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SUMMARY 

Very simplified equations of state (EOS) are proposed for a system involving argon and consisting of a perfect 

solid and a perfect liquid composed of single spherical molecules in which Lennard –Jones interactions are 

assumed. Molecular dynamics simulations of this system were performed to determine the temperature and 

density dependencies of the internal energy and pressure and the supercooled liquid state was also examined. 

The internal energy and pressure were found to be almost linear as functions of temperature at a fixed volume. 

The density dependencies of coefficients for pressure and the internal energy are written by linear functions of 

number density for simplicity and for ease of use. 

 

KEY WORDS:  equation of state, phase diagram, triple point, perfect solid, perfect liquid 

1. INTRODUCTION 

A three-phase equilibrium is typically observed in a Lennard–Jones (LJ) system [1] in which a perfect solid 

combined with a perfect liquid may serve as an idealized model. Various simplified equations of state (EOS) can 

be used to calculate the Gibbs energy of phase transitions between solid, liquid and gas phases based on such a 

model [2-7]. A more simplified EOS will be introduced in this work, applying the concept of the harmonic 

oscillator. 

When using a harmonic oscillator approximation, the internal energy of the solid phase (U) is expressed by 

Equation (1). 

 

   
e

3 3
( , ) ( ,0 K)

2 2
U V T NkT U V NkT  

   (1) 

 

Here, V is the volume of the system, T is the temperature, N is the number of spherical molecules and k is the 

Boltzmann constant. At low temperatures, the most important term in this equation is the average potential 

energy (Ue). The first term in Equation (1) represents the average kinetic energy while the last term is the 

average potential energy based on the harmonic oscillator approximation 

When using this approximation, the pressure (p) of a solid may be expressed as the volume derivative of the 

average potential energy at the low temperature limit and the temperature effect may be expressed as a linear 

function of temperature as in Equation (2).  
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The numerical coefficient of 6 in the last term of Equation (2) results from the FCC structure of solid argon 

[2]. The temperature dependent terms in Equation (2) and in the Ue term are valid only in the case of a harmonic 

FCC lattice. These equations may be generalized by applying suitable coefficients functions, f(V) and g(V), 

which are obtained by fitting molecular dynamics (MD) [8] results as linear functions of temperature (Equations 

(3) and (4)).  
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           (3) 
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Here, g(V) and f(V) are functions of the volume obtained by the analysis of MD results, while the last term in 

Equation (4) is included to satisfy the thermodynamic equation of state [1]. These functions account for the 

effects of non-harmonic motion near the most stable portions of the solid structure. Over a wide density range, 

these functions represent interpolations between the condensed and gas phases and are also expected to serve a 

similar purpose in the liquid phase. 

 In this paper, the functions f(V) and g(V) will be very simplified as follows. 
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Here, v is the volume per particle and the factor 3
/v is the number density and it works as a weight function 

which accounts for dense regions of the argon. This factor also interpolates between the condensed and gas 

phases where the oscillator behavior vanishes. 

Many studies have examined the EOS of Lennard–Jones systems [9~12]. Such studies are typically based on 

MD and Monte Carlo (MC) simulations of the equilibrium state [8] and the EOS thus obtained are used to 

investigate the gas–liquid equilibrium. Phase equilibria have been studied by both equilibrium and 

non-equilibrium molecular simulation techniques [11~22], both of which provide reasonably accurate results. 

The EOS results obtained in this work are also compared with these simulation results [11~22]. 

2. ANALYSIS OF MD SIMULATIONS 

MD simulations [8] were performed in order to obtain the temperature and density dependencies of the internal 

energy and pressure. In this work, the molecular interactions of the spherical molecules were Lennard–Jones [1]. 

The Lennard–Jones potential (u(r)) may be expressed as a function of the interatomic distance (r) using the 

equation  

 

    

12 6

( ) 4u r
r r

 

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     
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where  is the depth of the potential well and  is the separation at which u() = 0. The constants  and  are in 

units of energy and length, respectively (Table 1). 
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Table 1. Lennard–Jones parameters [1] 

( /k ) / K   / 10
-21

 J   / 10
-10 

m ( / 3
) / MPa ( / 3

) / atm

111.84 1.54 3.623 32.5 320  
 

NVT ensemble [8] simulations were performed at a number of fixed number densities (N/V) using a system 

with N = 256 and a sufficiently long cut-off distance (10
-8

 m) for calculations of potential energy and pressure, 

and Figs. 1 and 2 present examples of the results of these simulations. The average potential energy (Ue) and the 

pressure (p) of each phase were fitted by linear functions of the temperature (T) to give Equations (8) and (9). 
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Fig.1 Average potential energy per particle Ue/N obtained from MD simulations at number density N/V = 0.97 

-3
 vs. temperature. The line of best fit for liquid phase data is shown. 

