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スパイキングニューロン回路の多彩な分岐現象の解析
ANALYSIS OF VARIOUS BIFURCATION PHENOMENA IN SIMPLE SPIKING NEURON CIRCUITS
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指導教員 斎藤利通

法政大学大学院工学研究科電気工学専攻修士課程

This paper studies filter-induced bifurcation phenomena in simple spiking neuron models. Re-
peating integrate-and-fire switching between a periodic base signal and a threshold, the neuron
model outputs spike-trains. The dynamics depends crucially on the shape of the base signal and
we make the base signal by applying two kinds of filters to a square source signal. First, we ap-
ply the basic RC low-pass filter to the source signal. As a key parameter (time constant) varies,
the shape of the base signal varies and the model can exhibit bifurcation phenomena of various
periodic/chaotic spike-trains. Presenting a simple test circuit, typical phenomena are confirmed
experimentally. Second, we apply the ideal low-pass filter to the source signal. The ideal filter
cannot be realized by analog circuits and is an object in artificial numerical experiments. This
filter causes ripple on the base signal (the Gibbs’ phenomenon) and the model can have various
co-existence spike-trains.
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1. Introduction

Spiking neurons have been studied extensively from

both basic and practical viewpoints. Roughly speaking,

the neurons can exhibit a variety of spike-trains based on

the integrate-and-fire switching [1]-[3]. The analysis of

the spike-trains is basic to consider information process-

ing function [3]. It is also basic to develop spike-based

applications including image processing [4], digital com-

munications [5], analog-to-digital converters [6] [7] and

neural prosthesis [8]. The spiking neurons are typical non-

linear dynamical systems that can exhibit chaos [9] and

bifurcation phenomena. Analysis of the phenomena is an

important basic problem [10]-[16].

This paper studies filter-induced behavior of bifurcat-

ing neurons (BNs, [10]-[13]). The BN is a simple spiking

neuron model. Repeating integrate-and-fire switching be-

tween a periodic base signal and a constant threshold, the

BN can exhibit various spike-trains. The spike-trains can

be analyzed precisely by a one-dimensional map of spike

positions or phases. The dynamics of the BN depends cru-

cially on shape of the base signal. We consider a method

to vary the shape of the base signal by applying a filter

to a square base signal. If the filter does not exist, the

base signal is a periodic square wave and the BN cannot

exhibit chaos and bifurcation. Although there exist var-

ious kinds of filters, we use two kinds of basic filters for

simplicity. We then consider bifurcation phenomena for

a parameter of the filter. In existing papers of the BN

[10]-[16], bifurcation phenomena have been considered for

a parameter of amplitude or frequency of the base signal.

First, we apply a simple RC low-pass filter (RCF)

characterized by one key parameter corresponding to the

time constant. As the key parameter varies, the shape of

the base signal can vary and the BN can exhibit various

periodic/chaotic spike-trains. Using the state equation of

the RCF, the filtered base signal can be calculated with-

out approximation and the bifurcation phenomena can

be analyzed precisely. We have clarifies that as the key

parameter varies, the BN exhibits period doubling bifur-

cation to chaos and then to thin chaos via periodic win-

dows. Presenting a simple test circuit, typical phenomena

are confirmed experimentally.

Second, we apply the ideal low-pass filter (ILF) that

corresponds to the finite terms approximation of the

Fourier series. As is well known, the ILF cannot be real-

ized by analog circuits and the ILF is an object in artifi-

cial numerical experiments. The ILF is characterized by

one key parameter that gives the number of terms in the

Fourier series approximation. Note that even if the num-

ber of terms is sufficiently large, the ILF causes ripple for

the discontinuous source signal (the Gibbs’ phenomenon).

In the BN, the ripple can cause complicated co-existing

periodic/chaotic phenomena. The BN exhibits either phe-

nomenon depending on the initial state.

Motivations for studying the filter-induced phenom-

ena are many, including the following three points. First,

the key parameters of RCF and ILF have important prac-

tical meanings for variable shapes of the base signal. Sec-

ond, the RCF-induced bifurcation is easy to implement

and is convenient for precise analysis.



