法政大学学術機関リポジトリ HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-04

IGVC Auto-Nav Challengeのための白線情報 を用いた自己位置推定法

森山, 成仁 / MORIYAMA, Naruhito

(出版者 / Publisher) 法政大学大学院理工学・工学研究科

(雑誌名 / Journal or Publication Title)

法政大学大学院紀要.理工学・工学研究科編 / 法政大学大学院紀要.理工学・工 学研究科編

(巻 / Volume)
55
(開始ページ / Start Page)
1
(終了ページ / End Page)
6
(発行年 / Year)
2014-03-24
(URL)
https://doi.org/10.15002/00010346

IGVC Auto-Nav Challenge のための 白線情報を用いた自己位置推定法

While lane image based self-localization algorithm for IGVC Auto-Nav Challenge

森山成仁

Naruhito MORIYAMA

指導教員 小林一行

法政大学大学院工学研究科システム工学専攻修士課程

This paper describes a new self-localization algorithm for IGVC Auto-Nav Challenge by using Omni-directional images without GPS information. In order to achieve an accurate self-localization of the mobile robot, a sequence of Omni-directional white lane images is combined by applying probabilistic map matching technique. Validity of proposed algorithm is confirmed both simulations and actual outdoor experiment.

Key Words: mobile robot, self-localization, probabilistic occupancy grid map, Omni-directional camera

1. はじめに

われわれの研究室では、自律ロボットの技術向上を目的 として IGVC (Intelligent Ground Vehicle Competition)に参加 している. IGVC のメイン競技の一つである Auto-Nav Challenge Competition(ACC)の走行コースは 2 本白線が引 かれた内側を走行する白線エリアと事前に決められたウ ェイポイントを通過するエリアの2つに分けられる.両方 のコース内には道路や工事現場で使われるドラム型コー ンが設置されており、これら障害物と白線にぶつからない ようにして走行する必要がある.そのためには正確な環境 認識と自己位置推定が必要である.

屋外環境における自律移動ロボットの自己位置推定に は、GPS が有効である.しかし、周辺環境によるマルチパ ス現象、大気の状態による電波環境の変化、取得した衛星 の位置のバランスにより、GPS による位置とその精度は 変化する.そのため、GPS だけの ACC のナビゲーション は、不十分である.実際、IGVC2013 のデザインレポート によると、各チーム(Table.1)のうち、GPS だけを使っ て自己位置推定したチームは、全体の約 10%であり、残 りの 90%は、デットレコニング法などの内界センサを使

って、GPSの欠点を補完する方法を取っている.

Tabla	1 IGX	102012	novigation	austam	overview
Table.	1101	VC2015	navigation	system	Overview

	only GPS	GPS and Dead reckoning	total
team	4(11%)	34(89%)	38

ACC でのコースは、白線エリア、ウェイポイントエリ アともに、ドラム型コーンが多数配置されており、これら を障害物としてではなく、ランドマークとしてとらえ、障 害物地図として自己位置推定に活用する方法もある. LIDAR を使うと、正確にかつ遠距離までの障害物の位置 を検出できるため、非常に有効であると考えられる.しか し、IGVC のルールでいくつかの障害物は、走行ごとに場 所を再配置される場合もあり、完全に信頼することはでき ない.

そこで、本研究では、コース内で変わることのない白線 情報に着目する.この白線の位置関係利用し、白線マップ を用いたマップマッチングによるより正確な自己位置推 定を提案する.また、提案するシステムを移動ロボットに 適用し、実験的検証を行いその有用性を示す.

2. 仮定と問題の記述

IGVCルールにしたがい、以下の仮定を設ける.

- (A1) 移動障害物は存在しない.
- (A2) 白線情報を取得後, 白線情報が大きく変化することはない.

仮定 A1 は, ACC のルールを仮定としたためである. A2 は事前に取得する環境データをもとに, 自己位置補正を行 なうため, 本研究では白線情報取得後, 白線情報は大きく 変化することはないとする.

