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Abstract
Transport costs are generally attributable to price differentials across geographically separated re-
gions. However, when using price differential data, the identification of distance-elastic transport
costs depends on how producers handle transport costs and set prices in remote markets. To ad-
dress this problem, we adopt a nonhomothetic preference framework with heterogeneous producers.
We show that the presence of nonhomothetic preferences is important in causing producer hetero-
geneity to alter individual pricing behavior depending on market conditions, a property absent in
the constant elasticity of substitution heterogeneity framework. This also exhibits the property
that producers do not fully pass on the increase in transport costs. By not accounting for these
features, the distance elasticity of transport costs is underestimated. However, by incorporating
these features in our model and using empirical analysis and microlevel data, we reveal that the
distance effect is significantly large, suggesting that the price of geographic barriers for regional
transportation is high.
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1. Introduction

Geographic separation creates price differentials across regions because of transport

costs, even in the absence of institutional differences such as tariffs, taxes, and national

borders. Accordingly, if the locations of production and their markets are geographically

distant, transport costs will be high and hence there will be large price differentials across

regions. In this regard, the existing law-of-one-price (LOP) literature (Engel and Rogers,

1996; Parsley and Wei, 1996, 2001; Crucini et al., 2010) generally identifies the positive effect

of distance on price dispersion, although the magnitude of the distance effect is minute. We

can consider that this negligible distance effect is the result of innovations in transport

technology or intense competition in the transport sector, which bring with them a lower

cost of transport, and thus distance has only a minor effect on price differentials. However,

the identification of the distance effect is subject to how producers deal with their geographic

burdens and set their market prices (pricing-to-market). Because price differentials across

regions are often considered to provide evidence, among other things, of spatial market

segmentation, it is then an important question how geographic attributes affect transport

costs.

This paper addresses the question of how geographic barriers, as measured by dis-

tance, contribute to transport costs. In particular, we estimate the elasticity of transport

costs with respect to distance. Because this is considered the price that producers must pay

to deliver their goods over distance, we can refer to it as “the price of distance,” such that

the price differential is then generated by either the price of distance or pricing behavior

across markets or both. We then investigate how serious the biases are in inferences of the

price of distance caused by producer pricing behavior.

We adopt a nonhomothetic preference framework with producer heterogeneity and

pricing-to-market. We show that the presence of nonhomothetic preferences is important

in causing producer heterogeneity to alter individual pricing behavior depending on market

conditions, which is a situation absent from the constant elasticity of substitution (CES)

heterogeneity framework. This also exhibits the property that producers do not fully pass on

the increase in transport costs. For instance, only highly productive producers can supply

remote markets, absorb a large portion of any increases in transport costs, and not pass

these on through price increases. Therefore, the actual geographic burden producers pay

for transport costs is larger than price differentials across regions. This provides a source of

under-bias in the estimation of the distance effect. Thus, we contribute to the literature by

estimating the distance effect while controlling for heterogeneity and pricing-to-market.

This study measures the impact of transport costs using price differential data. To
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measure transport costs correctly using price data, as Anderson and van Wincoop (2004)

argue, the difference between market prices and the prices at the point of production must

be used, not just market prices. In addition, because an increase in distance causes not only

increases in price differentials, but also a decrease in the propensity for product delivery,

distance promotes selection bias. Thus, delivery choice to other regions should be accounted

for to control for sample selection biases, as in Helpman et al. (2008) and adopted in Kano

et al. (2013). While Kano et al. (2013) reveal that sample selection (the extensive margin)

causes under-bias in the estimation of the distance effect, the bias related to the intensive

margin as caused by the pricing-to-market remains. This paper takes into account the biases

potentially arising from both margins.

Because the distance elasticity of transport costs is a key parameter when assessing the

impact of geographic barriers, there have been attempts by the trade literature, including

Hummels (2007), Helpman et al. (2008), Crozet and Koenig (2010), and Balistreri et al.

(2011), aimed at its identification and estimation. The empirical findings therein indicate

that the distance elasticity tends to be larger than that in the prevailing LOP literature,

such that it typically exceeds a value of 0.15 (15 percent). Alternatively, LOP studies employ

the same iceberg-type specification, estimate the distance elasticity, and report a negligible

distance effect. Indeed, the distance elasticity parameter is normally estimated to have a

value of less than 0.01 (1 percent). However, the identification problem caused by pricing-

to-market for the price differential effect of geographic barriers (distance) has not been

examined extensively. This study proposes an identification strategy for the distance effect

and demonstrates that geography can be a major obstacle to trade in that it significantly

increases transport costs.

We employ the same agricultural price data for Japan as in Kano et al. (2013),

which enables us to obtain price information about both the market and source regions. By

estimating the price differential equation and taking into account sample selection, producer

heterogeneity, and pricing-to-market behavior, we find evidence of a large distance effect. In

the extant literature, Donaldson (2013) and Kano et al. (2013) both use information on prices

in the production regions and find significant and moderate distance elasticity estimates of

0.24 and 0.21 to 0.325, respectively. In this study, we find the coefficients of the distance

effect range from 0.458 to 0.757. Although these seem large, they are consistent with the

results in the economic geography literature. In particular, large distance effects are found

when investigating truck transportation. Because truck transportation is also a major type

of transport in our analysis, our results are then close to those of Combes and Lafourcade

(2005), who use data on trade shipped by truck and estimate the distance elasticity to be

0.8. We therefore conclude that there is a substantially large bias when models do not
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incorporate producer heterogeneity and pricing-to-market behavior. Further, the price of

geographic barriers (distance) remains high for regional transport, even in countries with

highly developed transport infrastructure, such as Japan.

The remainder of the paper is organized as follows. In Section 2, we briefly review

the related literature. In Section 3, we derive the empirical framework by first developing

our nonhomothetic preference model with producer heterogeneity, and then constructing a

CES model for the purpose of comparison. In Section 4, we introduce our data set, and

report the estimation results in Section 5. The final section concludes.

