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Abstract-lncresismg demands for data processing capabilities
require CPU not only with enormous integer computational
capacities but also with sufficient speed to handle complicated
floating point operation [d). In this paper, according to the
features of SIMD, we design a set instructions which includes
integer and floating-point double data instructions. According to
these set instructions, we design a pipelined CPU including the
FPU based on the SIMD architecture to achieve high speed in
handling integer and floating computing tasks. The CPU
architecture consists of two SIMD processing modules which
have their own registers and a shared memory. This allows
highly and flexible computation of complicated integer and
floating stream data tasks, which are difficult to deal with using a
conventional CPU architecture. The goal of this research is to
design a processor which can process the integer and floating
point based on SIMD architecture.
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I. Introduction

As the core of the computer system, the traditional CPU is
mainly used for general computing and control. With CPU
being more and more widely used in communicating, image
processing, transportation and many other fields, the
requirement for the ability of data processing is becoming
much higher, which requires the CPU with high speed and real
time processing ability for both integer and floating-point
number[7].Inthis paper, we propose a pipelined CPU including
FPU based on SIMD architecture to meet the requirements of
high speed processing capability within different fields

In SIMD structure, all processing units execute the same
instruction at any given clock, while each processing unit can
operate on a different data element, such feature can greatly
improve the speed of data processing.[3] In this paper, we
design a set of SIMD instructions based on the characteristics
of SIMD structure with which we can deal with integer
arithmetic, floating point arithmetic, and the transformation of
integers and floating point numbers, then we use Verilog HDL
hardware language to realize this SIMD instruction set on CPU.

As shown in Fig. 1, the CPU we are talking about in this
paper contains two FPU modules and two ALU modules, the
floating point unit and integer unit have their own registers and
they share the same data storage unit. Each floating point unit
contains addition/subtraction, multiplication, division and

square root .These four arithmetic modules which are pipeline
designed to achieve the fast handling capability of floating
point numbers. This SIMD-based CPU can perform parallel
computing on integer £ind floating point numbers, this
improves the speed of data processing on CPU, which can well
satisfy the data processing requirements in some certain areas.

In the following sections, we will describe the design of the
pipelined CPU including FPU based on SIMD.

Data Memory

ALU ALU FPU FPU

I_Regfiles

execution pipeline

Instruction pool

V /

Fig. 1. SIMD CPU structure

F_Regfiles \ir

II. Pipelined CPU design

In this CPU, the integer instructions has 5 stages while 6
stages for floating-point instructions .The ITE(iteration) and
ID stages are merged into one in the floating-point division
instructions and the square root instructions, and fetching
instruction operation is suspended in this stage . The operation
of calculation and normalization of the Floating-point
instructions will be divided into three stages: El,E2,E3.As
shown as the figure 2,all the floating-point instructions can be
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describe by unified pipeline model: IF,ID,El,E2,E3,WB,while
the integer instructions can be describe by unified pipeline
model: 1F,ID,EXE,MEM,WB.

INTEGER

INSTRUCT!

ON

F ADD/SUB

F.MUL

_DIV

_SQRT

IF D) EXE MEM WB

"i~|—»| ID I—»|exe[->PE^ wb I

"i~|—»| D) I >1 El |-»| E2 |-»| E3 |-4^

"i~|—»| ro I >1 El H E2 |-»| E3 [-»[ m

F_DIV I IF |—»|lD+nE]-»| El |-»rir|-»| E3

IF ID+ITE El E2 -> E3 -¥ m

IF ID El E2 E3 WB

Fig. 2 Unified pipelined model of the CPU/FPU
In the pipelined CPU/FPU architecture, there are two

important problems which must be solved: (1) Data
Dependence; (2) Control Dependence. For solving these two
problems, we use the below ways: (1) Internal Forwarding and
suspend pipeline technology to solve data dependent; (2)
Delayed Branch technology to deal with control hazard [1].