- 以下に本論で検討する具体的な問題を記述する.
- (P1) 白線の誤検出によるマップの誤生成対策
- (P2) マップマッチングの自己位置推定が破綻した場合の対策

3. 提案するシステム

Fig.1 に提案するセンサ構成と処理フローを示す.

Fig.1 Proposed system

本研究では、全方位カメラから取得した障害物情報を車 速計・ジャイロを用いて時系列で統合し、リアルタイムで ローカルマップを生成する.このローカルマップをテンプ レートとし、事前に取得したデータから生成するグローバ ルマップとマッチングをとることで、車速計・ジャイロか ら推定される自己位置の補正を行なう.

本研究では,環境マップには確率グリッドマップ(以下, 確率マップ)を採用し,白線の誤検出によるマップの誤生 成の影響を軽減させる.また,マップマッチングの自己位 置推定が破綻した場合の対策として,カルマンフィルタを 使用してジャイロオドメトリによる移動ロボットの移動 予測と白線マップのマッチングによる観測を融合する.

移動ロボットは、あらかじめ複数の目標地点を設け、そ

れら目標点を自律的に巡回して走行するウェイポイント ナビゲーションを適応する.

4. 確率グリッドマップの生成

確率マップは推定された自己位置を基に,環境情報を時 系列統合し,生成する.移動ロボットは全方位カメラによ り環境情報をセンシングし,ジャイロオドメトリにより自 己位置を得る.以下に確率マップの生成で用いる変数と定 数,および仮定を定義する.

【変数と定数】

$$O$$
:過去の観測値列
 (i, j) :グリッド座標
 $E_{(i, j)}$:グリッド (i, j) に障害物が存在する事象
 $\overline{E}_{(i, j)}$:グリッド (i, j) に障害物が存在しない事象
 $O_{(i, j)}$:最新情報においてグリッド (i, j) に障害物を観
測した事象
 $\overline{O}_{(i, j)}$:最新情報においてグリッド (i, j) に障害物
を観測しない事象

(1) 白線検出

本研究では白線情報を全方位カメラから取得し, 直交座 標系に変換後, グリッド化を行なう. Fib.2(a)に全方位カ メラの画像, Fig.2(b)に直交座標で表現されたデータ, Fig.3(c)にグリッド化後のデータを示す. Fig.2(c)に示され るように, 全方位カメラから得られた障害物情報は Occupied / Free /Unknown の3パターンに分類する. この 中で Occupied に事象oを割り当て, Free に事象oを割り当 てる. Unknown は観測において何の情報も得られないた め, グリッドの更新は行わない.

(a) Captured image (b) xy coordinate (c) grid data Fig.2 Omni-directional camera data

(2) 障害物情報の時系列統合

確率マップは条件付き確率 $P(E_{i,j}|o_{i,j}, 0)$, $P(E_{i,j}|\bar{o}_{i,j}, 0)$ を計算することで更新する. 全方位カメラにより障害物の 有無が検出された場合, 対応する各グリッドの障害物の存 在確率を再計算する. $P(E_{i,j}|o_{i,j}, 0)$ は事象 $o_{i,j}$ が起こったグ リッド, $P(E_{i,j}|\bar{o}_{i,j}, 0)$ は事象 $\bar{o}_{i,j}$ が起こったグリッドに対し ての確率である. これらの確率はまず, Oに続いてoが得 られたとき, $E_{i,j}$ となる確率 $P(E_{i,j}|o, 0)$ をベイズの定理に より式(1) で表わす.

$$P(E_{i,j}|o,0) = \frac{P(o|E_{i,j},0)P(E_{i,j}|0)}{P(o|0)}$$
(1)

ここで $P(o|E_{i,j}, 0)$ は、実際に障害物が存在するときに観 測する確率を、 $P(E_{i,j}|0)$ は事前確率を表わす.事前確率は、 Unknown であるため初期値は 0.5 した.上記の条件付き確 率は式(2), (3)のように表せる.