 

 
Fig. 2. Pressure obtained from MD simulations at number density N/V = 0.97 -3

 vs. temperature. 

The line of best fit for liquid phase data is shown. 

 

The average potential energy at 0 K, Ue(V, 0 K), is plotted in Fig. 3 and plots of the variations in the coefficients 

a(Ue) and a(p) are shown in Figs. 4 and 5. These coefficients may also be expressed as functions of f(v) and g(v) 

as in Equations (10) and (11). 
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     e( ) ( )  a U g v
     (10) 

 

    
( ,solid) 1 ( ),  ( ,liquid) 1 ( )a p f v a p xf v   

  (11) 

 

 
Fig. 3. Average potential energy per particle at the low temperature limit Ue(0 K)/N vs. number 

density N/V (See Equations (8) and (9)). 

 

 

 
Fig. 4. Coefficient a(Ue) vs. number density N/V (see Equation (8)). 

 

    
Fig. 5. The product of coefficient a(p) and volume per molecule V/N vs. number density N/V (see Equation (9)). 

 

Here, x is an adjustable parameter which will be determined when fixing the triple point. 
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3. EQUATIONS OF STATE 

The present EOS are as follows [6]. 

 

 
e
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 ( ) ( ),   ( ) 0.886158* ( ). (Liquid)f fg v g v f v f v   (17) 

 

Here, the suffix s indicates the solid state while f refers to the fluid phase. It will be shown that there are both 

liquid and gas branches in the fluid EOS. In this study, the function ff
(
v) associated with the liquid state includes 

an adjustable parameter that is chosen, as in Equation (17), to reproduce the triple point and these EOS are 

considered as the EOS for a perfect solid and liquid. The last term in Equation (13) is included to ensure that 

Equations (12) and (13) satisfy the thermodynamic EOS [1]. 

The entropy change was calculated for a reversible isothermal expansion and a heating process at constant 

volume to the next change of state [1], as in Equation (18). 

 

    , ,i i f fV T V T     (18) 

 

This entropy change is expressed as follows in Equation (19). 

 

 

     ( ) ( ) ln ( ) ( ) ( ) ( ) ln( )

3
( ) ln

2

( ) ( )

f

f i f i f i i

i

f

i

V
S g V g V Nk Nk F V F V Nk g V g V Nk kT

V

T
Nk g V Nk

T

F v f v dv

 
        

 

  
    
   

 

 (19) 

 

Here the initial state is chosen as in the equations below. 

 max,   i iT V Nv
k


   (20) 
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3
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2
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Here the volume (vmax) is sufficiently large compared to the unit volume 
3
 and temperature is expressed in units 

of /k. Functions F(V) and g(V) are assumed to be zero in the initial state (see Equations (10), (11), (16) and 

(17)) and, as a result, the entropy change has the following form. 
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Hereafter, the entropy change from this S0 is expressed simply as the entropy (S). 

4. PHASE EQUILIBRIUM IN T–P SPACE 

For a given value of temperature, T, the condition of the phase equilibrium between phases 1 and 2 in T–p space 

may be expressed by Equation (23). 

 

 

1 1 2 2

1 1 2 2

1 2

( , ) ( , ),

( , ) ( , )
.

p V T p V T

G V T G V T

N N



  (23) 

 

Since the EOS are known to be functions of volume and temperature, the above equation can be solved 

numerically [2, 3], and an example is shown in Figs. 6, 7 and 8 at the triple point.  

 

 
Fig. 6. Pressure vs. number density N/V at Ttr = 0.749/k. 

 

 
Fig. 7. Gibbs energy per molecule G/N vs. number density N/V at Ttr = 0.749/k. 

