法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-06-01

動的バイナリーニューラルネットワークの学 習と応用

上月, 良太 / KOUZUKI, Ryota

(出版者 / Publisher)法政大学大学院理工学・工学研究科

(雑誌名 / Journal or Publication Title)

法政大学大学院紀要.理工学・工学研究科編 / 法政大学大学院紀要.理工学・工 学研究科編

(巻 / Volume)
55
(開始ページ / Start Page)
1
(終了ページ / End Page)
5
(発行年 / Year)
2014-03-24
(URL)
https://doi.org/10.15002/00010410

動的バイナリーニューラルネットワークの学習と応用

LEARNING AND APPLICATION OF THE DYNAMIC BINARY NEURAL NETWORKS

上月 良太

Ryota KOUZUKI

指導教員 斎藤利通

法政大学大学院工学研究科電気工学専攻修士課程

This paper studies a dynamic binary neural networks characterized by signum activation function and ternary weighting parameters. In order to store and stabilize a desired periodic orbit, we consider simple learning algorithm. In the learning algorithm, the threshold parameters are determined theoretically. The weighting parameters are adjusted based on the genetic algorithm. We use a simple return map on the lattice points in order to visualize the basic dynamics of the network, such as periodic phenomena and its domain of attraction. Performing basic numerical experiments for an example teacher signal of a matrix converter, we have confirmed storage of desired periodic patterns and their stability.

Key Words : Dynamic Binary Neural Networks, Matrix Converter, Genetic Algrithm

1. はじめに

動的バイナリーニューラルネットワーク (DBNN) は、シ グナム関数と3値重みパラメータを有する3層のフィード フォワード型のバイナリーニューラルネットワーク (BNN) に 遅延フィードバックを適用することによって構成される [1]。 DBNN は、中間層のニューロン数が十分であれば、任意の ブール関数を実現できる [2]-[4]。DBNN は、パラメータと 初期値に依存して、様々な2値周期軌道 (BPO) を呈するこ とができる。また、DBNN は様々な工学系応用が可能であ る。その例としては、信号処理や回路制御等が挙げられる [4] [6] [7]。しかしながら、これらの DBNN は取り扱う問題の 規模により中間層ニューロン数の増加や、計算コストの上昇 などの問題点を抱えている。

これらの問題を解決するために、いくつかの学習法が提案 されてきた。本論文では、中間層ニューロン数を固定した状 態での DBNN の学習について考察する。この DBNN は、シ グナム活性化関数を有し、荷重パラメータを3値、しきい値 パラメータを整数としている [4] [5]。DBNN は2値パター ンやデジタル回路による実装の実現に適している。

DBNNの動作を視覚化するために、グレイコード表示のリ ターンマップである Gray-code Based Return Map (Gmap) [1]を用いる。DBNN は N 次元格子点上の 2 値ベクトルを扱 うので、ダイナミクスを格子点上のマップに表すことができ る。グレイコード表示を格子点に適用することで、Gmap を 得ることができる。Gmap は BPO やそれらの収束領域のよ うな基本特性を把握するのに有用である。学習では、学習さ せる教師信号を用いて重みパラメータを理論的に決定するこ とで、教師信号を DBNN に埋め込む。その後、教師信号へ の安定性の向上のために、遺伝的アルゴリズム (GA) に基づ くスパース化学習を行う。学習アルゴリズムの機能を調べる ために、基本的な BPO の教師信号による数値実験を行い、 所望の BPO の埋め込みとその BPO の安定性について検討 する。 2. 動的バイナリーニューラルネットワーク DBNN は図1に示す3層構造のネットワークに遅延フィー ドバックを適用することうに記述される。

$$x_{i}^{t+1} = f\left(\sum_{j=1}^{N} w_{ij}^{o}\xi_{j}^{t} - T_{i}^{o}\right), \ i = 1 \sim N$$

$$\xi_{j}^{t+1} = f\left(\sum_{i=1}^{N} w_{ji}x_{i}^{t} - T_{j}\right), \ j = 1 \sim M \qquad (1)$$

$$f(x) = \begin{cases} 1 & \text{for } x \ge 0\\ -1 & \text{for } x < 0 \end{cases}$$