$$P(E_{i,j}|o_{i,j},O)$$

$$= \frac{P(o_{i,j}|E_{i,j}, 0)P(E_{i,j}|0)}{P(o_{i,j}|E_{i,j}, 0)P(E_{i,j}|0) + P(o_{i,j}|\bar{E}_{i,j}, 0)P(\bar{E}_{i,j}|0)}$$
(2)
$$P(E_{i,j}|\bar{o}_{i,j}, 0)$$
$$= \frac{P(\bar{o}_{i,j}|E_{i,j}, 0)P(E_{i,j}|0)}{P(\bar{o}_{i,j}|E_{i,j}, 0)P(E_{i,j}|0) + P(\bar{o}_{i,j}|\bar{E}_{i,j}, 0)P(\bar{E}_{i,j}|0)}$$
(3)

 $P(o_{i,j}|E_{i,j},0)$ は、全方位カメラにより障害物が存在する ときに観測する確率を、 $P(o_{i,j}|E_{i,j},0)$ は存在しない障害物 を誤観測する確率を表し、これらは障害物の不確かさモデ ルに相当する. その他の項はつぎのように表される.

$$P(\overline{E}_{i,j}|O) = 1 - P(E_{i,j}|O) \tag{4}$$

$$P(\bar{o}_{i,j}|E_{i,j}, 0) = 1 - P(o_{i,j}|E_{i,j}, 0)$$
(5)

$$P\left(\bar{o}_{i,j} \middle| \bar{E}_{i,j}, 0\right) = 1 - P\left(o_{i,j} \middle| \bar{E}_{i,j}, 0\right)$$
(6)

不確かさモデルは、実際に障害物が存在するときに観測 する確率を、移動ロボットからの距離と比例させる.全方 位カメラは天候によって正しく観測できない場合がある ため、ここでは最大 0.8 から最小 0.1 と定義し、存在しな い障害物を誤認識する確率を 0.05 とした.以上の障害物 情報の不確かさモデルの関係を式 (7)、(8) として示す.

$$P(o_{i,j}|E_{i,j}, O) = 0.8 - 0.75 \times \frac{\text{Dist to observed } o_{i,j}}{\frac{\text{Max dist to observed } o_{i,j}}{\text{Max dist to observed grid}}}$$
(7)

$$P(o_{i,j}|\bar{E}_{i,j},O) = 0.05 \tag{8}$$

5. 自己位置推定

(1) マッチングによる自己位置補正

確率マップでは観測ごとに更新を行なう性質上,ノイズ が含まれることがあるため,ノイズに強いテンプレートマ ッチングを行なう必要がある.そこで本研究では,テンプ レートマッチングの評価関数には正規化相互相関 NCC (Normalized cross correlation)を用いる.NCCは,データ 各点の輝度値から局所的な平均値を引き,分散値の類似度 でマッチングを取るため,ノイズに強いという特徴をもつ [3]. テンプレートの大きさを $H_t \times W_t$,事前に生成したグ ローバル確率マップの位置(i + u, j + v)における画素値を $P^G(i + u, j + v)$,自律走行中に生成しているローカル確率 マップの画素値を $P^L(i, j)$ とすると,以下のように定義され る.

 $R_{ncc}(i,j)$

$$=\frac{\sum_{j=0}^{N-1}\sum_{i=0}^{M-1} \left(P^{G}(i+u,j+v)P^{L}(i,j)\right)}{\sqrt{\sum_{j=0}^{N-1}\sum_{i=0}^{M-1}P^{G}(i+u,j+v)^{2} \times \sum_{j=0}^{N-1}\sum_{i=0}^{M-1}P^{L}(i,j)^{2}}}$$
(9)

相関係数 *R_{ncc}* は理想的に一致した場合,最大値1となる.本研究では,探索対象データをグローバル確率マップ, テンプレートデータをリアルタイムで生成される確率マ ップとしてサンプリングごとに NCC マッチングを行い, 自己位置を補正する.

(2) 実時間性の考慮

マッチングの処理時間は探索対象データに大きく依存 する.推定された自己位置を中心とし,移動ロボットが1 サンプリングに進む最大距離を目安に探索範囲Dを計算 し,探索領域の削減を行なう.