 

Figure 6 demonstrates the density dependence of pressure. The Gibbs energy is plotted as a function of number 

density (N/V) in Fig. 7. As the pressure decreases, the liquid branch transitions to the gas branch within the van 

der Waals loop. The solid branch also changes to the gas branch, and has a slightly higher Gibbs energy than that 

of the previous gas branch originating from the liquid branch. The adjustable parameter in the liquid function 

ff(v) was chosen to reproduce the experimentally determined triple point of argon [23]. The thermodynamic 
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properties thus calculated are summarized and compared to both experimental and simulation results in Table 2, 

from which it is evident that the calculated properties are a reasonable approximation of the experimental and 

simulated data. 

 

 
Fig. 8. Gibbs energy per molecule G/N vs. pressure at Ttr = 0.749/k. Arrow indicates the triple point. 

  
Table 2. Comparison of EOS and experimental [23], MC [18] and MD [21] triple points. The mass density of the liquid 

(L) and the enthalpy change associated with the solid–liquid transition (SLH) are also provided 

T tr/K P tr/atm  L/(g/cm
3
)  SLH (J/g)

EOS v1 [3] 69 1.75 1.129 60.5

EOS v2 [4] 84 0.3 1.134 29.8

EOS v3 [5] 77 0.31 1.181 28.6

EOS v4 [6] 84 1.3 1.158 27.4

EOS v5 [7] 84 0.68 1.179 26.4

EOS v6 84 0.8 1.176 24.2

exp [23] 84 0.68 1.417 28

MC [18] 77 0.32 1.182 26

MD [21] 74 0.58 1.205 24  
 

 

The liquid–gas critical point was determined by numerically solving the following equation [1]. 

 

 
2

2
0

T T

p p

V V

   
   

    
 (24) 

 

Table 3 compares the critical points thus obtained with the experimental results [1] as well as the values 

determined by the molecular simulation method [17]. The calculated critical temperature is in good agreement 

with the experimental [1] and simulation results [17], with a relative error of 7%, while the EOS critical pressure 

is higher than that observed experimentally and the critical molar volume is close to the experimental result [1]. 

The comparison is satisfactory with respect to the critical constants. 

 

The calculated transition pressure is plotted as a function of temperature in Fig. 9 and compared with the 

experimental [24–27] and simulation [13–22] results for argon. The pressure is plotted on a logarithmic scale due 

to its very wide range. The overall transition pressure for argon is well reproduced as a function of temperature. 

Figure 10 shows the transition temperature–number density relationship for argon and compares the calculated 

results with the simulation results [13–22]. The phase boundaries of the liquid and solid branches obtained from 

EOS calculations are close to the simulation results within the temperature range given by Equation (25). 

 

 0.5 1.5 .T
k k

 
   (25) 
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The rather large deviations within the high temperature and high density regions results from the crude 

approximations in Equations (5) and (6). Some of the observed differences in the gas–liquid transition are also 

due to the estimated critical temperature.  

 
Table 3. Comparison of EOS and experimental [1] and MD [15] critical constants of argon. 

T c/K p c/atm V c/(cm
3
/mol)

EOS v1 [3] 133 47 86

EOS v2 [4] 166 40 122

EOS v3 [5] 163 81 71

EOS v4 [6] 149 75 70

EOS v5 [7] 164 79 72

EOS v6 161 81 70

exp [1] 151 48 75

MD [17] 148 41 91

KN-EOS [10] 150 45 92  
 

   
Fig. 9. Phase transition pressure vs. temperature for argon. Comparison of EOS, experimental [21–24] and simulation [13–

21] results. 

 

   
Fig. 10. Number density N/V vs. phase transition temperature for argon. Comparison of EOS and simulation results [13–21]. 

  

Figure 11 compares the calculated configurational entropy per molecule (Sc/N) with the simulation results 

[17]. The configurational entropy (Sc) has the following form in the perfect solid and liquid model. 

 

 c 3
( , ) ln ( ) ( ) ln ( )

V kT
S V T Nk F v Nk g v Nk g v Nk Nk

N 

   
       

   
 (26) 
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Fig. 11. Configurational entropy per molecule Sc/N vs. temperature in the phase equilibrium of argon. Comparison of EOS 

and simulation results [18]. 