2. Related Literature

Most recent studies, particularly those of Donaldson (2013) and Kano et al. (2013), follow

Anderson and van Wincoop’s (2004) suggestion of using the price in the source production

region. For example, Donaldson (2013) identifies the source region of salt production in India

and employs this information to measure transport costs using market prices, while Kano

et al. (2013) use agricultural wholesale price data in Japan, where both source and market

prices are available. They also propose an estimation procedure to take into account selection

bias following Helpman et al. (2008). Because high transport costs are likely to deter firms

from shipping their products to more distant markets, shipment data will be truncated for

these markets. This accounts for an under-bias in estimates of the distance elasticity. In

evidence, Kano et al. (2013) demonstrate that, if not controlled for, the distance effect found

is quite weak given these biases. However, when controlled for, distance actually has quite

a significant impact on geographic price differentials.

Although these studies both identify the biases involved in the estimation of the

distance effect, two possible remaining causes of bias, that is, producer heterogeneity and

pricing-to-market, have not been examined in detail. Because producer heterogeneity and

pricing-to-market behavior cause different pricing across markets, price differentials may be

reflected in more than just transport costs. For example, in Kano et al. (2013), markets

are monopolistically competitive, producers set invariant markups and there is no producer

heterogeneity. By way of contrast, Donaldson (2013) applies the Eaton and Kortum (2002)

model in which there is dispersion in producer productivity and the market is perfectly com-

petitive. Therefore, in both these studies, only transport costs characterize price differentials,

and different pricing behavior across markets is not considered.

In a nonhomothetic preference framework, because an individual firm’s pricing de-

pends on local market characteristics (as shown by, for example, Melitz and Ottaviano, 2008),

price differentials do not simply reflect transport costs, but also include market structure
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(the number of products) and some productivity threshold value. Because transport costs

reduce profitability in a remote market, the productivity threshold level needed to set a pos-

itive price depends on transport costs. In particular, as the productivity threshold increases,

only highly productive, and thus low-price-setting firms, produce. Hence, ignoring producer

heterogeneity creates an omitted variable bias, which in turn promotes the underestimation

of the distance effect.

The introduction of nonhomothetic preferences is essential for investigating the dis-

tance effect on individual producers’ price differentials with producer heterogeneity. If a CES

utility function is used, and thus monopolistically competitive firms set constant markup

prices, the heterogeneity term will be cancelled out in the price differential equation and the

price differential will then depend only on transport costs. If the focus is instead not on

individual price differentials, then important implications are obtained for aggregate (aver-

age) price levels under firm heterogeneity using CES because, as Ghironi and Melitz (2005)

and Bergin et al. (2006) show, Balassa–Samuelson effects emerge. Here, because we study

individual price differentials, there is no room for producer heterogeneity in a standard CES

framework. Nonhomothetic preferences instead lead firms to set different prices across mar-

kets, and these prices depend on a heterogeneous threshold. Therefore, heterogeneity plays

an important role in our analysis.

With regard to heterogeneity and pricing-to-market, Berman et al. (2012) report that

the pass-through rate depends on firm productivity such that the pass-through rate is high

for highly productive firms. Thus, producer heterogeneity and pricing-to-market behavior are

important factors in understanding international prices. We show that in a remote market,

only highly productive producers can supply goods. We refer to price differentials caused by

selection as the extensive margin. This extensive margin accounts for the under-bias in the

distance effect. In addition, under incomplete pass-through, the increase in costs does not

simply lead to a price increase by the same amount. We refer to price differentials caused by

pricing behavior as the intensive margin. The intensive margin also causes under-bias in the

estimation of distance-related transport costs. Thus, our study identifies the biases caused

by both types of margins (extensive and intensive) and thus demonstrates the importance

of heterogeneity and pricing-to-market behavior in studies of this type.

3. Model

In this section, we develop a model of pricing and delivery patterns. Consumers purchase

a variety of products delivered from their own and other regions, with each product being

produced by a single producer. These producers are heterogeneous in terms of productivity
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and engage in monopolistic competition. Because one of the main purposes of this paper

is to demonstrate the differences between the cases of nonhomothetic and CES preferences,

we first introduce a nonhomothetic model. We then consider a CES utility model for the

purposes of comparison.

3.1. Consumers

Consumer preferences are expressed by a nonhomothetic utility function. Nonho-

mothetic preferences have already been introduced to account for pricing-to-market (Melitz

and Ottaviano, 2008; Simonovska, 2010). We employ a simplified version of the Simonovska

(2010) framework and our derivations also rely on Simonovska (2010). However, while the fo-

cus there is on trade volumes and price levels, we emphasize individual pricing across markets

and sample selection arising from the choice of delivery, as in Helpman et al. (2008).1

Consumer nonhomothetic preferences in region i are expressed by:

ui =

∫
ω∈Ωi

ln(qi(ω) + q̄)dω, (1)

where ω is a variety index, Ωi is the set of products available in market i, and qi(ω) is the

consumption of variety ω. The presence of q̄ makes these preferences nonhomothetic. This

represents an endowment good, which consumers cannot buy or sell (Markusen, 2013). If

q̄ = 0, the utility function is a typical homothetic function. The size of q̄ can be changed, so

this can be normalized to one as in Young (1991). There are Li consumers in region i and

each consumer is assumed to supply one unit of labor. Thus, income for the representative

consumer is equal to wages, wi. The budget constraint is:

wi =

∫
ω∈Ωi

pi(ω)qi(ω)dω. (2)

Then, from utility maximization, the demand function is obtained by:

qi(ω) =
wi + q̄Pi

Nipi(ω)
− q̄, (3)

where Pi =
∫
ω∈Ωi

pi(ω) is the price index and Ni =
∫
ω∈Ωi

dω is the number of products in

market i. This demand function has regular characteristics such that demand is decreasing

in prices and increasing in income (wages). Consequently, given monopolistic competition,

if the number of products supplied to the market increases, the demand for each product

will fall. This in turn will affect the pricing behavior of producers.

1Simonovska (2010) demonstrates how the nonhomothetic model works in general equilibrium and com-

pares it with the CES model.
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3.2. Producers

Consider a producer located in region j for which we focus on the delivery choice made

by producers in region j to market i. Labor is the only factor of production. The number

of potential producers is assumed to be fixed, with producers deciding whether to produce

and deliver the product or shut down. The timing of the delivery decision is set as follows.