【変数と定数】

V_{max} : 1 サンプリングの速度[m/s]
 S : 1 サンプリングの時間[s]
 E : 自己位置推定誤差を考慮した定数(0.6m)
 D = *V_{max} × S + E* (10)

Fig.3 Update global probability map

(3) 複素 Kalman filter による自己位置補正
 【変数と定数】
 k:離散時刻 (k = 1,2,3,...)
 θ(k):自律移動ロボットの進行方向[rad]
 Δd(k):時刻 k から k + 1 の間に動く距離[m]
 Δθ(k):時刻 k から k + 1 の間に動く角度[rad]
 n_i(k): Δd(k) に含まれる誤差

$$n_{\Delta d}(k)$$
: $\Delta \theta(k)$ に含まれる誤差

 $\begin{bmatrix} n_x & n_y \end{bmatrix}^T$:観測値に含まれる誤差

a) 状態方程式の定義

自律移動ロボットの状態変数 $\mathbf{X}_{r}(k)$ を

 $\mathbf{x}_{r}(k) = \left[x(k), y(k), \cos\theta(k), \sin\theta(k)\right]^{T}$ (11)

とすると,状態方程式は

$$\mathbf{x}_{r}(k+1) = \mathbf{A}(k+1) \cdot \mathbf{x}_{r}(k) + \mathbf{B}(k+1) \cdot \mathbf{w}(k+1)$$
(12)

となる. ここで,状態遷移行列 A(k+1) は

$$\mathbf{A}(k+1) = \begin{bmatrix} 1 & 0 & \Delta d(k+1) \cos \Delta \theta(k+1) & -\Delta d(k+1) \sin \Delta \theta(k+1) \\ 0 & 1 & \Delta d(k+1) \sin \Delta \theta(k+1) & \Delta d(k+1) \cos \Delta \theta(k+1) \\ 0 & 0 & \cos \Delta \theta(k+1) & -\sin \Delta \theta(k+1) \\ 0 & 0 & \sin \Delta \theta(k+1) & \cos \Delta \theta(k+1) \end{bmatrix}$$
(13)

となり、駆動行列 B(k+1)は

$$\mathbf{B}(k+1) = \begin{bmatrix} \cos \theta(k) & -\Delta d(k+1)\sin \theta(k) \\ -\sin \theta(k) & \Delta d(k+1)\cos \theta(k) \\ 0 & -\sin \theta(k) \\ 0 & \cos \theta(k) \end{bmatrix}$$
(14)

となる. またシステムノイズ
$$\mathbf{w}(k)$$
 は
 $\mathbf{w}(k) = \begin{bmatrix} n_{\Delta d}(k) \\ n_{\Delta \theta}(k) \end{bmatrix}$ (15)

とし、システムノイズ $\mathbf{w}(k)$ の共分散行列 $\mathbf{Q}(k)$ を

$$\mathbf{Q}(k) = \begin{bmatrix} \sigma^2 \{ n_{\Delta d}(k) \} & 0\\ 0 & \sigma^2 \{ n_{\Delta \theta}(k) \} \end{bmatrix}$$
(16)

b) 状態方程式の複素数表現

a 項の(11)式で定義した状態変数 $\mathbf{x}_r(k)$ を複素数で表現 すると

$$\mathbf{x}(k) = [x(k) + j \cdot y(k), \cos \theta(k) + j \cdot \sin \theta(k)]^T$$
となり、式(12)の状態方程式は
(17)

$$\mathbf{x}(k+1) = \mathbf{F}(k+1) \cdot \mathbf{x}(k) + \mathbf{G}(k+1) \cdot \mathbf{w}(k+1) \quad (18)$$

ここで,状態遷移行列 F(k+1) は

$$\mathbf{F}(k+1) = \begin{bmatrix} 1 & \Delta d(k+1)e^{j\cdot\Delta\theta(k+1)} \\ 0 & e^{j\cdot\Delta\theta(k+1)} \end{bmatrix}$$
(19)