 

The main feature of the phase equilibrium line in the solid–liquid transition is that the configurational 

entropies are almost constant as a function of temperature. This feature is reasonably well reproduced in our plot 

and therefore the overall features of the configurational entropy plot obtained using EOS are in agreement with 

the simulation results [18]. 

 

Figure 12 presents the average potential energy per molecule (Ue/N) at the phase boundaries, as shown in 

Equation (27). 

 

      
e,f

e,s e,s s

e,f f

( , ) ( , 0  K) ( ) ,  (solid)

( , ) ( , 0  K) ( ) . (liquid)

U V T U V g v NkT

U V T U V g v NkT

 

 
   (27) 

 

These results are also compared with the simulation results [10, 18, 21]. The average potential energies of the 

solid, liquid and gas generally correspond well with the simulation results within the moderate temperature range 

defined by Equation (25). The reason why the average potential energies at liquid–solid equilibrium differ from 

the observed results in the region T > 1.5 /k is that the straight line 1.5 
3
/v deviates from the MD results in the 

high density region of Fig. 4. Figure 13 shows the configurational Helmholtz energy (Ac) as a function of the 

temperature along the solid–liquid phase boundaries. The calculated Ac value corresponds well with the MC 

simulation results [18] at low and intermediate temperatures.  

 

 
Fig. 12. Average potential energy per molecule Ue/N vs. temperature in the phase equilibrium of argon. Comparison of EOS 

and simulation results [18]. 
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Fig. 13 Configurational Helmholtz energy per molecule Ac/N vs. temperature in the solid–liquid equilibrium of argon. 

Comparison of EOS and simulation results [18]. 

 

Finally, Fig. 14 compares Ac values at the solid–gas phase boundary with values obtained from MC 

simulations [18]. The EOS (v6) gives Ac values on the solid–gas phase boundary which are comparable with 

those of the MC simulation [18]. 

 

 
Fig. 14. Configurational Helmholtz energy per molecule Ac/N vs. temperature in the solid–gas equilibrium of argon. 

Comparison of EOS and simulation results [18]. 

5. THERMODYNAMIC PROPERTIES AT A CONSTANT PRESSURE 

This section considers thermodynamic quantities at low pressures by comparing the EOS and simulation results. 

In Fig. 15, the calculated Gibbs energy values are plotted as a function of temperature at p = 1 atm = 3.13×10
–3

 

/
3
. These are compared with the Kolafa–Nezbeda (KN)-EOS data determined from many simulation results for 

the Lennard–Jones system [10]. When Fig. 15 is considered in detail near the transition points, the comparison is 

generally satisfactory. The entropies of the liquid and solid are negative due to the present choice of the entropy 

origin, and consequently the Gibbs energy plot differs from its usual form [1]. The melting point (Tm) and the 

boiling point (Tb) are fixed in Fig. 15 as in Equation (28). 

 

 

m

b

3 3

83.8 K 0.749 ,  

85.9 K 0.768 ,  

1 atm 0.313 10 /

T
k

T
k

p





 

 

 

  
.

 (28) 

 

These temperatures are close to the macroscopic experimental results [1]. 
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Fig. 15. Gibbs energy per molecule G/N vs. temperature at p = 1 atm. Comparison of EOS and simulation results [10]. The 

melting point is 0.749/k and the boiling point is 0.768/k. 

 

Figure 16 shows the volume per molecule as a function of temperature at p = 1 atm. This is compared with the 

present MD results and the KN-EOS results [10]. The MD simulation was performed on an 864-particle system 

using a standard NPT ensemble [8]. This comparison demonstrates that the present simple EOS is applicable.  

 

 
Fig. 16. Volume per molecule V/N vs. temperature at p = 1 atm. Comparison of EOS and simulation results [10], including 

the MD simulations of this study. 

  

The internal energy is plotted as a function of temperature at p = 1 atm in Fig. 17, where the metastable state is 

also included. The stable liquid phase appears in the region 

 

 m bT T T  . (29) 

 

For this reason, the comparison of the internal energy is satisfactory, as is also the case for the volume data.  

 

 
Fig. 17. Internal energy per molecule U/N vs. temperature at p = 1 atm. Comparison of EOS and simulation results [10], 

including the MD simulations of this study. 
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Figure 18 plots the enthalpy per molecule as a function of temperature at p = 1 atm. The calculated enthalpy is 

in agreement with the simulation results for the Lennard–Jones system, while the KN-EOS results are better than 

the present EOS in the liquid phase [10]. 