Producer productivity, ϕ, is assumed to follow a random distribution, G(ϕ). Producers have

to incur a fixed cost to draw their productivity. Based on the distribution of productivity,

they calculate the expected profits and decide whether to deliver. Their optimal prices are

assumed to be set when a delivery choice is made. This enables us to establish a similar

delivery choice decision problem as in the CES case because the expected profit function in

the nonhomothetic case has a multiplicative form.

The producer profit-maximization problem is to maximize variable profits, πij:

max
pij

πij = pijqijLi −
τijwj

ϕ
qijLi, (4)

where pij is the price in region i for products from region j, qij is the quantity of products from

region j sold in region i, and τij is the iceberg-type transport cost, τij > 1 for i ̸= j and τij = 1

for i = j. Thus, we assume that a producer does not have to pay transport costs to deliver its

product within the same region. Because we assume labor is the only input, the wage rate,

wj, indicates the unit cost and ϕ is a measure of productivity. This productivity parameter

differs across producers (producer heterogeneity). Because each product is produced by a

single producer, the number of varieties is equal to the number of producers. We can denote

each variety using producer productivity and thus ω contains information on the producer

type (productivity) and the source region j. The optimal price set by a producer with

productivity ϕ under the nonhomothetic framework is denoted pNHOM
ij (ϕ):

pNHOM
ij (ϕ) = (

τijwj(wi + q̄Pi)

ϕNiq̄
)1/2. (5)

In our model, the optimal price depends on not only transport costs, but also local market

characteristics. If income in markets (wi) is high, producers can charge high prices. The

existence of a large number of competitors implies a large Ni, which induces low prices

because of severe competition. Thus, we have pricing-to-market behavior.

In contrast to the CES preference case, if the price is sufficiently high, demand will be

zero. Then, the profit for the firm in region j derived from supplying this product to region

i will also be zero. We denote the productivity of this firm as ϕ∗
ij. Then, this threshold value

is expressed by:

ϕ∗
ij =

τijwjNiq̄

wi + q̄Pi

. (6)
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The threshold value, ϕ∗
ij, is increasing in transport costs, τij; that is, only high-productivity

firms can overcome any trade barriers. In addition, market structure, as measured by the

number of firms, Ni, influences the threshold value, whereas it has no effect in the CES

case. This is because of variable markups in the nonhomothetic model. Thus, the optimal

price in the nonhomothetic case depends on market structure through ϕ∗
ij, which means that

the productivity threshold matters for each individual producer’s price.2 In other words,

aggregate producer characteristics affect individual pricing behavior in the nonhomothetic

case.

From equation (5), the impact of an increase in transport costs on price is lower

for highly productive producers (dpNHOM
ij /dτij = (1/2)(w/ϕϕ∗

ij)
1/2, which is decreasing in

ϕ). Also, the impact is lower for remote markets because of high ϕ∗
ij. Thus, in terms of

the intensive margin, the effect of distance on market price is mitigated in distant mar-

kets. This requires us to account for heterogeneity and pricing-to-market to identify trans-

port costs using regional price differential data. Because of the assumption of monopolis-

tic competition, the price index can be expressed by a producer’s productivity measure:

Pi =
∑

ν

∫∞
ϕ∗
iν
piν(ϕ)µ(ϕ)dϕ and Ni =

∑
ν Niν =

∑
ν

∫∞
ϕ∗
iν
µ(ϕ)dϕ, where µ is the conditional

density function of ϕ conditional on delivery. The relationship between the optimal price and

the threshold value in this case is similar to that in the Melitz and Ottaviano (2008) case.

Melitz and Ottaviano (2008) specify a quadratic utility function and show how market size

affects the key features in a model with firm heterogeneity. The optimal price is increasing

in the threshold level of productivity and the number of firms is related negatively to the

threshold value. Thus, many of the properties derived here are common to nonhomothetic

models.

Assuming that productivity follows a Pareto distribution (G(ϕ) = 1− bθ/ϕθ, θ > 0),

the expected profit will be:

Eπij = (1−G(ϕ∗
ij))

∫
πijµdϕ, (7)

where µ = g/(1−G(ϕ∗
ij)) = ϕ∗

ij
θ/ϕθ+1. This is the conditional density where the productivity

exceeds ϕ∗
ij. We then calculate the expected profit as follows:

(1−G(ϕ∗
ij))

∫
πijµdϕ =

bθτijwj q̄Li

(2θ + 1)(θ + 1)ϕ∗
ij
θ+1

. (8)

Producers decide whether to deliver their product to region i depending on the above profit

measure and the fixed entry costs. If (1−G(ϕ∗
ij))

∫
πijµdϕ/fij > 1, then producers in region

2On the other hand, in the CES model, producers charge a constant markup over the marginal cost.
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j will deliver their products to region i. This captures the self-selection problem in delivery

patterns. The productivity threshold, ϕ∗
ij, affects pricing behavior and delivery choice. The

effect of distance on transport costs is underestimated because it is likely that for less-

productive producers, an increase in transport costs causes their delivery to be unprofitable.

Thus, in terms of the extensive margin, only highly productive producers can deliver in

remote markets. This creates biases in the inference of the distance elasticity because the

observed price data are subject to sample selection bias.

In our setting, even though productivity is higher than the threshold level, ϕ∗
ij, such

firms may still choose not to deliver their products because of negative expected profits. We

assume that delivery decisions are based on expected profits and that firms set their pricing

formula when the delivery choice is made. Thus, the selection is determined by comparing

the expected profits and fixed costs.

3.3. CES case

We intend to compare our results with those for the CES utility function case. We

employ a standard CES model with heterogeneity.

We briefly specify a consumer’s preferences using a simple CES model as follows:

ui = [

∫
ω∈Ωi

xi(ω)
αdω]1/α.

Then, maximizing utility subject to the budget constraint (wi =
∫
pi(ω)qi(ω)dω) yields the

following demand function:

xi =
pi(ω)

−ϵ

P 1−ϵ
i

wi,

where ϵ is the elasticity of substitution, ϵ = 1/(1− α), and Pi = [
∫
ω∈Ω pi(ω)

1−ϵdω]1/(1−ϵ).

We consider a heterogeneous producer in a monopolistically competitive market. The

firm’s profits with productivity ϕ are:

πij = pijqijLi −
τijwjqij

ϕ
Li − fij.