ただし、 $x^t = (x_1^t, \dots, x_N^t)$ 、 $x_j^t \in \{-1, 1\} \equiv B$ は離散 時間 t における N 次元の 2 値ベクトルである。また、 $\xi^t \equiv (\xi_1^t, \dots, \xi_N^t)$ 、 $\xi_j^t \in \{-1, 1\}$ は t での M 次元中間出力ベ クトルである。式 (1) を次式で略記する。

$$\boldsymbol{x}^{t+1} = \boldsymbol{F}_D\left(\boldsymbol{x}^t\right), \ \boldsymbol{F}_D: B^N \to B^N \tag{2}$$

中間層ニューロンは 3 値の荷重パラメータ w_{ji} 及び整数のし きい値パラメータ T_j で特徴づけられる:

$$w_{ji} = \{-1, 0, 1\}$$

$$T_j = \text{Integer}$$
 (3)

ただし、 $i = 1 \sim N, j = 1 \sim M$ は中間層ニューロン数 Mを制御する内部パラメータである。同様に出力層ニューロンは 2 値の荷重パラメータ w_{ji}^{o} としきい値パラメータ T_{i}^{o} で特徴づけられる。

DBNN のダイナミクスを視覚化するために、グレイコードに基づくリターンマップ (Gmap)を導入する。Gmap は N 次元の2値ベクトルをグレイコードで表現し、2値ベクトルの写像を格子点上の写像に変換したものである。全ての入力に対する出力から周期解数や、各周期解への収束軌道や 領域を調べることができる。簡単のため、N 次元2値ベクトルのグレイコードを C1 から C2N で表すことにする。図 2 に図1の DBNN を Gmap に表した例を示す。

図 1 DBNN の例。青の線は $w_{ji} = 1$ 、赤の線は $w_{ji} = -1$ で繋がっていることを示す。また $w_{ji} = 0$ は線が繋がっていないことを示す。

図 2 図 1 の DBNN の Gmap。黒の点は入力に対する 出力を示す点であり、4 周期の BPO(緑色の軌道) が 1 つあることが解る。この BPO の軌道上にある点を Binary Periodic Point(BPP) といい、斜線上の点は1 周期の固定点という。また、その他の点は最終的に周 期軌道に収束する Eventually Periodic Point(EPP) と なる。

3. 学習アルゴリズム

次に教師信号が次式で示すような周期 T の BPO である 場合を対象として、中間層ニューロン数を固定した状態での DBNN の学習の問題を考える。

$$z^{1}, \cdots, z^{T}, z^{T+1} = z^{1}, \ z^{t} = (z_{1}^{t}, \cdots, z_{N}^{t})$$
 (4)

ここで、教師信号を構成する $z_j^t \ge z_j^{t+1}$ は DBNN の変数 $x_j^t \ge x_j^{t+1}$ に各々対応する。学習の目的は、教師信号を埋 め込む重みパラメータとしきい値パラメータを探すことであ る。本論文では重みパラメータの初期値について、以下の式 (5) のように w_{ji} は教師信号の入力 z_i^j を、 w_{ij}^o は教師信号の 出力 z_i^{j+1} を代入する。

$$w_{ji} = z_i^j, \ w_{ij}^o = \begin{cases} 1 & \text{if } z_i^{j+1} = 1\\ 0 & \text{if } z_i^{j+1} = -1 \end{cases}$$
(5)

この様にして決めた重みパラメータで教師信号を埋め込む場合、しきい値パラメータを以下の式(6)により決めることで

埋め込みが保証される。ここで、しきい値パラメータ*T_j*は式 (6)によって得られる値において、2番目に大きい値とする:

$$T_{j} = \sum_{i=1}^{N} w_{ti} z_{i}^{j} + 1, \ j \neq t, \ t = 1 \sim N$$

$$T_{i}^{o} = 1 - \sum_{i=1}^{M} |w_{ji}^{o}|$$
(6)

