
PDF issue: 2025-03-14

A Pattern-based Approach to Requirements
Formalization and Its Supporting Tool

WANG, Xi / 王, 皙

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編 / 法政大学大学院紀要. 情報科学研究科
編

(巻 / Volume)
9

(開始ページ / Start Page)
1

(終了ページ / End Page)
8

(発行年 / Year)
2014-03

A Pattern-based Approach to Requirements
Formalization and Its Supporting Tool

Xi Wang
Department of Computer Science, Hosei University, Japan

Abstract—Formalizing requirements in formal specifications
usually requires high skills for abstraction and experience in
using the formal notation in which the specification is written.
This poses a challenge to many practitioners who have to deal
with realistic systems within the required schedule and budget.
To handle this challenge, this thesis describes a pattern-based
approach to facilitate the formalization of requirements. In this
approach, a specification pattern system is pre-defined to guide
requirements formalization where each pattern provides a specific
solution for formalizing one kind of function into a formal
specification. All of the patterns are classified and oi^anized into
a hierarchical structure according to the functions they can he
used to formalize. Based on the pattern system, a method that
guides the requirements formalization process by applying the
pattern system is described. To facilitate the understanding of the
guidance produced by the pattern system and the utilization and
maintenance of the pattern knowledge, a method for representing
the pattern system is proposed. We also describe a prototype tool
that supports the pattern-based approach.

I. Introduction

Well-written requirements specifications are the key to
successful software projects. They provide a clear direction
for the development activity that may become a lengthy
and error-prone process if being carried out from scratch.
They also enable the identification of software flaws in the
early stage of the development process, which costs much
less than discovering design errors in the later stage. Fur
thermore, requirements serve as benchmarks for evaluating
and improving the quality of the produced software. In the
early days, natural language and graphical notation are used
to write requirements specification since they are easy to
use and understand. However, the inevitable ambiguities in
informal languages would probably lead to specifications that
are incomplete, unverifiable, inconsistent, too disorganized to
be modifiable, untraceableand difiicult to be used in operation
and maintenance phase. To deal with the problem, formal
specification technique is proposed.

Formal specification describes expected system behaviors in
mathematically based notations. With well-established formal
ism, it enables rigorous analysis of requirements and can be
manipulated automatically. It also sets a firm foundation for the
later stages of software development and serves as prerequisite
for verifying the correctness of the implementation alternatives
using formal proof or specification-based testing. In spite of
the statistic data that shows the improvement of software
quality by using formal specification techniques and successful
stories reported in the latest survey on industrial use of formal
specification, applications of specification to real projects in

industrial are still rare. The major reason stems from the
nature complexity of formal notations. Formalizing informal
requirements into formal specifications requires sophisticated
mathematical skills, abstraction ability and suflficient expe
rience in using formal notations. This poses a challenge to
practitioners who hardly receive any systematic training in
computer science but have to face pressures to produce quali
fied software systems within limited time and budget. Even if
they manage to understand formal notations through long-term
practice, formalizing complex functions is still error-prone and
costly.

Experience suggests that resolving ambiguities of require
ments is a learning process that often requires the analyst to
make decisions and formalizing requirements is a means to
precisely understand them. We believe that an effective way
to solve the three problems in requirements formalization is
to take the approach in which ambiguities of informal require
ments are gradually clarified while the corresponding formal
expressions are automatically generated. If the necessaiy func
tion details can be correctly retrieved, its formalization only
involves changing its format, which can be more efficiently
and reliably done by a software tool.

To this end, a pattern-based approach to refining informal
requirements into formal specifications is proposed in the
thesis. In this approach, a specification pattern system is pre
defined where each specification pattern provides a specific
solution for formalizing one kind of function. To facilitate
pattern selection, all of the patterns are categorized into a
hierarchy according to the functions they can be used to
formalize. The distinct characteristic of our approach is that
all of the patterns are stored on computer as knowledge
for creating effective guidances to facilitate the developer
in writing formal specifications; they are "understood" only
by the computer but transparent to the developer. To enable
automatic application, we give the formal definition of the
pattern system.

Based on the formal definition, the method for guiding
requirements formalization by using the pattern system is
described. It includes two steps: requirements derivation and
requirements translation. The former guides the selection of
appropriate specification patterns and applies the derivation
knowledge of the selected patterns to guide the assignment
of the defined attributes. The latter automatically transforms
the assigned attributes into formal specifications according to
the transformation knowledge of the selected patterns. During
the application process of the selected patterns, necessary data

- 1 -

types will be automatically recognized and their definitions
will be refined.