A. Internalforwardingfor data dependence

Pipelined CPU can execute multiple instructions at one
time. In this case, data dependence may happen among
instructions which means the next instruction needs the result
of the current instruction to execute while the current

instruction has not completed yet. As shown as Fig. 3.

subs r4

xors r6,

ands r7,

I 1 I 2 I 3 I 4 I 5 I6 I 7 I 8 I 9 I

'•k HJiJiJiJijiJirLrL

addijrM +1̂
ScH r9,r3|̂ - /

1 r3^
\̂r6

and!
r3;9
&r7

Fig. 3 Example ofdata dependence

The result of the first instruction( adds r3 , rl, rl ) will be
written into r3 after 5 cycles while the following instruction
(subs, ors , ands , xors) needs to use the calculated values in r2
in ID stage. This means the following subs instruction cannot
get wanted values in the ID stage.

To solve this problem, we adopt internal bypass way. As
shown in the Fig. 4. The adds operation of the first instruction
is finished at ALU of EXE stage. So we can directly deliver the
result to the next instruction. That is to say, the result of ALU
can be put forward to ID stage from EXE stage and MEM stage.
Then the data dependent problem can be solved.

I1 I2I3I4 I5 I6 I7I8 I9 I

r9 latemal forwarding

xon r3^ A r6

and! r3,i9 & r7

Fig. 4 Internal forwarding

B. Suspendpipelinefor data dependence

The result of ALU can be pushed forward to ID stage from
EXE stage or MEM stage. But the result of some instructions
such as Iws and lws2, would not appear until MEM stage
finished. So the data only can be put forward to ID stage from
MEM stage. If the next instruction of Iws, lws2 is related to
them, it needs to put data forward to ID stage from MEM stage
and stall the pipeline for one cycle. As shown in the Fig. 5:

Iws

subs

ors rS,

lors r6,

ands r7,

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I

IIws I rl I + |meq|r3f

sabsl t9.r30t9.r! r4

ipefinT^Pipi
stalls

ors 0 ors rtjH 1 rS

xors r3,ri r6

r3,ri| &I lr7

Fig. 5 Pipeline stall for data dependence.

C. Delayed transfersfor control hazard

When Pipelined CPU performs transfer or jump instruction,
there will appear control hazard problem. The transfer
instruction or jump instruction has entered into the pipeline
before the CPU turns into the destination addresses. As shown

as an example in Figure 6:

bells Q) EXE

1 1 1 1 ?|
large ID EXE m WB

IF D) EXE m WB

: 2 slot (b): 1 slot
Fig. 6 Control hazard

Fig. 6 (a) shows how to define the transfer destination
address and the conditions in the instruction beqs on EXE
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level when two Instructions following the beqs enter the
pipeline, if the transferring destination address and the
conditions are confirmed on ID stage, there will be only one
subsequent instruction gets into the pipeline, as shown in Fig.
6(b).

We use a one cycle delay transfer technology to solve
control hazard problem of the pipelined CPU.As shown as Fig.
7: Regardless of transferred or not, the instruction ((i + 1) -th)
which follows the transfer instruction (i-th) will always be
executed. This instruction set includes: jals, jrs, beqs and gts.
It is to guarantee that jump instruction caused by every
instruction can decide whether the transfer occurred and

calculate the destination address on the ID stage.

tjbeijs ID i: Ibeqs D)

1: IF Q) EXE MEM W3 i+1: IF 0) EXE MEM WB

2: IF D) EXE MEM t targe Q) EXE ME!

3: IF D) EXE
1+1:

IF ID EXE

(a): No transfer (b): Transfer
Fig. 7: One cycle delay transfer for pipelined CPU

jrs, jals are unconditional jump instruction which can be
determined on the ID stage, beqs and gts are conditional jump
instruction, it is necessary to compare if the data of two
registers are equal on the ID stage with XOR gates.