2. Bifurcating Neurons

Let us begin with introducing the BN dynamics [10]-

[13]. Figure 1 shows the circuit model and switching dy-

namics of the BN. Integrating a constant current I > 0,

the capacitor voltage v increases. When v reaches the

threshold VT , the BN outputs a spike Y = VD and v

is reset to the periodic base signal B(t) with period T .

Repeating in this manner, the BN outputs a spike-train

Y (t). For simplicity, we assume that the inner resistor

r1 is open, the inner resistor r2 is short and v is reset

instantaneously without delay. The circuit dynamics is

described by{
C

dv

dt
= I, Y = −VD for v < VT

v(t+) = B(t+), Y (t) = VD for v(t) = VT

(1)

Here we use the simple square base signal:

B(t) = Bs(t) =

{
−A for 0 ≤ t < T/2
A for T/2 ≤ t < T

(2)

where Bs(t) = Bs(t + T ) and 0 < A < VT . In the next

section, this base signal is changed into various shapes by

filtering. Using dimensionless variables and parameters

τ =
t

T
, x =

v

VT
, y =

Y + VD

2

s =
IT

CVT
, a =

A

VT
, b(τ) =

1

VT
B(Tτ);

(3)

Equations (1) and (2) are transformed into{
ẋ = s, y = 0 for x < 1
x(τ+) = b(τ+), y(τ) = 1 for x(τ) ≥ 1

(4)

b(τ) = bs(τ) =

{
−a for 0 ≤ τ < 1/2
a for 1/2 ≤ τ < 1

where ẋ ≡ dx
dτ

, bs(τ + 1) = bs(τ) and 0 < a < 1.

Let us derive the spike-position map (Smap) and

spike-phase map (Pmap). The spike-train is character-

ized by spike positions and let τn denote the n-th spike

position. Since τn+1 is determined by τn, we can define

the Smap:

τn+1 = τn − (b(τn) − 1)/s ≡ F (τn) (5)

Note that F (τ +1) = F (τ)+1 is satisfied. Introducing the

phase variable θn = τn mod 1, we can define the Pmap:

θn+1 = f(θn) ≡ F (θn) mod 1 (6)

The dynamics of the BN is integrated into the Pmap

that is useful to analyze the bifurcation phenomena. Fig-

ure 2 illustrates examples of the Smap and Pmap for

b(τ) = bs(τ). It should be noted that Equation (5) in-

clude the base signal b(τ) and the dynamics of Pmap ( and

Smap) crucially depends on the shape of b(τ). However,

in almost all works on the BN, the shape of b(τ) is fixed.

For example, Ref. [15] uses the sinusoidal base signal and

considers bifurcation for the amplitude parameter. In this

図 1 The bifurcating neuron. (a) circuit model,
(b) integrate-and-fire dynamics for square base sig-
nal (s = 1, a = 0.3 and λ = 0).

図 2 Examples of spike position map (a) and spike
phase map (b) for (s, a) = (1, 0.3).

paper, we construct the base signal by applying the LPF

to the square waveform Bs(t) in Equation (2). If the fil-

ters do not exist, the BN has the square base signal Bs(t)

and the slope of the Pmap is one (Df(θ) = 1) for almost

all θ: the Pmap cannot exhibit chaos and related bifur-

cation. Although there exist various kinds of LPFs, we

consider two kinds of LPFs: the most basic RC low-pass

filter (RCF) and ideal low-pass filter (ILF).

3. Base signal by RC low-pass filter

Here we apply the RCF to the source signal Bs(t).

Usually, such a base signal is described by Fourier series

with transfer function of the RCF and finite-term approx-

imation error is inevitable. In order to avoid the approxi-

mation error, we describe the base signal by state equation

of the RCF:

RC1
dvc

dt
= −vc + Bs(t) (7)

where the capacitor voltage vc corresponds to the base

signal. A test circuit of the BN with RCF is shown in (2).