Then, by profit maximization, the optimal price is obtained using constant markup pricing

as follows:

pCES
ij (ϕ) =

τijwj

ϕα
.

Substituting this into the profit function yields:

πij(ϕ) = (1− α)(
τijwj

αPiϕ
)1−ϵwiLi.
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A producer’s decision to deliver is based on the comparison of profits and the fixed cost of

delivery. If πij/fij > 1, then producers in region j will deliver their products to region i.

Thus, the delivery data are truncated because of self-selection by the producers.

This break-even productivity level (ϕij = {ϕ|π(ϕij)/fij = 1}) depends on transport

costs. If transport costs, τij, are high, firms that are sufficiently productive are able to make

positive profits: ϕij is increasing in τij. However, as mentioned, market structure does not

affect ϕij directly, but only through the price index, Pi.

3.4. Price differentials

Our approach of taking the difference between the prices in markets and source re-

gions allows us to accurately measure transport costs. Because retail prices do not consider

information about the source, taking the difference between two market prices does not

necessarily enable the measurement of transport costs. However, if the source price and

the wholesale market price with information about the source are available, the difference

between these prices captures the costs of transport. We can highlight this idea in a CES

utility framework. The price differential is:

pCES
ij /pCES

jj = τij. (9)

In contrast to the nonhomothetic case, as we will show, price differentials in the CES case are

independent of market characteristics. This is because the productivity threshold level, ϕij,

does not affect individual pricing. The thresholds are derived from the zero-profit conditions

and determine not prices but the selection of producers that deliver. As a result, when

obtaining price differentials, the market characteristics and the productivity parameters

cancel each other out.

In the nonhomothetic model, using the optimal prices set by firms, the price differ-

ential between the market and the source is:

pNHOM
ij /pNHOM

jj = τijϕ
∗
jj

1/2/ϕ∗
ij
1/2. (10)

Because the threshold value, ϕ∗
ij, depends on transport costs, ignoring producer heterogeneity

causes biases in identifying the relationship between the price differential and transport costs.

If τij increases, ϕ∗
ij will increase. Because ϕ∗

jj does not depend on τij, a larger ϕ∗
ij induces

a smaller price differential. Thus, heterogeneity reduces the price differential. This omitted

variable bias may account for the underestimation of the effect of transport costs. In addition,

ϕ∗
ij depends on the number of firms, Ni. This is a function of the threshold value itself and

thus is affected by transport costs. Hence, the changes in τij are associated with the changes
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in market structure. This implies that market prices are set depending on market structure,

and therefore the number of firms across markets is a determinant of price differentials. If we

do not control for this type of pricing-to-market behavior, the estimates of transport costs

will be biased.

As mentioned previously, one of the objectives in this paper is to highlight the changes

arising from incorporating pricing-to-market. In the CES framework, optimal pricing does

not depend on the threshold value of productivity, which is a key factor in heterogeneity.

Besides, each producer’s productivity is cancelled out when considering the price differentials.

Hence, producer heterogeneity does not play an important role in the link between price

differentials and transport costs in the CES model. However, producer heterogeneity matters

for the link between price differentials and distance when they are nonhomothetic. If we

introduce nonhomothetic preferences, producers set variable markups across markets in the

setting of optimal prices and thus we deal with pricing-to-market behavior. Therefore, the

bias caused by producer heterogeneity is indispensable for pricing-to-market.

By using the formula for the threshold value in the nonhomothetic model, ϕ∗
ij, we are

able to express the price differential as follows:

pNHOM
ij /pNHOM

jj = τ
1/2
ij

(wi + q̄Pi)
1/2

(wj + q̄Pj)1/2
(
Nj

Ni

)1/2. (11)

The heterogeneity effect reduces the direct impact of transport costs from τij to τ
1/2
ij in our

nonhomothetic specification. In general, the effect of transport costs will also be weakened

in a nonhomothetic specification because the effect of a transport cost increase on price

differentials is mitigated by the producer selection. In the presence of high transport costs,

only high-productivity firms are able to ship their products. Such firms set their prices at a

low level. Thus, the greater the distance between markets, the lower the magnitude of the

increase in prices. This mechanism creates under-bias in the distance elasticity when only

price differential data are used.

This selection mechanism operates at the individual pricing level. This mechanism

also influences the average price changes associated with general productivity shocks, as

shown by Ghironi and Melitz (2005) and Atkeson and Burstein (2008). If only high-

productivity firms can export because of negative shocks, then because they set the price at

a low level, the average price will also be low. However, if free entry is assumed, firm exit

because of negative shocks will cause labor demand to decrease and thus labor costs will

decrease. This enables low-productivity firms to export, implying an increase in the average

export price. Thus, depending on the entry condition assumptions, the average price either

increases or decreases. Similarly, in our study, because we do not consider free entry, negative

shocks will decrease individual prices set in the market.
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Other factors that affect the price differentials are the source, market characteristics,

and market structure. Because these factors are correlated with transport costs, omitted

variable biases occur. Taking the log of the above equation yields:

ln pNHOM
ij − ln pNHOM

jj = (1/2) ln τij + (1/2) lnNj − (1/2) lnNi

+ (1/2) ln(wi + q̄Pi)− (1/2) ln(wj + q̄Pj). (12)

As we can see, the price differential depends on not only transport costs, but also market

characteristics, such as the number of products and price indices. This property directly

reflects the pricing-to-market behavior. The ability to capture this element is an advantage

of the nonhomothetic model over the CES framework.

So far, we have not imposed any functional form on transport costs. We adopt the

following conventional specification:

τij = Dγ
ije

µ+uij ,

where Dij is the distance between two regions. That is, if γ > 0, then as distance increases,

transport costs also increase. The constant term µ corresponds to the uniform transport

costs component and uij denotes unobservable transport costs, uij ∼ N(0, σu). The log form

is:

ln τij = γ lnDij + µ+ uij.

The distance elasticity, γ, is our main parameter. Identifying this parameter is important if

delivery choice, producer heterogeneity, and pricing-to-market are to be accounted for.

3.5. Delivery choice The price differential is observed only when there is an actual delivery.

Thus, there will be a data truncation problem. As the delivery choice is made based on

profitability, we consider the producer’s delivery decision. Because producers pay fij, the

delivery decision is summarized by the variable Zij:

ZNHOM
ij =

bθτijwj q̄Li

(2θ+1)(θ+1)ϕ∗
ij

θ+1

fij
.