III. FPU DESIGN

The FPU design is based on the IEEE 754 floating point
Standard. The single-precision floating-point decimal (32 bits)
is:

F = {- ly Xl.f X2®~^^^[l] (1)
contains the following floating-pointThis paper

instructions:

• I type:

flws, fsws,flws2,fsws2

• FR type:

fadds,fsubs,fmuls,fdivs,fsqrts,fi2fs,ff2is;fadds2,fsubs2,fmul
s2,fdivs2,fsqrts2,fi2fs2,fT2is2;

FR type's instructions are used for floating-point arithmetic.
When execute these instructions, there are 6 pipeline stages: IF,
ID,E1,E2, E3, WB.

The FPU can execute the conversion between single
precision floating-point value and integer value,
add\subtract\multiply\divide and square root-operation of
single precision floating-point value. Because the conversion
between floating and integer is simple, there just need 2 stages
when executing instructions of ff2is, fi2fs, f]f2is2, fi2fs2. Other
floating-point instructions execution process as shown as Fig. 8.

fadds/fsub fmuls fdivs fsqrts

I

D

Newton-

iteration

Newton-

iteration

E

1

exponent
alignment

calculate

partial
product

calculate

partial
product

calculate

partial
product

E

2

calculate add partial
product

add partial
product

add partial
product

E

3

normalization normalization normalization normal izat

ion

Fig. 8 FPU execution process

Instructions of fadds and fsubs have the same calculation

structure. There is a select signal to judge whether execute
fadds or fsubs. The fmuls instruction design and implement
with Wallace Tree Algorithm. The fdivs instruction algorithm
is same to the fmuls instruction, the main difference is the
exponent computing. When execute fdivs construction, for
example

a-i-b = axl/b (2)
We use Newton-Raphson algorithm to calculate the value

of 1/b, and then use the Wallace Tree algorithm to calculate the
quotient. For the fsqrts instruction, we also use Newton-
Raphson algorithm. It consists of two part operation: Iteration
and square root calculation.

As shown as Fig. 9, integer and floating-point converter,
floating-point adder, subtractor, multiplier, divider, square root
device constitute the FPU. i f is a select signal which judges
the result of I2F and F2I.sel[0] decides the FADDER executes
whether an addition or subtraction. sel[2:l] is a selection signal
of a selector which judge the FPU output from the result of
FAADR,FMUL,FDIV,FSQRT.

rc[2;0];
000:fadd

OOhfsib
Olx: finu!

lOx: fdiv

IIx: fsqrt

Hiv-»

lined ladder

g FADDER
B

pipelmcd nnul

fdiv Rcwton

fsqrt_newton

Fig. 8 Pipelined FPU
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The result of FAADR, FMUL, FDIV, FSQRT must wait to
the E3 stage, before this stage we not get the final result. There
are 4 signals stall pipelined FPU.

• stall fpu: Data dependence between floating-point
instructions cause to stall pipeline;

• stall_flw: Data dependence between floating-point
instructionsand flws,flws2 cause to stall pipeline;

• stall_fsw: Data dependence between floating-point
instructionsand fsws,fsws2 cause to stall pipeline;

• stall_div_sqrt: fdivs, fdivs2, fsqrts, fsqrts2 wait
Newton-Raphson algorithm to complete iteration
operation.

IV. Pipelined CPU/ FPU based on SIMD architixture

DESIGN

A. S/MD

SIMD is short for Single Instruction/Multiple Data, while a
SIMD operation refers to a computing method that enables
processing of multiple data with a single instruction. In contrast,
the conventional sequential approach using one instruction to
process each individual data is called scalar operations. As
shown as Fig. 9, we can know the SIMD structure has the
below features:

• Single Instruction: All processing units execute the
same instruction at any given clock;

• Multiple Data: Each processing unit can operate on a
different data element;

• Best suited for specialized problems characterized by
a high degree of regularity, such as image/graphics
processing;

• Synchronous and deterministic execution;

il j lO xl

Y[ ] yi lO yi jO

iliiiil
X[ ] + Y[ ]

Fig. 9 an example ofSIMD calculation

B. SIMD instructions

According to the features of SIMD, we design a set of
single instruction double data instruction which include integer

and floating-point instructions. As shown as Table 1, the
instructions are double data. These are only double data
instructions, there are also some effective single data
instructions .For example, the instruction of movs which is a
single data instruction, but execute movs instruction in the
pipeline architecture, only need 2 stages.