となり、駆動行列 G(k+1) は

$$\mathbf{G}(k+1) = \begin{bmatrix} e^{j\cdot\theta(k)} & \Delta d(k+1)e^{j\cdot\theta(k)} \\ 0 & j\cdot e^{j\cdot\theta(k)} \end{bmatrix}$$
(20)

となる.

c) 観測方程式の定義

観測方程式を式(11)に示した状態変数 $\mathbf{x}_{r}(k)$ を用いて

$$\mathbf{z}_{r}(k) = \mathbf{C}(k) \cdot \mathbf{x}_{r}(k) + \mathbf{u}(k)$$
⁽²¹⁾

と表せる. ここで, 観測行列 C(k) は

$$\mathbf{C}(k) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
(22)

となる.ここで、観測ノイズ $\mathbf{u}(k)$ は

$$\mathbf{u}(k) = \begin{bmatrix} n_x(k) \\ n_y(k) \end{bmatrix}$$
(23)

とし、観測ノイズ $\mathbf{u}(k)$ の共分散行列 $\mathbf{U}(k)$ を

$$\mathbf{U}(k) = \begin{bmatrix} \sigma^2 \{n_x(k)\} & 0\\ 0 & \sigma^2 \{n_y(k)\} \end{bmatrix}$$
(24)

とする.

d) 観測方程式の複素数表現

b項の式(17)を用いて観測方程式を定義しなおすと

$$\mathbf{z}(k) = \mathbf{H}(k) \cdot \mathbf{x}(k) + \mathbf{v}(k)$$
(25)

と表せる.ここで、観測行列 $\mathbf{H}(k)$ は

$$\mathbf{H}(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \tag{26}$$

とする.

$$\mathbf{v}(k) = \begin{bmatrix} n_x + j \cdot n_y \end{bmatrix}$$
(27)

となり、観測ノイズ $\mathbf{v}(k)$ の共分散行列 $\mathbf{R}(k)$ は

$$\mathbf{R}(k) = \sigma^2 \{ n_x \} = \sigma^2 \{ n_y \}$$
(28)

$$\geq t_x \mathfrak{Z}.$$

e) 複素拡張 Kalman filter によるデータ同化

複素カルマンフィルタのアルゴリズムは以下の 3Step に よって構成される.この 3Step を繰り返すことで移動ロボ ットの状態を更新していく.

(Step1) 予測

離散時刻k-1において,真値 $\mathbf{x}(k-1)$ を推定したものを $\hat{\mathbf{x}}(k-1|k-1)$ とし,誤差共分散行列を $\mathbf{P}(k-1|k-1)$ とする.離散時刻kでは,

$$\hat{\mathbf{x}}(k \mid k-1) = \mathbf{F}(k) \cdot \hat{\mathbf{x}}(k-1 \mid k-1)$$
⁽²⁹⁾

と定義できる. このときの誤差共分散行列は

$$\mathbf{P}(k \mid k-1) = \mathbf{F}(k) \cdot \mathbf{P}(k-1 \mid k-1) \cdot \mathbf{F}(k)^{T} + \mathbf{G}(k) \cdot \mathbf{Q}(k) \cdot \mathbf{G}(k)^{T}$$
(30)

$$\geq t_{k} \mathfrak{T}_{k}.$$

(Step2) 観測

離散時刻kにおいて、マップマッチングから取得した観 測値を $\mathbf{z}(k)$ とし、 $\hat{\mathbf{x}}(k | k - 1)$ と観測行列 $\mathbf{H}(k)$ を用い て、

 $\hat{\mathbf{z}}(k \mid k-1) = \mathbf{H} \cdot \hat{\mathbf{x}}(k-1) \tag{31}$

(Step3) 更新

式 (28) で求めた $\hat{\mathbf{x}}(k \mid k-1)$ と式 (30) で求めた $\mathbf{P}(k \mid k-1)$ において,式(33)~式(34)を用いて更新する.

$$\hat{\mathbf{x}}(k \mid k) = \hat{\mathbf{x}}(k \mid k-1) + \mathbf{K}(k) \cdot (\mathbf{z}(k) - \hat{\mathbf{z}}(k \mid k-1))$$
(33)