In addition to the design and definition of the specification
pattern system, the representation of the pattern knowledge is
also an important factor to the performance of the pattern-
based approach. We adopt attribute tree and HFSM (Hierar
chical Finite State Machine) to represent the pattern knowl
edge to facilitate understanding of the produced guidance
and utilization of the pattern knowledge. We also describe
a prototype tool that implements the pattern-based approach.
By utilizing the knowledge, it derives informal requirements
through interactions with its users on the semantic level
and automatically transforms the obtained information into
suggested formal specifications, which enables developers to
concentrate on function issues without worrying about how
to guarantee the completeness and how to formally represent
these functions.

II. Related Work

Many methods have been proposed for supporting require
ments formalization. They can be generally divided into two
kinds. The first kind focuses on the construction of formal

specifications. In (1), the authors describe some example
approaches to integrating structured methods of software de
velopment with formal notations. In (2), authors uses the
structured analysis (SA) model of a system to guide the
analyst's understanding of the system and the development of
the VDM specifications. S. Liu (3) proposes an approach to
constructing software specifications by integrating top-down
and scenario-based methods. These methods either do not

provide any guidance for formal specification construction or
provide guidelines on an abstract level. There are also many
methods for supporting formal specification construction using
patterns. Stepney et al. describe a pattern language for using
notation Z in computer system engineering (4). Lars Grunske
presented a specification pattern system of common proba
bilistic properties for probabilistic verification (5). Konrad et
al. (6) create real-time specification patterns in terms of three
commonly used real-time temporal logics based on an analysis
of timing-based requirements of several industrial embedded
system applications and offer a structured English grammar to
facilitate the understanding of the meaning of a specification.
In spite of enthusiasm in academics, specification patterns
are not yet widely utilized in industry mainly because of the
difficulties in applying them. Effective applications of most
specification patterns require full understandings of them, and
the ability to select and solve their specific problems depends
on the understanding, since their informal representations
make it impossible to utilize the pattern knowledge without
human involvement. By contrast, our pattern-based approach is
able to provide specific comprehensible guidance by automatic
application of the pattern system. Developers only need to
follow the guidance and the rest of the tasks will be handled
by the tool.

The second kind emphasizes the solution to the conversion
of informal requirements to formal specifications. William E

et al. introduce a general framework for formalizing a subset
of UML diagrams in terms of different formal languages based
on a homomorphic mapping between metamodels describing
UML and the formal language (7). Cory Plock et al. show
how to transform LSC (Live Sequence Charts) specifications
with concurrency to timed automata (8). Sunil Vadera et
al. propose an interactive approach for producing formal
specifications from English specifications (9). Several tools
have also been proposed for automatic transformation, such
as U2B (10). But such transformation is conducted based on
certain pre-defined syntactic rule without considering the real
meaning of the models. Due to the inherent difficulty in NLP
technology, there is no effective tool-support in constructing
formal specifications on the semantic level. The introduction
of pattern seems to offer a solution. Informal descriptions is
not treated as the resource of our pattern-based approach. The
desired functions are obtained by gradually clarifying informal
ideas with human involvement. Thus, the performance of the
approach will not be affected by NLP technology.

Several kinds of tools have been developed for supporting
requirements formalization. Z User Studio is developed as an
integrated Z support tool (11). U2B translator (10) converts
UML Class diagrams, including attached state charts, into the
B notation (12). SPIDER (13) derives and instantiates system
properties in terms of their natural language representations.
Kanth Miriyala et al. describe an interactive system called
SPECIFIER for deriving formal specifications of data types
and programs from their informal descriptions (14). These
tools is either unable to work on the semantic level or inca

pable of dealing with data-intensive systems without manual
efforts on formal notations. By contrast, our tool supports the
requirements formalization process on the semantic level and
the developers can focus function design without the need of
considering the formal notation details.

III. An overview on the pattern-based approach to

REQUIREMENTS FORMALIZATION

The outline of our pattern-basedapproach is given in Figure
?? where requirements formalization consists of two stages:
requirements derivation and requirements translation.