これに対して、教師信号への収束率の大きい重みパラメータ w_{ji}を学習によって決定する。その方法として、スパース化 を用いた安定化手法を考える。スパース化を用いた学習

教師信号への収束率の大きい重みパラメータ w_{ji} の決定ために、GA に基づく学習を使ってスパース化を行う。同アル ゴリズムでは、3 値重みパラメータ w_{ji} で構成される N 個 の要素からなるベクトルを染色体とする。

Step1:(初期遺伝子の決定)

kをある染色体の番号とし、t番目の初期染色体を手動で生成した重み値パラメータ行列 $w_{ji}(k)$ とする。初期染色体の値は教師信号を重みパラメータに代入したものとする。このような染色体をGe個用意する。進化過程では、評価の高い上位1割の染色体は保存することとする。便宜上、その染色体を1番目(k = 1)の染色体とする。また、gを現在の世代数とし、最大世代数を G_{max} とする。

Step2:(探索対象の決定)

現在の各染色体の持つ重みパラメータ行列 *w_{ji}* から得られる BPO の中に教師信号の点を多く含む染色体を探索対象とす る。

Step3:(評価・並び替え)

Ge 個の染色体それぞれについて、染色体の w_{ji} から得られた DBNN が持つ BPO に含まれる教師信号へ 1 離散時間で落ち込む初期値の割合 (CR) が多い順に染色体を並べ替える。 CR は以下の式 (7) で定義される:

$$CR = \frac{\#(1$$
離散時間で教師信号に落ち込む初期値)
 2^N (7)

Step4:(淘汰・増殖)

上位1割の染色体を次世代へ残す。また、DBNNの持つBPO に教師信号 BPO が含まれない染色体は淘汰し、上位1割の 染色体を淘汰した数だけ増殖する。

Step5:(GA に基づく探索)

Ge 個の染色体について、GA を用いて全ての入力が教師信 号により多く収束するようなネットワークとなる染色体を決 定する。下位 9 割の染色体の全ての要素 *w_{ji}* について突然 変異確率 Pm に従い、1 または –1 の要素には 0 の値を代入 し、0 の要素には式 (5) の値を代入する。

尚、この学習では交叉を用いないものとする。

Step6:(終了判定)

g = g + 1とし、Step3 へ戻る。gが最大世代数となったら 学習終了となる。

4. 数値実験

GAの学習性能を検証するために、N次元 M 周期の教師 信号を用いて学習を行った。この実験では各パラメータを以 下のように設定する。

$$(G_{max}, G_e, P_m) = (100, 100, 0.1)$$
(8)

この実験で用いた教師信号は、3相交流電圧を別な周波数、 大きさの3相交流電圧に変換する、マトリクスコンバータの スイッチングパターンを用いる。である BPO(表1) である。

図 3 回路図:マトリクスコンバータ

図4出力波形:マトリクスコンバータ

この教師信号について学習を行った。図5にGAに基づ く学習を行う前のDBNNに対応するGMAPを示す。図?? において、CRは初期状態において14%となった。またこの 図におけるその他の入力は全て不動点0に収束しているこ とがわかった。続いて、GAに基づく学習結果を示す。表3 はGAに基づくスパース化学習の結果の重みパラメータw_{ji} である。この学習結果のDBNNに対応するGMAPを図6 に、図7にGAに基づくスパース化学習の学習過程を示す。 GAに基づく学習を行った結果、例1において図6ではCR が78%となり、図7からもわかる通りCRの上昇が起きて いることからこの学習が機能していることがわかる。また、 この学習の結果から得られた軌道では不動点0に収束する初