Thus, if ZNHOM
ij is greater than one, firms in region j choose to deliver the product to region

i. Taking logs, we have the following delivery choice equation:

lnZNHOM
ij = zNHOM

ij

= θ ln b+ ln τij + lnwj + ln q̄ + lnLi − ln(2θ + 1)(θ + 1)− (θ + 1) lnϕ∗
ij − ln fij

= θ ln b− θ ln τij − θ lnwj − θ ln q̄ − ln(2θ + 1)(θ + 1)

− (θ + 1) lnNi + (θ + 1) ln(wi + q̄Pi)− ln fij.
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If zNHOM
ij > 0, then delivery from region j to region i will take place. Because the price

differential is observed only when zNHOM
ij > 0, we take this selection bias into account

when estimating the price differential equation. We do this by jointly estimating the price

differential and delivery choice equations.

Similarly, in the CES framework, the delivery choice is expressed by Zij:

ZCES
ij =

(1− α)[
τijwj

αPiϕ
]1−ϵwiLi

fij
.

Thus, taking logs yields a similar expression for delivery choice:

lnZCES
ij = zCES

ij = ln(1− α) + (1− ϵ) ln τij + (1− ϵ) lnwj

− (1− ϵ) lnα− (1− ϵ) lnPi − (1− ϵ) lnϕ+ lnwi + lnLi − ln fij.

Our focus is on the individual firm’s choice of prices, rather than on trade volume, as in

Helpman et al. (2008). Thus, it is not necessary to control for the effect of heterogeneity

on aggregate variables. Rather, we need to account for the impact of heterogeneity on the

individual firm’s pricing across markets and its delivery choice according to this selection

mechanism.

Similarly to the nonhomothetic preference case, we estimate the price differential

equation taking selection bias into account in the CES framework. We estimate the price

differential and delivery choice equations using maximum likelihood. We specify regional

dummies to control for market-specific effects, as suggested in the literature (Anderson and

van Wincoop, 2003; Helpman et al., 2008).

3.6. Empirical specification

For the estimation, we need to parameterize the price differential and delivery choice

equations. As in Helpman et al. (2008), fixed costs have the following specification: fij =

exp(λi+λj−νij), where λi captures the market-specific effects, λj the source-specific effects,

and νij the dyadic-specific effects. The estimating self-selection equation is expressed as

follows:

zNHOM
ij =− ln fij + θ(ln b− q̄) + lnLi − θµ− θuij − ln(2θ + 1)(θ + 1)

− θγ lnDij − θ lnwj − (θ + 1) lnNi + (θ + 1) ln(wi + q̄Pi)

=c0 + c1 − θγ lnDij − θ lnwj − (θ + 1) lnNi + (θ + 1 + c2)dumi + c3dumj + ηij,

(13)

where c0 = −θµ− ln(2θ+ 1)(θ+ 1), c1 = θ(ln b− q̄), ln(wi + q̄Pi)− λi is captured by region

i’s specific effect; therefore, (θ + 1) ln(wi + q̄Pi)− λi = (θ + 1+ c2)dumi, and dumi is region
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i’s specific effect. The number of products may be a noisy variable or the method by which

the number of products is introduced may be misspecified; therefore, we use χ lnNi instead

of lnNi in the estimations, where χ is a free parameter. This allows us some flexibility in

estimation of the market structure effects. The error term is ηij = −θuij + νij ∼ N(0, θ2σ2
u+

σ2
ν).

Similarly, the price differential equation is:

qNHOM
ij = ln pNHOM

ij − ln pNHOM
jj

= (1/2)µ+ (1/2)γ lnDij + (1/2) lnNj − (1/2) lnNi + c4dumj − c5dumi + (1/2)uij, (14)

where dumj controls for region-specific effects, including wages and price indices, as in the

delivery choice equation. Because of the pricing-to-market, the disturbance term is modified

to uij/2. Thus, not only do the covariates differ from the CES case, but the shape of the

price differential distribution also differs.

As in Kano et al. (2013), with regard to the identification of the distance elasticity,

γ, the price differential and product delivery equations reveal an important result. Simply

estimating the price differential equation only may lead to underestimation of γ. This is

because the errors in these equations are correlated and this is because ηij = −θuij +

νij, and the error terms ηij and uij are correlated. As shown by Helpman et al. (2008),

taking the conditional expectation of qNHOM
ij yields: E[qNHOM

ij |X] = (1/2)µ+(1/2)γ lnDij+

(1/2) ln(1+Ni)− (1/2) ln(1+Nj)+c4dumj−c5dumi+(1/2)E[uij|X], where X is a vector of

observables. Because E[uij|X] = ρσu

ση
E[ηij|X], if we ignore this correlation, there will be bias

in the estimate of the distance effect.3 This bias term is expressed as an inverse Mills ratio:

E[ηij|X] = ϕ(ẑij)/Φ(ẑij). Hence, to obtain consistent estimates, we need to account for the

correlation between the price differential and delivery choice equations; the significance of

sample selection relies on this correlation parameter, ρ.

To take into consideration this selection effect, we employ a full information maximum

likelihood (FIML) approach. We assume that the distribution of the errors is joint normal.

The log-likelihood function is:

L =
∑
i,j

(1− Tij) ln[Φ(−W1ij)] +
∑
i,j

Tij ln

[
Φ

(
W1ij + 2ρσ−1

u (W2ij)

(1− ρ2)1/2

)]
+
∑
i,j

Tij lnϕ

(
W2ij

(σu/2)

)
−

∑
i,j

Tij ln(σu/2),

3Because u and ν are orthogonal, E[ηu] = E[(−θu + ν)u] = −θσ2
u. The correlation ρ is defined by

ρ = σηu/σu. Thus, σηu = ρσu = −θσ2
u. Then, σu = −ρ/θ.
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where W1ij = c0 + c1 + θγ lnDij + θ lnwj + (θ + 1)χ1 lnNi + (θ + 1 + c2)dumi + c3dumj

and W2ij = qij − (1/2)µ− (1/2)γ lnDij − (1/2)χ2 lnNj + (1/2)χ3 lnNi − c4dumj − c5dumi.