During the first stage, the informal requirements in the
developer' mind is gradually clarified and the function details
of the clarified requirements is derived. There are two major
activities in this stage: attributes clarification and data type
declaration. The former specifies each attribute of the re
quirements to obtain sufficiently detailed understanding while
the latter accomplishes the declaration of all the necessary
data types for formalizing the requirements. Instead of being
performed independently, these two activities are alternatively
carried out. Clarifying attributes needs to use the existing
types defined in data type declaration. Meanwhile attributes
clarification help specifies the types that should be defined
to enable the description of the clarified attributes. Therefore,
the two activities precede hand in hand until both them are
terminated. In the second stage, the obtained function details
are translated into a formal specification. Such a translation is

- 2 -

Requirements
in mind

Requirements
derivation

Necessary
function details

Formal

specification

Requirements
translation

I attributes data type syntactical j
Iclarification declaration transformation I

Represailed

specification
pattern system

Stored and ^plied
in the computer

^ c I

attribute tree HFSM

Fig. I. The outline of the pattern-based approach

actually done by a syntactical transformation from the format
of the function details to a formal notation.

Both of the stages are performed through interactions
between the developer and computer where computer pro
duces guidance and the developer inputs the response to the
computer. The response triggers computer to produce new
guidance which is then followed by the developer for the next
step of requirements formalization. Such a process repeats
until a formal specification is achieved. The foundation of
this interaction process is a specification pattern system which
is stored in the computer to be applied to interact with the
developer. The specification pattern system organizes a set of
specification patterns in a hierarchical structure where each
pattern carries two kinds of knowledge for formalizing one
kind of function: derivation knowledge and transformation
knowledge. The former is designed to support requirements
derivation and latter is created to deal with requirements
translation. We adopt attribute tree and HFSM to represent the
above pattern knowledge in computer. Attribute tree is used
in derivation knowledge to intuitively show the definitions
of the requirement attributes that need to be clarified, which
facilitates the developer's understanding on the structure of the
intended requirements. HFSM is used to describe other parts of
derivation knowledge and all transformation knowledge, since
it is easy to be manipulated by machines and maintained by
several mature supporting tools.

We will explicitly describe each component in the approach
outline from the bottom level since the understanding of

the high-level components relies on that of the lower-level
components. Consequently, the specification pattern system
will be first introduced and the representation of the included
pattern knowledge is then described. Based on the pattern
knowledge, we will show how to apply it for supporting the
two stages during requirements formalization.

IV. Specification PATTERN SYSTEM

Specification pattern system is composed of a set of inter
related specification patterns. We will first present the concept
of specification pattern and then shows how these patterns are
organized in the hierarchy of the pattern system.

A. Specification pattern

A specification pattern is established to guide the formal
ization of one kind of function f. It mainly consists of two
parts providing solutions for tackling the two tasks during
formalization: the clarification of / and the representation
of the clarified / in a formal notation. In the first part, /
is treated as a composition of its necessary attributes. These
attributes are formally defined as elements and clarifying / is
to assign values to the elements according to their definitions.
A set of clarification rules are provided for guiding such
assignments. In the second part, a set of transformation rules
are given for generating formal representation of / according
to the values assigned to the elements. Consider the function
"belong to" which describes a relation where certain object is a
member of another object. Each specific "belong to" function
is composed of two attributes: the member and the object that
the member belongs to. Therefore, the corresponding pattern
includes clarification rules for guiding the assignment of the
two attributes and transformation rules for generating a formal
representation of the "belong to" function according to the
assigned values. Specifically, our specification pattern is de
signed with a structure for organizing the included knowledge.
It is composed of the following four items:

name the unique identity of the pattern
explanation explains what kind of functions the

pattern can be used to formalize
constituents specifies how to write the require

ment for the intended function

solution rules for transforming the achieved
requirement into formal expressions

solution

In our approach, the specification patterns are designed to
be applied by machines; any ambiguity will impede their
automatic utilization. For this reason, we formalize the pattern
structure in to following definition where 'P(s) denotes the
power set of set s.