TABLE 1. SOME EXAMPLE OF INSTRUCTIONS

Instructions Examples Meanings

fmuls2

adds2r6, r4 ,r2 r6 = r4 + r2

r7 = r5 + r3

subs2 r6 r4 ,r2 r6 = r4 - r2

r7 = r5 - r3

ands2 r6 r4 ,r2 r6 = r4 & r2

r7 = r5 & r3

ors2 r6 , r4 ,r2 r6 = r4 1 r2
r7 = r5 1 r3

xors2 r6 r4 ,r2 r6 = r4 r2

r7 = r5 ^ r3

]ws2 r4 , r2 r4 = memory[r2]

r5 = memoryfr31

sws2 r4 , r2 memory[r2] - r4
memoryfrSl = r5

fadds2f6,f2 ,f4 f6 = 12 + f4

f7 = f3 + r5

fsubs2 f6, f2 ,f4 f6 = f2 - f4

f7 = 0 - r5

fmuls2 f6 ,f2 ,f4 f6 = f2 X f4

f? = 13 X r5

fdivs2 f6,f2 ,f4 f6 = 12 - f4

f7 = 13 - f5

fsqrts2 15,f2 f6 = (12)1/2
t7 = (0)1/2

flws2 f6, r2 f6 = memory[r2]

n = memoryfrS

fsws2 f6, r2 memory[r2] = f6
memory[r31 - f7

fi2fs2 f6 . f2 f6 = i 2 l[f2]
n = i 2 ITOl

ff2is2 f6, f2 f6 = f 2 i[f2]
f? = f 2 i[f31

Ij^ Asm - Assembler Vl.O

i0x000"M004;
;0x000C"j0C'3:
0*000'3*300c:

,OxC«A">jOlO:

:'j*COO'}'30l4:

OxwOOOOlS:

OxOOOOOOlc:

0x00000020:

0x'00000024:

0x08443800

OxOccSBOOO

0x11095000

0x158sSOOO

OxlbbsfSOO

OxleS4bOOO

0x237ceSOO

Dx271a«000

0x2bl9d&Q0

adds r2, r4, r7
rabs2 r6, rS.rlO
subs rS,r9, rlO
ands2 r\2, rl4. rl6
ands r29,r30, r3l
or82 rl8,r20,r22
ors r2T,r28,r29
xors2 r24, r26. r28
xors r24, r25. r26
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Fig. 10 Assembler for the SIMD instructions
As shown as Fig. 10, we design an assembler to translate

these instructions to corresponding binary code for these SIMD
instructions. The assembler can translate instructions to file.mif
which is the original binary file of the instruction memory in
Altera FPGA.

C. SIMD CPU architecture

According to the pipeline architecture and SIMD feature,
we design a pipelined CPU including FPU based on SIMD
architecture.

E2

E3

WB

DiSIRlXniON

aCHE

r

REGISIER

r

DECODER

F REdSTERFILES I REGISIERFILES

ID

RHHSIEREZ

3;

'fRECBlERB

REOSTEREI

3

ItEt!lS1IRE2|
i

iREG^if

ALU

t
7eboi^"i1

ALU

|REG1^2

LT
DATAMEMORY

REGISTER

ID

EXE

MEM

WB

Fig. 11 CPU-FPU architecture

As shown as Fig. 11, the processor contains two model:
floating-point calculation module and integer calculation
module.