表1教師信号 BPO

$\boldsymbol{z}(1)$	(-1, -1, +1, -1, +1, -1, -1, -1, +1)
$\boldsymbol{z}(2)$	(+1, -1, -1, -1, +1, -1, -1, +1, -1)
$oldsymbol{z}(3)$	(+1, -1, -1, +1, -1, -1, -1, +1, -1)
$\boldsymbol{z}(4)$	(-1, -1, +1, +1, -1, -1, -1, -1, +1)
$\boldsymbol{z}(5)$	(-1, -1, +1, +1, -1, -1, +1, -1, -1)
$\boldsymbol{z}(6)$	(-1, -1, +1, -1, -1, +1, -1, +1, -1)
$\boldsymbol{z}(7)$	(-1, +1, -1, -1, -1, +1, -1, +1, -1)
$oldsymbol{z}(8)$	(-1, +1, -1, +1, -1, -1, +1, -1, -1)
$oldsymbol{z}(9)$	(-1, +1, -1, -1, +1, -1, +1, -1, -1)
z(10)	(+1, -1, -1, -1, -1, +1, +1, -1, -1)
z(11)	(+1, -1, -1, -1, -1, +1, -1, -1, +1)
z(12)	(+1, -1, -1, -1, -1, +1, -1, -1, +1)

表 2 例 1:スパース化前の重みパラメータ w_{ii}

j	w_{j1}	w_{j2}	w_{j3}	w_{j4}	w_{j5}	w_{j6}	w_{j7}	w_{j8}	w_{j9}	T_j
1	-1	-1	+1	-1	+1	-1	-1	-1	+1	6
2	+1	-1	-1	-1	+1	-1	-1	+1	-1	6
3	+1	-1	-1	+1	-1	-1	-1	+1	-1	6
4	-1	-1	+1	+1	-1	-1	-1	-1	+1	6
5	-1	-1	+1	+1	-1	-1	+1	-1	-1	6
6	-1	-1	+1	-1	-1	+1	-1	+1	-1	6
7	-1	+1	-1	-1	-1	+1	-1	+1	-1	6
8	-1	+1	-1	+1	-1	-1	+1	-1	-1	6
9	-1	+1	-1	-1	+1	-1	+1	-1	-1	6
10	+1	-1	-1	-1	-1	+1	+1	-1	-1	6
11	+1	-1	-1	-1	-1	+1	-1	-1	+1	6
12	-1	+1	-1	-1	+1	-1	-1	-1	+1	6

図 5 教師信号 BPO のスパース化前の Gmap:g=0,CR=14%

期値が 22%残っていることがわかる。ここでもう一つの学習 結果の例として例 2 を以下に示す。表 4 は GA に基づくス パース化学習の結果の重みパラメータである。この学習結果 の DBNN に対応する GMAP を図 8 に、図 9 に GA に基づ くスパース化学習の学習過程を示す。

例 2 において、図 8 では CR が 61%となり、図 9 から収 束率の上昇が起きていることからこの学習が機能しているこ とがわかる。また、例2の結果から得られた軌道では不動点 が教師信号 BPO とは別に2つ現れており、そちらへ収束す る割合は39%ということがわかる。

考察

例1、例2より重みパラメータをスパース化することで安定 性の向上が見られた。このことから、教師信号を初期重みパ ラメータとした場合、不要な結合が多く存在し、それらを切 り離すことで安定化したと考えられる。

5. むすび

本論文では、DBNN における中間層数を固定した状態で のGA に基づく学習について考察した。それらによって得 られる DBNN のダイナミクスを系統的に解析するために、 GMAP を導入した。GMAP を用いることで、DBNN のダ イナミクスを調べることができた。典型的な結果として、そ の教師信号 BPO を銘記することができ、教師信号以外の初 期値から出発する信号の収束特性を確認することができた。 GA に基づく学習により、教師信号への収束安定性の向上が 確認することができた。

今後の課題として、DBNNの学習過程の解析、ダイナミ クスの解析、安定化のメカニズムの解明等が挙げられる。

謝辞:本論文は著者が法政大学大学院工学研究科電気工学 専攻に在学中の2年間、同大学理工学部電気電子工学科教授 斎藤利通博士の指導下で行ったものである。研究活動を遂行 するにあたり、同教授から懇切に御指導、御鞭撻下さった同 博士に深謝致します。