Definition I: A pattern p is a 6-tuple
{/, E, PR, cxpl, where

• / is the unique identity ofp denoting the kind of function
that p is used to formalize

• E is a set of elements where each element denotes one

of the necessary attributes of /
• PR is a set of constraints on p or the elements In E

- 3 -

• expl : {/} U U PR —> string informally interprets
/, elements in E and constraints in PR for the purpose
of human-machine interaction

• $: U denotes the set of clarification rules for

guiding the assignment of the elements in E where

- '• E —» E determines the order for specifying
elements where

* 3eo€E • Co ^ ran{^E) (eo represents the first
element to be specified)

* Ve—e'€<frE • e ^ e' (e ^ e' denotes a maplet in
where e' should be specified after e)

- : E —> RPT defines a rule repository for each
element e in E to guide the assignment of e where
each repository in RPT is a triple {R,Ro,'y) where

* R : V{PR) —> V{PR) denotes the set of rules
in the repository where each rule determines the
satisfactory ofa set ofconstraints based on already
satisfied constraints and ^pr^pr'^r • PRi H
Pi?; = 0

* Po C P is the first set of candidate rules to be
applied

* 7 : P —> P(P) determines the sequence for
applying the rules in P where 7(r) indicates the
candidate rules for further clarifying e after rule
r is applied

* RSi^rani-y) ' PR,„-^PR'„„PR„^PR'„eRSi '

VprePfim 'pr '^pr'ePRn-^Pr' (for each r € P,
only one of the candidate rules in 7(r) will be
activated when formalizing a function using p)

• ^ : V{PR) —» string denotes the set of transforma
tion rules for generating the formal representation of /
according to the values assigned to the elements where

'̂ PRi-*Si,PRj^sj€^-'̂ prGPRi-Pf ^pr'€PRj'~'P '̂ (ooly
one of the rules in ^ will be activated for the specified
elements)

The above definition organizes the four items of the pattern
structure into a tuple and formalizes them into corresponding
elements of the tuple. Specifically, item name and explanation
are denoted as / and the mapping originating from name in
expl respectively. The other mappings in expl are designed
to explain the semantics of a subset of the formal concepts
in the pattern, which enable the production of comprehensible
guidance from formal notations. For item constituents, its sub-
item elements is transformed into a set denoted as P in the

tuple and the sub-item rule for guidance is formalized into
rule set $. According to the rule for guidance item of the
original structure, item formally defines how to guide the
retrieval of the four elements in E by defining ^e and ^r.
Mapping ^ mathematically defines item solution.

B. The hierarchy in the pattern system

Due to the inherent complexity of software, the number of
patterns will be so large that the selection process becomes a
hard task for users and the management would be difficult. To
this end, we divide them into distinct categories and organize

them in a hierarchical structure in the pattern system by
categorizing the functions they are used to formalize. Figure 2
shows the hierarchy where rightmost items represent patterns
and others represent categories. Root "Pattern system" owns
two sub-items, which indicates that patterns are divided into
two categories: one for describing unit functions denoted as
UF and the other for depicting compound functions denoted
as CF. Their sub-categories are further classified into more
specific sub-categories or patterns. For example, category UF
is divided into three sub-categories: Relation patterns for
formalizing the descriptions of relationships between objects.
Retrieval patterns for generation formal expressions repre
senting system variables and Recreation patterns for formal
description of changes on the state of the system.

Pattern

system

Unit

Function

(UP)

(CF)
Compound

Function

— Relation

Retrieval

Recreation -

if-then^lse

case

p Binary belongTo

equal

Multiple 1
indirect

direct

— Modification

— Rearrangement

add

— alter

— delete

sorting

— group

Fig. 2. Pattern categorization

V. Requirements formalization based on the

SPECIFICATION PATTERN SYSTEM

The major task in requirements formalization is to describe
software behaviors in formal expressions, such as pre- and
post-conditions of operations. Another important task is the
declaration of data types since writing formal expressions
requires the availability of a set of state variables which
need to be formally defined by custom data types. Instead
of performing sequentially, these two tasks are usually alter
natively carried out. For each function to be formalized, if
the existing data types are not sufficient or inappropriate for
formally describing it, the developer will be guided to create
new types or modify the existing ones according to the need
of the function. Then the description of the function continues
with the updated data types and the declaration activity will be
repeatedly performed to deal with the later encountered data
type problems.

We will describe the methods for supporting the above
two activities in detail respectively. For function description
in formal expressions, we assume the necessary data types
are defined by applying the data type declaration method
and focus on explaining the generation process of the target
formal expressions from informal requirements. For data type
declaration, we will show how the functions to be formalized
guide the defining of the appropriate data types.

- 4 -

A. From informal requirements to formal specifications

Well-defined pattern structure establishes a firm foundation
for guiding the requirements formalization process. Applying
the specificationpattern system to refine informal requirements
into formal specifications largelydepends on pattern structures
and is therefore straightforward.