The use of FIML has several advantages: namely, it is efficient, it allows us to examine

delivery choice, and it can detect unobservable factors driving self-selection bias explicitly.

However, our approach has the disadvantage of possible misspecification; we address this

misspecification issue by undertaking diagnostic checks.

In the case of CES utility, the self-selection equation is:

zCES
ij = β0 − (ϵ− 1)γdji + (ϵ− 1) lnPi + (1− ϵ) lnwj + lnwi + ζω + ξj + λi + ηij,

where β0 = −ϵ ln ϵ − (1 − ϵ) ln(ϵ − 1) + (1 − ϵ)µ, ζω = (1 − ϵ)ϕ, and ηij = (1 − ϵ)uij + νij.

The price differential equation is:

qCES
ij = µ+ γdij + c6dumi + c7dumj + uij.

Then, the log-likelihood function is as follows:

L =
∑
i,j

(1− Tij) ln[Φ(−W3ij)] +
∑
i,j

Tij ln

[
Φ

(
W3ij + ρσ−1

u (W4ij)

(1− ρ2)1/2

)]
+
∑
i,j

Tij lnϕ

(
W4ij

σu

)
−

∑
i,j

Tij lnσu,

where W3ij = β0 − (ϵ − 1)γdji + (ϵ − 1) lnPi + (1 − ϵ) lnwj + lnwi + ζω + ξj + λi and

W4ij = qij − µ− γdij. We use the consumer price index as the price index, while the use of

region-specific effects controls for the other region-specific factors.

These two empirical models, namely the nonhomothetic model and the CES model,

account for the data truncation problem caused by the self-selection of producers. The main

difference between these approaches is in the price differential equation. In the CES case,

it is simply a function of distance. In the nonhomothetic case, the effect of distance is

different, and there are local market characteristics and these reflect producer heterogeneity

and pricing-to-market behavior. We apply our model to the price and delivery data to find

the distance elasticity.

4. Data

We apply our approach to data on the wholesale prices of individual goods and

delivery patterns across regions. Using wholesale prices enables us to focus on transport costs

because retail prices include local distribution costs. The individual goods are agricultural
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products in Japan. As the wholesale prices of the agricultural products in both the source

regions and markets are available, the price differential between the market and source prices

can be used to properly measure transport costs.

The data source for wholesale prices is the Daily Wholesale Market Information on

Fresh Fruit and Vegetables (“Seikabutsu Hinmokubetsu Shikyo Joho” in Japanese). The data

set is collected by the Center for Fresh Food Market Information Services (“Zenkoku Seisen

Syokuryohin Ryutsu Joho Senta”; URL: www2s.biglobe.ne.jp/fains/index.html), which pro-

vides data on nearly all transactions at the 55 wholesale markets operating daily across

Japan’s 47 prefectures. Each prefecture has at least one wholesale market, so the data vari-

ation is nationwide. This daily market survey covers the wholesale prices of 120 different

fruits and vegetables.

Each agricultural product is further categorized by variety, size, and grade, as well as

by the producing prefecture. Hence, for example, the data set reports the wholesale prices

of potatoes in six wholesale markets for the “Dansyaku (Irish Cobbler equivalent)” variety,

size “L”, with grade “Syu (excellent)” produced in “Hokkaido” Prefecture on September

7, 2007. Because prices depend on characteristics, each combination of characteristics is

identified as the same product. Thus, the goods sharing the same brand name, size and

grade of product, production prefecture, and trading date are considered identical products.

This high degree of categorization is important because the LOP requires a comparison of

the prices of identical goods to precisely infer transport costs. We focus on eight vegetables:

cabbages, carrots, Chinese cabbages (c-cabbages, hereafter), lettuce, shiitake mushrooms (s-

mushrooms, hereafter), spinach, potatoes, and Welsh onions. In this paper, we examine the

2007 survey that reports the market transactions for a period of 274 days. Thus, the unit of

measurement for the sample is the source–market price differential in yen/kg for the same

product on a given trading day.

The price reported in each market has three forms: the highest price, the modal price,

and the lowest price. Most markets record all three prices, but several markets report only

the highest and the lowest prices or only the modal price. Thus, we construct our price

variable by averaging these price variables. We use the modal price when this is the only

price available. The transaction unit of measurement for each product is also reported. To

obtain the same unit of measurement for each product, we divide the price by the number

of transaction units (kilograms). Table 1 provides several descriptive statistics for these

products. The first row reports the average price per kilogram (1 kilogram = approximately

2.2 pounds). As shown, s-mushrooms are the most expensive product, at 1113.627 yen

(approximately 13 US dollars) per kilogram, while the cheapest product is c-cabbages, at

61.628 yen (approximately 0.9 US dollars) per kilogram.
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Table 1 also shows that each product is highly categorized by product variety, size,

and grade. The numbers of distinct products are large: 1,207 for cabbages; 1,186 for carrots;

1,001 for c-cabbages; 903 for lettuce; 1,423 for potatoes; 909 for s-mushrooms; 551 for spinach;

and 1,115 for Welsh onions. For each product entry ω, we count the number of deliveries as

Tij(ω) = 1 and nondeliveries as Tij(ω) = 0 only for the dates on which the product is traded

in the wholesale market in producing prefecture j. We identify product delivery Tij(ω) = 1

if the data report that the source prefecture of product entry ω sold in consuming region i is

region j. We construct the price differential by subtracting the wholesale price in producing

prefecture j, pj(ω), from that in the consuming prefecture i, pi(ω). If the sample of qij(ω) is

available, this means that Tij(ω) = 1 for pair (i, j).

The bottom part of Table 1 reports that the total number of both delivery and non-

delivery observations across all products is greater than 190,000 for each vegetable. We use

this as the number of observations in our FIML estimation. Of the total number of delivery

and nondelivery cases, the number of delivery cases is relatively small, at approximately

10,000 cases for each vegetable. Our data set, therefore, indicates that product delivery is

quite limited. In justification, for many products there is only local delivery. For example,

carrots are produced in every prefecture and mostly shipped to own-prefecture markets. In

contrast, only agriculturally intensive prefectures such as Hokkaido generally ship to remote

markets. Thus, the data truncation issue is quite important in this sample.