 $\mathbf{P}(k \mid k) = \mathbf{P}(k \mid k-1) - \mathbf{K}(k) \cdot \mathbf{H}(k) \cdot \mathbf{P}(k \mid k-1)$ (34)

このとき, 観測ノイズの共分散行列 **R**(*k*) を用い, カル マンゲイン **K**(*k*)を式(35)より求める.

$$\mathbf{K}(k) = \mathbf{P}(k-1) \cdot \mathbf{H}(k)^{T} \cdot \left(\mathbf{H} \cdot \mathbf{P}(k \mid k-1) \cdot \mathbf{H}(k)^{T} + \mathbf{R}(k)\right)^{-1}$$
(35)

6. 実機実験

(1) ハードウェア構成

Fig.4 に実験で使用した移動ロボットを示す. 移動ロボットには速度計, ジャイロスコープ, 全方位カメ ラ, 白線内のドラム型コーンを回避するための LIDAR を 用いる.また提案手法と従来の GPS による自己位置を比 較するために GPS も搭載する.

Fig.4 Autonomous robot

(2) 実験

提案する速度検出法を検証するため,実際に IGVC の ACC で取得したデータを用いて白線マップを生成し,自 己位置推定を行なう.Fig.5(a)に実際のコース図を示す.2 本の白線が引かれたコース内にはドラム型コーンが障害 物として複数置かれ,正確な自己位置推定が必要になる.

移動ロボットがリアルタイムで生成するローカル確率 マップは 60×60 [pixel] (6.0×6.0 [m]) サイズ,サン プリング間隔は 0.2 [sec] とした.グローバル確率マップ 上の探索対象データは式 (10) より,Dが 0.6 [m] となる ため,80×80 [pixel] (8×8 [m]) サイズとした.Fig.6 に事前に取得した環境データから生成したグローバル確 率マップを示す

Fig.5 Auto-Nav Challenge course

Fig.6 Global probability map

Fig.7 に走行結果を示す.また提案した手法との比較のために, Dead reckoning での自己位置推定と、マップマッチングでの自己位置推定を行なう.その比較結果は Fig.8 に示す.

Fig.7 Localization result

Fig.8 Comparison result

作成した白線マップは直線地帯では正確に生成できて いるが、カーブでは途切れていることがあるが、提案手法 より自己位置を正確に推定し、補正することができた.

7. 終わりに

本研究では IGVC Auto-Nav Challenge のための白線情報

を用いた自己位置推定法について述べた.提案する手法は, ご検出の影響を軽減できる確率グリッドマップを用いた マップマッチング結果を複素 KF によりジャイロオドメト リと統合することで自己位置推定を行った.

提案するシステムの有用性を検証するため, IGVC2013 のデータを用いて自己位置推定出を破綻せずに行い,その 有用性およびリアルタイム性を示した.今後の展望として は白線マップの精度向上,本番の Auto-Nav Challenge を想 定した実機実験を行いたい.

参考文献

- Chris C. Ward, Karl Iagnemma: Model-Based Wheel Slip Detection for Outdoor Mobile Robots, Proc. Robotics and Automation, 2007 IEEE International Conference on, pp. 2724-2729, 2007.
- Braasch, M.S.: Performance comparison of multipath mitigating receiver architectures, Proc. Aerospace Conference,2001, IEEE Proceedings, Vol. 3, pp. 3/1309-3/1315, 2001.
- J. P. Lewis: Fast template matching, Vision Interface, pp. 120-123, 1995
- 4) Hyun Chul Roh and Chang Hun Sung: P Fast SLAM using Polar Scan Matching and Particle Weight based Occupancy Grid Map for Mobile Robot, Ubiquitous Robots and Ambient Intelligence, 8th International Conference, pp.756-757, 2011
- 5) 根岸,三浦,白井:全方位ステレオとレーザレンジフ アインダの統合による移動ロボットの地図生成,日本 ロボット学会誌 21-6, pp. 690-696, 2003