Given a requirement rq, its formalization based on the
pattern system contains two major steps.

Step 1 Pattern selection
Appropriate patterns for formalizing rq need to be
selected first. The selection process can be guided by
the hierarchy of the pattern categorization. Starting from
the top level of the hierarchy, the developer is required
to select a sub-category on each level until reaching
a pattern p. It is not difficult to find the right pattern
because of three reasons. First, pattern names are written
in natural language and designed to be distinguishable
from each other on the semantic level. Second, the
patterns are organized by categories at different levels
and the developer only needs to deal with one category
or sub-category at a time. Third, the expl items of the
patterns describe their usage in more details and can
help confirm the selection decision. Human intelligence
is needed in this step to analyze rq on the semantic level
and decompose it into a set of basic functions where
each basic function can be formalized by a pattem.

Step 2 Pattem application
With a set of patterns {pi,...,Pn} selected for all the
sub-functions { /i, of rg, the next step is to apply
them. Each pattem pi denoted as (/, E, PR, expl,
is applied by the following two steps.

a) requirements clarification
Based on the specification pattems, requirements
clarificationis to instantiate the appropriatespecifi
cation pattems by specifying the relevant elements.
It generates requirements composed of elements
assigned with concrete values. The assignment
of these elements is guided according to their
definitions and results in clarified requirements
where all the elements are specified with values.
The formal definitions of the involved elements

guarantee the accuracy of the requirement so that
it can be automatically transformed into formal
specifications.

b) formal expression generation

In this step, an expression exp that formally
describes f will be generated based on the values
assigned to the elements in pi.

B. Data type declaration

As the complexity of software rises, data type declaration
becomes more difficult to manage and more likely to result in
defecteddata types. We put forward an approach to supporting
data type declarations for requirements formalization based
on specification pattems. Its underlying principle is that types

should be defined to meet the need of correctly and concisely
describing relevant functions. Type definitions will evolve as
function description proceeds until all the expected functions
are properly represented in formal expressions. During the
application of each pattem , necessary data types can be
automatically recognized and their definitions will be refined.
Specifically, when applying each selected pattem, we use
function-related declaration to guide the refinement of the
related data types. It consists of two steps for different stages
of the application process: property-guided declaration and
priority-guided declaration.

The proposed approach regards data type declaration as an
evolution process along with the writing of formal expressions
based on function pattems. This evolution process starts with
a modulized formal specification and terminates when the
detailed behavior of each module is precisely given. On the as
sumption that specification architecture is already established
where modules are organized in a hierarchical stmcture and
processes of each module are connected by their interfaces,
developerswill first be required to manually declare data types
for defining these interfaces. Since process behaviors is not
considered in this stage, the declared data types only reflects
the initial idea of the intended functions and will be refined

as the function details are clarified.

Then the description of individual processes is started where
each process should be attached with a pair of pre- and
post-condition. For each pre-/post-condition, a pattem suitable
for describing the expected function will first be selected.
The selected pattem is then applied. Step 1 is to guide
the specifying of its elements and step 2 is to generate an
intermediate formal result based on the specified elements.
During these two sXeps, function-related declaration is carried
out to declare new types and refine the existing type definitions
where property-guided declaration is carried out on step I
and priority-guided declaration is carried out on step 2. The
former guides the refinement of type definitions under the
principle that all the properties inferred from the specified
elements should be satisfied while the latter provides suggested
definition of certain types according to the priority attribute
associated to ^ of the selected pattem. These two techniques
share a type combination method that refines the existing type
definitions by combining different definitionsof the same type.
For example, suppose pattem p is selected to write a formal
expression and type t is initially declared as definition defi
for specifying element e\ of p. When specifying element
62, property-guided declaration leads to a suggestion that t
should be defined as definition de/2 to enable the correct
representation of the value assigned to 62. If defi is not equal
to de/2, the combination method will be applied to refine
defi with def2 by combining them into a new definition for
declaring t.

If the generated intermediate result contains informal ex
pressions, formalization of the result is needed. Since it is
performed by applying the pattems indicated by the informal
expressions. Junction-related declaration can be repeatedly
manipulated to further refine the data types of the specification.