 

 
Fig. 18. Enthalpy per molecule H/N vs. temperature at p = 1 atm. Comparison of EOS and simulation results [10], including 

the MD simulations of this study. 

 

The Helmholtz energy per molecule is shown in Fig. 19 and the entropy per molecule is depicted in Fig. 20. 

The overall features of the Helmholtz energy are satisfactory in comparison with the KN-EOS [10] while the 

entropy values for the liquid obtained by the EOS are close to those obtained from the simulations [10]. The 

entropies of the liquid and the solid are negative based on the present choice of the entropy origin. 

 

   
Fig. 19. Helmholtz energy per molecule A/N vs. temperature at p = 1 atm. Comparison of EOS and simulation results [10]. 

 

 
Fig. 20. Entropy per molecule S/N vs. temperature at p = 1 atm. Comparison of EOS and simulation results [10], including 

the MD simulations of this study. Entropy of the present MD result is calculated by the numerical integration of Cp/T and is 

adjusted with the EOS value at T = 0.5/k at each phase. 
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Figure 21 compares the expansion coefficient (α) calculated using the EOS with that obtained by simulations 

at p = 1 atm. Although the values of α for the liquid and solid differ slightly from those obtained by the 

simulations, the overall plots show reasonable similarity. The KN-EOS [10] gives a better expansion coefficient 

in the liquid phase than the present EOS.  

 

 
 

Fig. 21. Thermal expansion coefficient  vs. temperature at p = 1 atm. Comparison of EOS and simulation results [10], 

including the MD simulations of this study. 

 

The isothermal compressibility (T) at p = 1 atm obtained by the EOS is plotted in Fig. 22. Comparison of T 

calculated by the EOS with the MD simulation results indicates that the present EOS satisfactorily explains 

differences in the order of magnitude of this term in each of the three phases.  

 

 
Fig. 22. Isothermal compressibility T vs. temperature at p = 1 atm. Comparison of EOS and simulation results [10], 

including the solid phase MD simulations of this study. 

 

Figure 23 shows the heat capacity under constant pressure (Cp) at p = 1 atm. The heat capacities in the gas 

and solid phases are in reasonable agreement with the results obtained by MD simulations. For Cp in the liquid 

phase, the calculated values are lower than those obtained by the MD simulation and the KN-EOS [10]. 
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Fig. 23. Heat capacity at constant pressure per molecule Cp/N vs. temperature at p = 1 atm. Comparison of EOS and 

simulation results [10], including the MD simulations of this study. 

6. THERMODYNAMIC CONSISTENCIES 

The thermodynamic consistencies were examined using the following thermodynamic equation [1]. 

 

    

 
21

p V

T

TV
C C

N N




 

    (30) 

 

The LHS and RHS of Equation (30) are shown in Fig. 24 for the three phases at p = 1 atm. No specific 

problems were encountered with the thermodynamic consistency. 

 

 
Fig. 24. Thermodynamic consistency test (see Equation (30)). 

 

7. CONCLUSIONS 

The phase transitions among the three phases of argon may be calculated with reasonable accuracy using our v6 

EOS for a perfect solid and liquid, as represented by Equations (12)–(17), while the potential energy value of 

argon can be expressed using the Lennard–Jones pair potential. For this reason, the Lennard–Jones potential 

parameters,  and , are not adjustable and thus only the coefficients in the functions of the EOS are adjustable 

parameters in the present EOS v6. The EOS for a perfect solid and liquid have a simple analytic form based on 

the harmonic oscillator approximation. We expect that this set of EOS may be employed for teaching 

thermodynamics in physical chemistry courses. 
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APPENDIX 

An example of worksheet for calculation of Gibbs energy is shown as an attached file [28] (Table 4). Another 

worksheet to obtain volume for a given temperature and pressure is also given [29]. 

 

Table 4.  Worksheets employed for phase transition calculations. 

File name Purpose Example of figures

EOSv6_(T=1.00).xlsx G/N  vs. p  plot Figs. 3–14

EOSv6_(p=1atm).xlsm solve p(V,T 0)=p 0 Figs. 15–24  
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