We obtain the other data we use in this paper as follows. The geographic distance

between prefectural pair (i, j) is approximated by the distance between the prefectural

head offices located in the prefectural capital cities. The distance data are provided by the

Geospatial Information Authority of Japan (GSI) and are publicly available on the GSI Web

site.4 We use daily temperature for identification purposes to control for supply and demand

shocks in the selection equation. We download the daily temperature data compiled by the

Japan Meteorological Agency.5 Finally, we use monthly data on scheduled cash earnings for

wages, as reported in the Monthly Labor Survey (“Maitsuki Kinrou Tokei Chosa”) conducted

by the Japanese Ministry of Health, Labour, and Welfare.6

One verification strategy when introducing a nonhomothetic preference is to check

whether high-quality (and therefore high-price) goods are sold in high-income markets. This

positive relationship is one of the main focuses in the recent literature (Simonovska, 2010;

Waugh, 2010). We use the data on wholesale market prices and scheduled cash earnings to

check for a positive correlation between these variables. Figure 1 places each prefecture’s

4www.gsi.go.jp/kokujyoho/kenchokan.html.
5www.data.jma.go.jp/obd/stats/etrn/index.php.
6The data are available at www.mhlw.go.jp/toukei/list/30-1.html.
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wages on the vertical axis and vegetable prices on the horizontal axis. All data variations

reveal a positive relationship between incomes and prices, as shown by the solid line with

positive slope. This indicates that high-income regions tend to consume high- quality (high-

price) goods, suggesting that our nonhomothetic preference specification is consistent with

a certain characteristic in our data.

5. Estimation Results

Table 2 reports the estimation results, with the main results reported in the top half

of the same table. For comparison, the results using the CES utility function and the simple

regression results are reported in the bottom half of the table. The distance elasticity in

the nonhomothetic framework ranges from 0.458 (cabbages) to 0.757 (s-mushrooms). This

indicates that when the shipment distance from origin to destination increases by 1 percent,

the price differential increases by about 0.5 percent. These values for the distance elasticity

are larger than those in previous studies, which implies the presence of an under-bias of the

distance elasticity in previous studies.

As in previous studies, if we instead use two observed market prices to construct price

differentials and simply regress these on distance, then the distance effect coefficient is at

most 0.05. That is, even if the transport distance doubles, the price differential increases by

only 5 percent. Thus, even using our data, regressing only the price differential on distance,

which is the conventional method in the literature, yields similar results. The results of the

CES utility function are similar to those in Kano et al. (2013). As in Kano et al. (2013), and

following Anderson and van Wincoop (2004), the price differential measure is the difference

between the market price and the price in the producing prefecture, and delivery choice is

explicitly modeled to control for sample selection. Although the results of the CES framework

indicate significantly large distance effects of 0.287 to 0.49, these are all smaller than those

from the nonhomothetic model.

When incorporating producer heterogeneity and pricing-to-market, the results under

nonhomothetic preferences indicate a much larger distance effect when compared with the

results from both simple regression analysis and the CES framework. This is consistent with

our argument that producer heterogeneity affects the pricing decision in each market and

thus causes under-bias in the distance elasticity estimates. This is because transport costs

induce only productive firms to deliver products, and these firms can charge a low price.

Large distance elasticity estimates also imply that geographic barriers influence delivery

choice. Consequently, the probability of delivery will be reduced by an increase in transport
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costs. Thus, the presence of large distance effects after accounting for producer heterogeneity

suggests that the price of geographic barriers remains high for regional transport.

Another important parameter in our estimations is the heterogeneity parameter, θ.

Our estimates range from 1.155 to 2.313. A small θ means that there is a large dispersion

in productivity. These estimates can be considered to be small (producer heterogeneity is

highly dispersed). This may be because farmers in Japan are quite heterogeneous. For

example, in Japan, small farms operated by elderly people in suburban areas often produce

agricultural products, whereas agriculturally intensive prefectures, such as Hokkaido, are

often home to large-scale farms. In 2009, the average area under cultivation for each farm

in Hokkaido prefecture was 20.50 hectares (approximately 50.66 acres), compared with an

average area of 1.41 hectares (approximately 3.48 acres) in the other prefectures.7 These

farms may deliver their products to the same markets. In our framework, all prefectures

have the same productivity distribution, so the low value of θ may reflect this dispersion

across farms. In fact, as shown in Table 2, the estimates obtained using carrots and potatoes

have small θ values. Because Hokkaido is known to be a high-productivity region for these

products, the presence of heterogeneous suppliers yields large dispersion results.

The heterogeneity parameter, θ, has been investigated extensively in the trade lit-

erature. In the Eaton and Kortum (2002) framework, this is the elasticity of the trade

parameter, which is a crucial parameter in the analysis of the welfare gain from trade (Arko-

lakis et al., 2012). For example, Eaton and Kortum (2002) estimate this parameter to be

8.28, Bernard et al. (2003) estimate it to be 3.6, Crozet and Koenig (2010) estimate it to

be from 1.65 to 7.31, Simonovska and Waugh (2010) use the simulated method of moments

to obtain estimates from 3.57 to 4.46, and Balistreri et al. (2011) estimate it to be from

3.924 to 5.171. Donaldson (2013) also uses the Eaton and Kortum (2002) model to estimate

the productivity variability parameter, and estimates an average value of 3.8. As in Donald-

son (2013), we use price data to estimate two crucial parameters, γ and θ, in the producer

heterogeneity model. In general, the magnitudes of our estimates are lower than those of

these other studies, possibly because the more disaggregated the product level, the greater

the dispersion of heterogeneity. Our sample also contains disaggregated product-level data

and has quite a fine categorization; as a result, our estimates report a small θ.

The correlation parameter ρ is also important for the significance of these sample

selections. These estimates range from −0.62 to −0.873. All results are negative and sta-

tistically significant. Hence, to identify the true parameter, controlling for selectivity bias

is crucial. A positive shock that increases the price differentials caused by transport costs

(for example, a fuel price increase) will also decrease the probability of delivery. Without

7www.maff.go.jp/j/tokei/sihyo/index.html.
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controlling for negative correlations caused by unobservable shocks, as we have seen, the

distance effects are found to be small. We detect the existence of such a negative effect.