- 5 -

til
ei G2

tiir".
d^, d„ ... djt CI22

attrii^
/attrii

\

\

F 611 d, di •••
I

Vj, V22

Fig. 3. The structure of attribute tree

When the formalization process terminates with a formal ex
pression, a refineddata context is obtained. Finally, expression
update is carried out where all the formal expressions that are
inconsistent with the refined data context are updated.

VI. Representation of the pattern knowledge

Instead of directly using the structure and formal definition
of the specification pattern and the pattern system to represent
the pattern knowledge, we adopt two languages to represent
different parts of the knowledge. One language is designed to
represent the part of the knowledge that needs to be displayed
to the developer and the other is designed to be applied by
machines in an automated manner. Considering the different
characteristics between the requirements of machine-oriented
knowledge representation and people-oriented knowledge rep
resentation, attribute tree and HFSM are chosen to describe
the two kinds of knowledge respectively.

A. Attribute tree

Figure 3 shows the attribute tree representation.
The root node F of the tree denotes that the pattern is

used to guide the clarification of the requirements on function
F. Its child nodes 61,62,... denote the requirement elements
for composing the pattern. Each label attvi reveals that the
element ei is defined to represent attribute attri of F, For
each node 6^, its child nodes dii,di2,... indicate the def item
of the corresponding element where each dij represents one
of the constitute types. Foreach node dij, label Uj shows the
type identifier of dij and the child nodes demonstrate the inner
structure of dij.

B. HFSM

HFSM models system behaviors using a set of FSMs
organized in a hierarchy. The definitions of FSM and HFSM
are first given before explaining how to represent pattern
knowledge.

Definition 2: A FSM (Finite State Machine) is a 9-tuple
(Q, qO, F, VP, /, G, p, 6, X) where Q is a non-empty finite set
of states, 9O G <5 is the initial state, F c Q is the set of
accept states, VF is a set of variable states where each variable
state is a triple (V,V',9) where V is the finite set of system
variables, V is a set of values and 9 : V —^ V defines the
associated value for each v eV, I is the finite set of symbols.

processed input

retrieved ., ..
Knowledge knowledge Guidance ^ "sponse

extractor generator

XML file

stored

0
Specification pattern

knowledge

developer

Preprocesser'

/

Defined Qrpes
and variables

Fig. 4. The design of the tool for supporting requirements formalization

G is the finite set of guard conditions, p : Q —> VP is the
state function indicating the values of the involved variables
on each state, 6 : Q x {I x V{G)) —> Q is the transition
function relating two states by input and guard conditions,
A: Qx{IxV{G)) —> I is the output function determining
output based on the current state and input.

Definition 3: HFSM (Hierarchical FSM) is a pair (F, a)
where F is a set of FSMs and a ; Q U / U V —^ P(F)
indicates the hierarchical relations among FSMs in F where
lower-level FSMs interpret certain portion of upper-level FSMs
iff BaoEF •VF'€ran(a)' Aq ^ F' (Aq is the root FSM).

The HFSM representing the target pattern knowledge is
built in a top-down way. The root FSM reflects the outline
of the process by describing the initial and final states of
steps 1 and 2 in pattern system application. The details of the
steps are modeled in lower-level FSMs. The lower-level FSM
for modeling step 1 reveals the state transitions made by the
detailed process of pattern selection. For step 2, requirements
clarification and formal expression generation are modeled by
a set of lower-level FSM each describing the application of
one of the patterns.

VII. Prototype tool for supporting the

PATTERN-BASED APPROACH

The main goal of our pattern-based approach is to support
computer-aided formalization of software requirements. To
validate the approach and demonstrate its efficiency, we im
plement it into a prototype tool that implements the approach.
It interacts with the developers to derive necessary function
details of the intended requirements and transformed the
derived requirement into formal specifications.

Figure 4 shows the outline of the tool that is composed of
four components:

• specification pattern knowledge stored in a XML file
• knowledge extractor for retrieving appropriate knowledge

from the XML file

• guidance generator for transforming the retrieved knowl
edge into explicit guidance that asks for the response from
the developer

• preprocessor for collecting input from the developer and
processing it for knowledge extractor

When supporting the formalization of an intended require
ment, knowledge extractor retrieves appropriate knowledge

- 6 -

from the XML file that stores the specificationpattern knowl
edge. The retrieved knowledge is then used by guidance gen
erator to produce comprehensible guidance. By following the
produced guidance, the developer is expected to respond to the
tool. After receiving the input preprocessor analyzes
and processes it within the context of the defined types and
variables (The tool is executed on the assumption that ail the
necessary types and variables are already defined since the
data type declaration method is has not been implemented).
The processed input information is used by the knowledge
extractor to retrieve new knowledge from the XML file for
producing new guidance. Such interactions continue until the
target formal expression is generated.