The floating-point calculation module is pipeline
architecture and it has 6 stages which including two FPU. Each
FPU can execute addition/subtraction, multiplication, division
and square root. The integer calculation model also is pipeline
architecture which includes 5 stages: IF, ID, EXE, MEM, WB.
It has two ALUs which can execute integer and logic
calculation.

The floating-point calculation module and the integer
calculation module share the same storage unit while have their
own registers. With the instructions of ff2is, flf2is2, fi2fs, fi2fs2,
integer and floating can converse with each other. This CPU
including FPU based on SIMD architecture can execute the set
instructions of table 1. It can perform parallel computing on
integer and floating-point data.

SIMD CPU

R0,R1

R2,R3

R4,R5

5 7

33 8

8 15

\

RAM

input
5 7

3 8

/
result

8 IS

Fig. 12 Example ofa SIMD calculation

As shown as Fig. 12, these is the calculation of adds2
instruction. Two data streams execute add at the same cycle
time. Store and load data are also the same way. These increase
the calculation between data streams.

V. Research results

A. CPU containing only integer instructions test

The following program is used to test the CPU which is based
on integer instructions.

Test codes:

0 : aSO10000

a8010000

a8010000

a8010000

a8010000

38060000

38480000

38482000

04084100

%(00)

%(00)

%(00)

%(00)

%(00)

%(00)

%(00)

%(00)

%(00)

1

2

3

4

5

6

7

8

9

A

0406200; %(00)

62360000; %(00)

B : 27190000; %(00)

movs rl ,4 %

movs r2 ,8 %

movs r3 ,16 %

movs r4,20 %

movs r5 ,24 %

lws2 r6 ,rO %

lws2 r8 ,r2 %

lws2 rl0,r4 %

adds2 rl2 ,r6,r8 %

adds2 r4,rl0,rl2 %

sws2 r5 ,r4 %

gts r5 ,r4, 16 %

Initial value ofdata memory:

0 00000000; %(0) data[0] %

1 000000A3; %(0) data[l] %

2 00000027; %(0) data[2] %

3 00000079; %(0) data[3] %

4 00000000; %(0) data[4] %

5 00000143; %(0) data[5] %

Test code meaning:
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These codes means load the data memory's
data[0],data[l],data[2],data[3],data[4],data[5], and add them,
then store the result to data memory.

Test result:

ffiOOOOOM !0110i:W21 HMbo028 1 1
lOStMOO IScSSOOOO 1098 86800

J^U
JWLTUWLTUl

^ n
'U"U¥U"Lmilk

j 1
m"ui

i_

WLTl

^^^iS^^^^S^SS^SSSSSi

Fig. 13 Test result

As shown as Fig.l3,the finally result 0x258, and add data[OJ
data[l],data[2],dala[3],data[4],data[5] is also 0x258, that means
the test result is right.

B. CPU including FPU based on SJMD test

Test result:

^T-r ' E5EiI®5555Ii555*^^*i
'1^

Fig. 14 CPU including FPU test result

As shown as Fig. 14, this is the result of the CPU
including FPU. In this code, we test the double data
instructions of floating-point instructions; fadds2, fsubs2,
fdivs2, fsqrts2, ff2is2, ffi2fs2.

I. Conclusion

In this paper, we design a set of SIMD instructions which
includes integer and floating-point instruction. According
these instructions, we design a pipelined CPU including FPU
based on SIMD architecture. The CPU has two SIMD

processing modules which can perform optimized parallel
processing for floating-point and integer processing. This
SIMD CPU has two times speed than normal MIPS CPU.

In future work, we plan to continue to extend this work
along several lines. From the application perspective, we look
to add more efficient and concise instructions, for example,
add the instruction which can execute four different data at the

same time. We also want to use the TLP(thread level
parallelism) way to design a fast CPU, and compare its
performance with the SIMD CPU. Finally, we plan to use this
CPU' set of instructions to build a 3D teapot model and
implement it on the FPGA Board.
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