Using the dimensionless variables and parameters

τ =
t

T
, xc =

vc

VT
, λ =

RC1

T
(8)

Equation (7) is transformed into



図 3 Typical waveforms for (s, a) = (1, 0.3). (a) pe-
riodic waveform with period 1 for λ = 0.18, (b) peri-
odic waveform with period 2 for λ = 0.14, (c) chaotic
waveform for λ = 0.095, (d) thin chaotic waveform
for λ = 0.045.

λẋc = −xc + bs(τ) (9)

After simple calculation, we obtain the steady state solu-

tion that is the base signal:

b(τ) =

{
(x0 + a)e−τ/λ − a for 0 ≤ τ < 1/2

(−x0 − a)e−(τ−1/2)/λ + a for 1/2 ≤ τ < 1
(10)

x0 =
a(1 − e−1/2λ)

1 + e−1/2λ

where b(τ) = b(τ + 1) and x0 is the initial value for the

steady state solution. Using Equation (10) and the Pmap,

we can analyze the dynamics precisely without approxi-

mation. We use λ as the key parameter of the RCF.
(1) Basic bifurcation phenomena

We investigate basic bifurcation for parameter λ in

decrease-ward for convenience. Other parameters are

fixed: (s, a) = (1, 0.3). As λ decreases to zero, the shape

of base signal is changed form triangular-like waveform

(Fig. 3 (a)) to square waveform (Fig. 1 (b)). According

to the change of the shape, the BN can exhibit various

phenomena as shown in Fig. 3: periodic waveform with

period 1 in (a), periodic waveform with period 2 in (b)

and chaotic waveform in (c).

In order to consider the phenomena, we give several

definitions. A point p is said to be a period-k point

if fk(p) = p and f l(p) �= p for 0 < l < k where

f l = f(f l−1). A period-1 point is referred to as a fixed

point. Let Dfk(p) denotes derivative of fk by θ at p. A

period-k point is said to be stable, critical and unstable

if |Dfk(p)| < 1, |Dfk(p)| = 1 and |Dfk(p)| > 1, respec-

tively. The stable period-k point corresponds to periodic

図 4 Typical phase maps for (s, a) = (1, 0.3) (a) sta-
ble fixed point for λ = 0.18, (b) stable period-2 orbit
for λ = 0.14, (c) Stable period-4 orbit for λ = 0.106,
(d) chaotic orbit for λ = 0.095, (e) stable period-6
orbit for λ = 0.09, (f) chaotic orbit for λ = 0.064,
(g) thin chaotic orbit for λ = 0.045, (h) thin chaotic
orbit for λ = 0.029.

waveform with period k of x. A sequence of period-k

points, {f(p), · · · , fk(p)} is said to be a period-k orbit.

Figure 4 shows typical Pmaps. For λ = 0.18, the

Pmap exhibits stable fixed point p corresponding to pe-

riodic waveform with period 1 of x. As λ decreases, we

can see the period-doubling bifurcation set characterized

by Df(p) = −1. The fixed point p is changed into stable

period-2 orbit as shown in Fig. 4 (b). As λ decreases

further, the period-2 orbit is changed into the period-4

orbit in (c) and then to chaotic orbit in (d). This is the

period-doubling bifurcation for the key parameter λ of

the RCF. Although there exist various systems in which



図 5 Bifurcation for λ and (s, a) = (1, 0.3). (a) Bifur-
cation diagram, (b) Lyapunov exponent.

図 6 Two-fold composition of the Pmap around the
chaotic orbit for (s, a) = (1, 0.3). (a) λ = 0.064
(C11 = 0.46, C12 = 0.51), (b) λ = 0.045
(C21 = 0.49, C22 = 0.505) .

period-doubling bifurcation can be observed, Fig. 4 shows

the first filter-induced period-doubling bifurcation. Fig-

ure 5 (a) shows the corresponding bifurcation diagram for

λ.