The relevance of the estimates depends on the empirical validity of our model. For

model-validation purposes, we conduct diagnostic checks of our model with respect to two

important aspects of the actual data: the pattern of product delivery and the association

of price differentials with delivery distances. First, we calculate the percentage of correctly

predicted measures (PCPs) for Tij(l) = 0 or 1. To construct the PCPs, we calculate the

predicted conditional probabilities and the predicted delivery index where the predicted

probabilities are greater than 0.5. We report the results in the bottom row of Table 2.

As shown, the PCPs are all greater than 0.96, which suggests that our model successfully

predicts the actual delivery patterns.

The second diagnosis concerns price differentials with respect to delivery distances.

The question is whether our sample-selection model predicts the actual price differentials.

To conduct this diagnosis check, we derive the prediction of the model for price differentials

after controlling for selection bias. Each panel in Figure 2 plots the resulting predicted price

differentials (dots), as well as the data counterparts (crosses), against the corresponding log

distances for each vegetable. As shown, the distribution of the dots is within the cloud

formed by the crosses in all panels. This means that our model successfully predicts the

relationship between the price differentials and distances overall.

One issue remaining when comparing the results of the nonhomothetic and CES mod-

els is the elasticity of the substitution parameter, ϵ. In the nonhomothetic preference model,

the utility function is in log form to obtain an explicit solution for the optimal price. Be-

cause the coefficient of distance in the selection equation is θγ in the nonhomothetic case

and (ϵ− 1)γ in the CES model, ignoring the elasticity of substitution may cause small esti-

mates of θ and large estimates of γ. If this composite remains constant, a small elasticity of

substitution may imply a large distance effect. The identification of these parameters sepa-

rately requires a model that incorporates both the dispersion and elasticity of substitution

components. This is a limitation of our study and an important issue for future research.

6. Concluding Remarks

In this paper, we investigated the impact of producer heterogeneity and pricing-to-

market behavior on the distance elasticity in regional price differentials. Because producer

heterogeneity is not treated as crucial in the identification of the distance effect in a con-

ventional CES utility framework, we developed a nonhomothetic preference model, thus

incorporating pricing-to-market behavior.
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Our empirical analysis showed that ignoring these factors causes underestimation in

the CES utility framework. We find that the distance effect is significantly large for regional

price differentials. These results suggest that the price of geographic barriers remains high for

regional transport, even in Japan. Even though Japan is considered to have well-established

infrastructure and a sophisticated logistics system, the geographic barriers are large enough

to create substantial price differentials. Thus, in a country with poor transport facilities

and services, regional differences may be very large and markets geographically segmented.

In such a country, even if some regions are productive and have a potential for growth, the

geographic burden may hamper the access to markets and thus inhibit efficient resource

allocation.

Although incorporating producer heterogeneity and pricing-to-market corrects the

biases in the distance elasticity, there are yet other concerns regarding pricing behavior. For

example, as Hummels and Skiba (2004) have shown, there may be specific transport costs,

the presence of which leads firms to ship high-quality goods to more remote markets (the

so-called Alchian–Allen effect). Although our study extends existing work to account for

variable markups, iceberg-type transport costs are assumed and the Alchian–Allen effect is

not taken into account. Investigating these effects is a topic for further research.
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Table 1: Summary Statistics

Cabbages Carrots C-cabbages Lettuce Potatoes S-mushrooms Spinach Welsh onions
Average price (yen per kg) 77.833 101.25 61.628 183.909 79.565 1113.627 496.372 382.099

Product entry
No. of varieties 3 10 4 7 10 1 4 11

No. of size categories 63 62 50 71 50 74 17 103
No. of grade categories 34 66 50 46 93 55 85 58

No. of producing prefectures 47 46 46 43 47 44 47 46
No. of wholesale markets 47 47 47 47 47 47 47 47

No. of distinct product entries 1,207 1,186 1,001 903 1,423 909 551 1,115
Data truncation

No. of Tij(ω) = 0 or 1 369,343 198,129 241,871 239,703 264,280 476,919 466,337 547,272
No. of Tij(ω) = 1 15,841 8,395 10,803 11,565 10,921 11,845 15,977 14,874



Table 2: Estimation Results

Cabbages Carrots C-cabbages Lettuce Potatoes S-mushrooms Spinach Welsh onions
Nonhomothetic

γ 0.458 0.628 0.646 0.687 0.615 0.757 0.668 0.563
(0.003) (0.006) (0.005) (0.006) (0.005) (0.007) (0.005) (0.004)

θ 1.981 1.155 1.573 1.181 1.264 2.313 1.638 1.939
(0.011) (0.008) (0.009) (0.008) (0.007) (0.018) (0.009) (0.011)

ρ -0.836 -0.873 -0.818 -0.857 -0.786 -0.62 -0.844 -0.833
(0.003) (0.003) (0.003) (0.003) (0.004) (0.005) (0.003) (0.003)

log-likelihood -20911.389 -17596.548 -14370.527 -21931.139 -25077.556 -23951.703 -19860.187 -15543.191
CES
γ 0.287 0.345 0.382 0.402 0.335 0.49 0.402 0.354

(0.002) (0.003) (0.003) (0.003) (0.002) (0.004) (0.002) (0.002)
ϵ 3.326 2.123 2.78 2.126 2.381 3.688 2.83 3.292

(0.019) (0.014) (0.017) (0.014) (0.012) (0.028) (0.013) (0.018)
ρ -0.86 -0.884 -0.83 -0.874 -0.793 -0.546 -0.848 -0.848

(0.003) (0.003) (0.004) (0.004) (0.003) (0.005) (0.003) (0.003)
log-likelihood -24137.852 -18563.794 -15956.433 -23317.952 -26013.89 -4383.126 -22797.953 -18319.21

OLS
γ 0.033 0.051 0.042 0.022 0.037 0.007 0.044 0.033
N 369,343 198,129 241,871 239,703 264,280 476,919 466,337 547,272

PCP for Tij 0.966 0.964 0.961 0.961 0.966 0.994 0.979 0.988

Note: The numbers in parentheses are standard errors. All estimations include origin and destination dummies, origin and destination daily
temperatures, the number of products in both equations, and wages for the selection equation.
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