最後に法政大学理工学部電気電子工学科斎藤利通研究室の 皆様にはいろいろな有益な御討論・ご助言を戴きました。こ こに深謝致します。

参考文献

- R. Ito, Y. Nakayama and T. Saito, Analysis and Learning of Periodic Orbits in Dynamic Binary Neural Networks, Proc. IEEE-INNS/IJCNN, to appear, 2012.
- D. L. Gray and A. N. Michel, A training algorithm for binary feed forward neural networks. IEEE Trans. Neural Networks, 3, 2, pp. 176-194, 1992.
- J. H. Kim and S. K. Park, The geometrical learning of binary neural networks. IEEE Trans. Neural Networks, 6, 1, pp. 237–247, 1995.
- R. Kouzuki, and T. Saito, Learning of Simple Dynamic Binary Neural Networks, Trans. IEICE, E96-A, 8, pp. 1775-1782, 2013
- K. Nowara and T. Saito, Guaranteed storing of limit cycles into a discrete-time asynchronous neural network, Trans. IEICE, E75-A, 11, pp. 1579-1582, 1992.
- P. L. Rosin, Training cellular automata for image processing, IEEE Trans. Image Process., 15, 7, pp. 2076-2087, 2006.
- W. Wada, J. Kuroiwa, S. Nara, Completely reproducible description of digital sound data with cellular automata, Physics Letters A 306, pp. 110-115, 2002.

表 3 例 1:学習後の重みパラメータ w_{ji}

j	w_{j1}	w_{j2}	w_{j3}	w_{j4}	w_{j5}	w_{j6}	w_{j7}	w_{j8}	w_{j9}	T_j
1	0	0	+1	0	+1	0	0	0	0	1
2	0	-1	-1	0	+1	0	0	0	0	2
3	+1	0	0	+1	-1	-1	0	+1	-1	3
4	0	0	+1	0	-1	0	0	0	+1	2
5	-1	-1	0	0	-1	0	0	-1	-1	5
6	0	0	+1	-1	-1	0	+1	0	-1	3
7	-1	0	-1	0	-1	0	0	+1	0	3
8	0	+1	0	1	0	0	0	-1	-1	3
9	-1	+1	-1	-1	0	-1	0	-1	-1	7
10	+1	0	-1	-1	0	+1	+1	0	0	4
11	0	0	-1	0	-1	0	0	-1	+1	3
12	0	+1	-1	0	+1	0	-1	0	0	3

表 4 例 2 : 学習後の重みパラメータ w_{ii}

									J.	
j	w_{j1}	w_{j2}	w_{j3}	w_{j4}	w_{j5}	w_{j6}	w_{j7}	w_{j8}	w_{j9}	T_j
1	-1	-1	0	-1	+1	0	0	-1	0	4
2	+1	0	-1	-1	0	-1	0	0	0	3
3	+1	-1	-1	+1	-1	-1	-1	+1	-1	6
4	0	0	0	+1	-1	-1	-1	-1	+1	3
5	0	-1	0	+1	0	-1	+1	-1	0	4
6	0	-1	+1	0	0	+1	0	+1	0	1
7	0	+1	-1	0	-1	+1	0	0	0	3
8	-1	0	-1	+1	0	-1	+1	0	-1	5
9	0	+1	0	0	+1	0	0	-1	-1	3
10	0	-1	-1	-1	0	0	+1	-1	-1	5
11	0	0	-1	0	0	+1	0	-1	+1	3
$\overline{12}$	-1	0	-1	-1	0	-1	0	0	+1	4

図 6 例1:教師信号 BPO の GA に基づく学習後の Gmap:g=100,CR=78%

図 7 例1:教師信号 BPO の GA に基づく学習後の学 習過程

図 8 例 2 : 教師信号 BPO の GA に基づく学習後の Gmap:g=100,CR=61%

図 9 例 2 : 教師信号 BPO の GA に基づく学習後の学 習過程