The chaotic orbit in (d) is changed into stable period-6

orbit in (e) that is in periodic window in Fig. 5 (a). As λ,

the orbit is changed into chaotic orbit (f), the band of the

chaotic orbits becomes thin as shown in (g) and (h), and

then to period-2 orbit in Fig. 2 (b). The period-2 orbit

{f(p), f2(p)} for λ = 0 is characterized by Df2(p) = 1 and

is critical. Figure 6 shows 2-fold composition of Pmap f2

for thin chaos where we can confirm existence of invariant

interval I2 such that f2(I2) ⊆ I2 on which the Pmap

exhibits chaotic phenomenon.

In order to evaluate the orbits, we have calculated the

Lyapunov exponent for λ:

Λ =

M∑
n=1

ln |Df(xn)| (11)

図 7 Circuit model (a) Bifurcating neuron (b) RC
LPF.

図 8 Measurement of typical phenomena correspond-
ing to Fig. 3. horizontal = t [0.5ms/div.], vertical
= v [1V/div.], C

.= 0.022[μF], J
.= 7.0 E -2[mA],

r1
.= 90[kΩ], r2

.= 0.09[kΩ], VT
.= 1.4[V],

A
.= 0.8[V], T

.= 1[ms], C1
.= 0.01[μF], (s .= 1.45,

a
.= 0.57) (a) periodic waveform with period 2

for R
.= 0[kΩ](λ = 0) (b) chaotic waveform for

R
.= 7[kΩ](λ = 0.07) (c) periodic waveform with

period 1 for R
.= 36[kΩ](λ = 0.36).

where we have used M = 104 for which convergence has

been confirmed for almost all values of λ. The derivative

Df can be calculated using the exact piecewise solution

in Equation (10):

Df(θ) =

⎧⎨
⎩

1 +
x0 + a

λ
e−

θ
λ for 0 ≤ θ < 1/2

1 − x0 + a

λ
e−

2θ−1
2λ for 1/2 ≤ θ < 1

(12)

Chaotic orbit is characterized by positiveness of the Lya-

punov exponent [9] (Λ > 0 ). Also, a periodic or-

bit is stable if Λ < 0. Period doubling bifurcation set

(Df(p) = −1) and critical periodic points (|Dfk(p)| = 1)

give Λ = 0. In Fig. 5, we can confirm Λ > 0 for the thin

chaotic orbit and Λ = 0 for the period-doubling bifurca-

tion set. As λ approaches to zero, the Pmap approaches

to the rotation of the unit circle with rotation number 0.5

that exhibits critical period-2 orbit with Λ = 0.



図 9 Typical waveforms of BN with ILF correspond-
ing to Fig. 10. (a) periodic waveform for N = 99,
(b) periodic waveform for N = 1, (c) chaotic wave-
form for N = 3, (d) chaotic waveform for N = 5, (e)
periodic waveform for N = 9.

(2) Experiments

Figure 7 shows the test circuit for the laboratory ex-

periments, The current source I with parallel inner resis-

tor r1 can be realized by the equivalent circuit of voltage

source of V = r1I with series inner resistor r1. The base

signal B(t) is given by filtering the square voltage sources

Bs(t) and r2 is its inner resistor. Below the threshold VT ,

the capacitor voltage v increases. If v reaches VT then the

comparator triggers a monstable multi-vibrator (MM) to

output a spike Y = VD. The spike closes a switch SW

and v is reset to the base signal B(t). The dynamics is

described by

C
dv

dt
=

⎧⎪⎨
⎪⎩

− 1

r1
v + J for SW = off

−
(

1

r1
+

1

r2

)
v + J +

1

r2
B(t) for SW = on

(13)

For simplicity, we use approximation: 1/r1 → ∞, r2 → 0,

and I = J(1 − exp−1) 1. In this case, Equation (13) can

be approximated by Equation (1) that is transformed into

Equation (4) using dimensionless variables and parame-

ters in Equations (3) and (8). Fabricating the breadboard

prototype of the circuit, we have confirmed typical phe-

nomena as shown in Fig. 8.