Figure 5 shows a snapshot of the main frame of the
tool being executed for supporting the writing of the formal
specification of a banking system.

cytfmMadiA

BES^HBBSP
B Uaniamafit.dvconi

- Formal Specification Bariking System
ISarvkadscom^,

_FunetiBAS^lnctioA

•-bwrBfthicB] rf UtioD '

* 1MB hurarehioil Tvljlion

-f IU«T**tioa d*xnptMn '
a MBieMnJjr dAU upd^tl

Add

dtltU

«h«r

A miTTAnCVBtBl

AfiCMBlXd S ugO>

Pimad B naaB

DajrtiMk

Sm • Yw'MdetklW
OpntaaTn* « I .

process de^it (inC Cuslomrrfnr, cy;
CumncyType, wa:Amouol) success: string
pre true

Fig. 5. The main frame of the tool

The tree structure on the top left reflects the architecture
of the specification where each node indicates a module.
High-level modules are decomposed by attaching child nodes
representing low-level modules. For the banking system, the
top level module systeniModule is decomposed into two low-
level modules Service_decom and Managementjlecom.
The module Service_decom describes the banking services
provided by the system for the customers owning authorized
accounts and the module Managementjlecom. describes
the operations for analyzing and maintaining the system
information. The right part of the interface is used to edit
the content of the selected module where Type denotes the
declaration of custom data types, Var denotes the declaration
of specification variables, Processes denotes the collection of
processes describing various operations in the module and Inv
denotes the collection of invariants each expressing a property
that must be sustained throughout the entire specification.
When editing a module, its types and variables need to be
first declared and the tool will use these pieces of information
to guide the formalization of pre- and post-condition of each
process, as well as invariants.

For each function to be formalized, a pattern should be

TABLE I

The result oe rm; eirst experiment

Software I Number of I Number of I Number
processes

53

49

50

53

55

60

applied patterns
To
9

9

11

(2

12

of errors

13

II

10

13

10

11

selected from the tree structure on the bottom left of the

main frame. Once the selection decision is made, a new frame
will be poped up as the medium to derive necessary function
details of the intended basic function. When adequate function
details are derived, a formal expression will be generated and
displayed on the frame. It is allowed to be modified and
copied to the main frame as the formalization result of the
corresponding pre/post-condition or invariant.

VIII. Experiment

To evaluate the effectiveness of the pattern-based approach,
two controlled experiments on the supporting tool have been
conducted.

In the first experiment, we use the supporting tool to
formalize the functions of several typical software systems
including Hotel reservation system, Banking system, E-ticket
system, Suica card system. Library information system and
Online shopping system (For concise illustration, we will use
H, B, E, 5, L, O as the abbreviation of these six systems
respectively). Table I shows the result of the experiment.
Although this result cannot lead to the conclusion that any
requirement can be formalized by a set of our patterns, it
does demonstrate that the proposed approach is able to support
computer-aided formalization of commonly used functions.

In the second experiment, we invite 76 students and divided
them into two groups. Each student in group 1 is asked to
manually write the formal specification of a banking system
and the students in group 2 formalize the behavior of the
banking system by using our prototype tool. The result of
the experiment is organized in Table II. As can be seen from
the table, the tool help fonnalize requirements more eflficiently
and enhance the quality of the resultant formal expressions.

IX. Conclusion and Future Work

Formalizing informal requirements into formal specifica
tions significantly improve the accuracy of the requirements
and help deepen the understanding of the envisioned system.
However, this activity requires high skills for abstraction and
the use of formal notations, which remains a challenge to
most of the practitioners. To assist practitioners in formalizing
requirements, this thesis proposes a pattern-based approach to
guide the clarification of requirements and representation of
the clarified requirements in format expressions. A specifica
tion pattern system is pre-defined in this approach. It includes
a set of patterns categorizes these patterns in a hierarchy
according to the functions they are used to formalize. A

- 7 -

TABLE II

The result of the second experiment

Average time Average number

Process behavior for formalization of errors

group 1 group 2 group 1 group 2
customer authorization 4.5 min Imin 2 0

deposit I6.7min I4min 6 2

withdraw 7.6min 4min 5 2

currency exchange I0.7min 5.2min 7 1

information display 24.Smin 8.4min 9 1

transfer I3min 6.5min 4 0

manager authorization 0.4min 0.8min 1 0

transaction analysis ISmin 4.2min 5 2

balance analysis 8.5min 3.8min 6 2

global transaction analysis 19.7min 7.9min 8 3

global balance analysis I4min 7.lmin 9 1

method for guiding the requirements formalization by applying
the specification pattern system is given. It only requires the
developers to make decisions on function design issues and
handles the rest of the formalization work.

