for each conjunction clause, we need to make a
partition for separating atomic predicates by whether they
contain output variables. If "a" and "c" contain no output
variable, they are called "guard condition". On the other side,
"b", "d" and "e" are called "defining condition". The next step
we shall do is to rearrange these conjunction clauses. The six
conjunction clauses should be rewrite to be aAcA-^d,
cAbA-id^ aAcAe, cAbAe, ->aA->bAdA-ie, and
—icAd A —le.

The last step is to combine conjunction clauses ofwhich the
defining conditions are the same. Because guard condition and
defining condition of a conjunction clause are stored in an
array list, by searching each node in this array list, we can
judge whether one defining condition is covering the other and
at the same time the other is also covering the original one. If
AC B A B Q A, we can make a conclusion two set of

defining conditions are same. If there exist any two conjunction
clauses whose defining conditions is the same, we shall
combine them by merging the guard conditions of them by
connector of logic "or". In case of this example, the
conjunction clauses should keep themselves, because of the
defining conditions ofeach one are unique among them.

So we can finally generate functional scenarios in this form

- OP A O A D.. All guard conditions and defining

conditions of the example are listed in the following chart.

Chart. 3. guard condition and defining condition of each
FUNCTIONAL SCENARIO FOR THE EXAMPLE.

C (guard condition) D (defining condition)

Functional scenario 1 a Ac —>d

Functional scenario 2 c b A —>d

Functional scenario 3 a Ac e

Functional scenario 4 c bAe

Functional scenario 5 —la —lbAd A —ic

Functional scenario 6 -ic d A —ic
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C. Interface ofour tool

We tested this tool by several SOFL formal specifications,
one of which defines the requirements of a goods delivery
system. We take that example to show interface of our tool.

H Ds«)MauQ«

'14(01 faartatlm) I ••fi—9? *eaj_%ft72a)

•'I • w

6wu»6Lel

L/m ^ CAjbt \

If 672 Zitamr 9

p/r Trri^?rrgfr'Micir,i7aa

Fig. 11. The figure shows main interface of this tool.

The central textural area demonstrates the SOFL formal

specification. If there exist some syntactic errors, the tool will
collect information for the position where error happens and
report them in the below frame. Key words are highlighted in
blue and the character where error is located is highlighted in
red. After parsing, an xml file storing both syntax tree
information and functional scenario forms is created. For this

test case, corresponding xml file is showed in the following
figure.

fm {40 '|nr>« pm Om
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• cuiui id •3'>lalnc''IlUWcgiMe^.^oods°cls^slncJlian"•|lllnll)eT•vriue""lOOOO"/.•
'cnnil id"-1" njnie-"tnM" clas5ification='niinibeT' value'-lO" A--

• conMlJc!'-

i "-lypcOefid
I •rjpeDec id-'d* name-'PnceType'"-

'Miiipichpc id'—cUwifications-ctniiposiieTipe" el{inenl7))K="-
• Held id "ii-Dauw "poods lypc"*

• sinipleTipt id-"9" clmificallon-^eferedTipe" tlnncKTsTif-"GoodsTw- >
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Fig. 12. The figure shows the main output of this tool: xml file
storing syntax information and functional scenarios.

IV. Related WORK

Tool support is significantly important for applying formal
methods into practice. There are many formal languages with
powertlil tool. One famous example is VDM. As introduced in
[6], "Overture" is developed to be a common open-source
platform integrating a range of tools for constructing and
analyzing formal models of systems using VDM. Nowadays,

"Overture" has been updated to be a stable and mature
platform, but restricted by features of VDM, it could not
support effectively on describing the architecture of whole
software. There are also other tools supporting formal language
like JML and Alloy. They are introduced in [7][8].

Functional scenario-based techniques also gain more and
more attentions in research. [1] proposes an automated
functional scenario-based formal specification animation
method. [2] talks about their work on an experiment for
assessment of a functional scenario-based test case generation
method, which is improved from FSBT (functional scenario-
based testing) proposed in [9]. For functional scenarios'
generation, a method for automatic generation of functional
scenarios from SOFL CDFD has been talked in [10].
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