4. Base signal by ideal low-pass filter

The ILF is characterized by the transfer function:

H(ω) =

{
1 for |ω| ≤ ωc

0 for |ω| > ωc
(14)

1the slope of line connecting (0, 0) and (r1C, v(r1C))

図 10 Typical phase maps for (s, a) = (1, 0.3). (a)
stable period-2 orbit for N = 1, (b) chaotic orbit for
N = 3, (c)&(d) coexisting chaotic orbits for N = 5,
(e) to (h) co-existing stable periodic orbits for N = 9:
two period-2 orbits and two period-4 orbits.

where ωc is the cut-off frequency and corresponds to

1/RC1 of the RCF. Applying the ILF to the square sig-

nal Bs(t), we obtain the base signal. As is well-known,

the ILF cannot be realized by analog circuit because its

impulse response contradicts the law of cause and effect.

Hence we consider the ILF as an object in artificial nu-

merical experiments. Using the dimensionless variables

and parameters

ν = ωT, νc = ωcT,

we obtain the dimensionless transfer function

h(ν) =

{
1 for |ν| ≤ νc

0 for |ν| > νc
(15)



Applying this to the dimensionless square signal bs(τ), we

obtain the dimensionless base signal

b(τ) =

∞∑
n=1

h(2πn)bn sin 2πnτ

=

N∑
n=1

bn sin 2πnτ for 2πN ≤ νc < 2π(N + 1)

(16)

where bn are the Fourier sine coefficients of bs(τ):

bn =

{
− 4a

nπ
for odd n

0 for even n

It should be noted in Equation (16) that 2πN ≤ νc <

2π(N +2) gives the same waveform of b(τ) for odd N and

the number of terms N determines b(τ). We use the odd

N as the key parameter of the ILF. Figure 9 shows typical

waveforms. As N increases, the base signal approaches

bs(τ) in principle. However, even if N is sufficiently large,

ripple is inevitable for the discontinuous waveform bs(τ)

(the Gibb’s phenomenon, see Fig. 9 (a)). Such ripple

corresponds to many extremes in the Pmap and causes

very complicated co-existence phenomena. Since analysis

of such phenomena is hard, we focus on several basic cases

as shown in Figs. 9 (except for (a)) and 10.

For N = 1, the base b(τ) is pure sinusoidal, the BN

exhibits periodic waveform with period 1 and the Pmap

in (a) has one stable fixed point. For N = 3, the third

harmonics occurs and the BN exhibits chaotic behavior

as suggested in the Pmap in (b). As N increases, ripple

of b(τ) increases and the BN becomes to have coexisting

phenomena for initial state. For N = 5, the Pmap has

two symmetric chaotic orbits as shown in Fig. 10 (c) and

(d). The BN exhibits either chaotic orbit depending on

the initial state. For N = 9, we have confirmed four co-

existing periodic orbits as shown in Fig. 10 (e) to (h): two

symmetric perioc-2 orbits and two symmetric period-4 or-

bits. As N increases, the Pmap can have many co-existing

attractors and related bifurcation phenomena seem to be

very complicated. It suggests that the finite-term Fourier

approximation can cause complex dynamics. However, its

systematic analysis is hard.

5. Conclusions

Filter-induced bifurcation phenomena of the BN have

been studied in this paper. First, the base signal is given

by the simple RCF. As the key parameter decreases, the

BN exhibits bifurcation phenomena of periodic/chaotic

spike-trains. These bifurcations can be analyzed precisely

using the Pmap and state equation of the base signal.

Typical phenomena are confirmed experimentally in a

simple test circuit. Second, the base signal is given by the

ILF that causes the Gibb’s phenomenon. As the key pa-

rameter varies, the ILF causes various ripples on the base

signal and the BN can exhibit complicated co-existence

state of various chaotic/periodic spike-trains.

Future problems are many, including detailed analy-

sis of the RCF-induced bifurcation phenomena, detailed

analysis of typical phenomena in the BN with ILF, ap-

plication of various filters, analysis of the pulse-coupled

networks of the BNs and engineering applications.

Third, the ILF-induced bifurcation is basic to consider

complex dynamics caused by the finite terms approxima-

tion. It should be noted that such filter-induced compli-

cated phenomena of spike-trains have not been studied in

existing papers.
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