Attribute tree and HFSMare adopted to represent the pattern
knowledge. The former facilitates developers' understanding
on the structure of the intended requirement while the lat
ter facilitates the utilization and maintenance of the pattern
knowledge. Furthermore, a prototype tool that implements the
proposed pattem-based approach is developed and described.

Sometimes, the informal guidance given by the tool is not
easy to understand. One solution is to adopt simple formal
expressions in describing part of the guidance since they
can be more comprehensible than their informal counter-part.
Experiments need to be held to investigate this feasibility.
Moreover, the correctness of the pattern knowledge is also
important to the performance of our approach. We will carry
out formal verification, inspection and testing technologies to
check the correctness in our future research work.

We are also interested in developing techniques for automat
ically adding new knowledge to make the tool support more
intelligent, as well as the techniques for supporting type and
variable declarations and architecture design to support the
whole process of formal specification construction.

References

[1] L. Semmens, R. B. France, and T. W. G. Docker,
"Integrated structured analysis and formal specification
techniques." Comput. J., vol. 35, no. 6, pp. 600-610,
1992.

[2] M. D. Fraser, K. Kumar, and V. K. Vaishnavi, "Informal
and formal requirements specification languages: Bridg
ing the gap," IEEE Trans. Software Eng., vol. 17, no. 5,
pp. 454-466, 1991.

[3] S. Liu, "Integrating top-down and scenario-based meth
ods for constmcting software specifications," Inf. Softw.
Technoi, vol. 51, no. II, pp. 1565-1572, Nov. 2009.

[4] S. Stepney, F. Polack, and 1. Toyn, "An outline pattem
language for Z: five illustrations and two tables," in Third
International Conference ofB and Z Users pages =.

[5] L. Grunske, "Specification Patterns For Probabilistic
Quality Properties," in Proceedings of the 30th interna
tional conference on Software engineering, 2008, pp. 31-
40.

[6] S. Konrad and B. H. C. Cheng, "Real-time specifica
tion patterns," in Proceedings of the 27th international
conference on Software engineering. ACM, 2005, pp.
372-381.

[7] W. McUmber and B. Cheng, "A general framework for
formalizing uml with formal languages," in Software
Engineering, 2001. ICSE 2001. Proceedings of the 23rd
International Conference on, may 2001, pp. 433 - 442,

[8] C, Plock, B. Goldberg, and L. Zuck, "From requirements
to specifications," in 12th IEEE International Conference
and Workshops on the Engineering of Computer-Based
Systems, april 2005, pp. 183 - 190.

[9] S. Vadera and F. Meziane, "From english to formal
specifications," The Computer Journal, vol. 37, no. 9,
pp. 753-763, 1994.

[10] C. Snook and M. Butler, "U2b - a tool for translating
uml-b models into b," in UML-BSpecification for Proven
Embedded Systems Design. Springer, April 2004, no.
DSSE-TR-2003-3, chapter: 6.

[11] H. Miao, L. Liu, C. Yu, J. Ming, and L. LI, "Z user
studio: An integrated support tool for z specifications,"
in Proceedings of the Eighth Asia-Pacific on Software
Engineering Conference. IEEE Computer Society, 2001.

[12] J-R.Abrial, The B-Book: Assigning Programs to Mean
ings. Cambridge University Press, 1996.

[13] S. Konrad and B. H. C. Cheng, "Facilitating the con
struction of specification pattem-based properties," in
Proceedings of the 13th IEEE International Conference
on Requirements Engineering, Washington, DC, USA,
2005, pp. 329-338.

[14] K. Miriyala and M. Harandi, "Automatic derivation of
formal software specifications from informal descrip
tions," Software Engineering, IEEE Transactions on,
vol. 17, no. 10, pp. 1126 -1142, oct 1991.

- 8 -

