EBAKFEZFEMERE VRS U
HOSEI UNIVERSITY REPOSITORY

PDF issue: 2024-07-28

Assessment and Application of a
"Functional Scenario-Based” Test Case
Generation Method

LI, Cen Cen

FEHRZARZRFHRB 2R

%Kﬁ?k?ﬁﬁ%.%ﬁﬂ?ﬁ%ﬂﬁ/ﬁﬁ&k?ﬁ?ﬁﬁ%.%ﬁﬂ?ﬁ%ﬂ

8

55

60
2013-03

https://doi.org/10.15002/00009544

Assessment and Application of a “Functional
Scenario-based” Test Case Generation Method

Cencen Li
Graduate School of Computer and Information Sciences
Hosei University
Email: cencen.li.js@stu.hosei.ac.jp

Abstract—Specification-based testing enables us to detect er-
rors in the implementation of functions defined in given speci-
fications. Its effectiveness in achieving high path coverage and
efficiency in generating test cases are always major concerns
of testers. The automatic test case generation approach based
on formal specifications proposed by Liu and Nakajima is
aimed at ensuring high effectiveness and efficiency, but this
approach has not been formally assessed and used in practical
testing environments. In this paper, we first statically analyze the
characteristics of the test case generation approach, and then
perform experiments to use this approach in two different real
testing environments. The two practical testing cases include a
unit testing and an integration testing. We perform the testing not
only for assessing Liu’s approach in practice, but also trying to
get some experience of using this approach in practice. The static
analysis and the results of experiments indicate that this test case
generation approach may not be effective in some circumstances,
especially in integration testing. We discuss the results, analyze
the specific causes for the ineffectiveness, namely the low path
coverage, and propose some suggestions for improvement.

1. INTRODUCTION

Specification-based testing enables us to detect errors in
the implementation of the functions defined in given specifi-
cations. Since performing specification-based testing is usu-
ally time consuming, automatic specification-based testing
is always attractive to the software industry. An automatic
test cases generation approach based on formal specification
known as functional scenario-based testing(FSBT) was first
introduced in Liu’s paper [1], which is aimed to ensure high
effectiveness and efficiency of specification-based testing.

This automatic specification-based testing approach in-
cludes an improved test strategy over the commonly used
disjunctive normal form strategy [2], and a decompositional
method for automatic test case generation. The approach is
applicable to any operation specified in terms of pre- and post-
conditions. The essence of the test strategy is to guarantee
that every functional scenario defined in a specification is
implemented “correctly” by the corresponding program. A
functional scenario of an operation defines an independent
relation between its input and output under a certain condition,
and usually expressed as a predicate expression. The predicate
expression is used as a foundation of automatic test case
generation algorithm. The function defined by a functional
scenario is actually a function of the software system, and

Supervisor: Prof. Shaoying Liu

it should be implemented in the program. Therefore, by
using the test cases derived from functional scenarios, the
implementation of functions defined in scenarios are expected
to be tested consequently.

Although the automatic testing approach proposed by Liu
is interesting in theory, it has not been empirically assessed
and used in practice. In this paper, we first statically analyze
the characteristics of this approach, specifically the relations
between the functional scenarios and execution paths. And
then carry out several experiments to apply this approach in
real testing environments and assess it by measuring the cov-
erage of execution paths. We specify the formal specifications,
implement the program based on the specifications, perform
testing for the program, and count how many parts of the
implementation program can be tested. The result indicates
that this testing approach is unlikely to be sufficient for
testing all parts of programs. The ineffectiveness is caused by
the drawback of the specification-based testing and is hardly
overcome if test cases are generated without analyzing the
structure of program. But the effectiveness can be improved
by considering the relation between the formal specification
and the corresponding program when test cases are generated.

Most of the improvement proposed by us is based on the
analysis of the relations between specification and program,
specifically the relations between the functional scenarios and
execution paths. An execution path is the implementation of
the function defined by a functional scenario. As described in
details in Section IV, we statically analyze these relations in
general to ensure that the improvement can be used generally.
Since some specific causes of ineffectiveness of the testing
approach are associated with the specification itself, we pro-
pose some suggestions that can be adopted if the target system
of testing is specified in the same specification language or
has the similar structure. The formal specification used in our
experiment is specified in SOFL (Structured Object-oriented
Formal Language)[3] and the program is implemented in Java.

The remainder of this paper is organized as follows. We first
introduce some related work in Section II. Section III includes
brief introduction of the original decompositional testing ap-
proach, including the test strategy and the test case generation
algorithm. In Section IV we describe the relations between
functional scenarios and execution paths in the program, which
are two basic concepts in our experiment. The experiment will
be introduced in Section V including purpose, environment,

result and result analysis. We will propose the new criteria for
testing strategy in Section VI, and we will also express the test
results of the extended approach in this section. In Section VII
we conclude the paper and point out future research directions.

1I. RELATED WORK

Specification-based testing methods have been well re-
searched based on different specification techniques. The test
case generation method [1], which underlies our experiment
is applicable to any operation specified in terms of pre-
and post-conditions.In this section, we introduce some testing
approaches and test case generation methods that are similar
to our functional scenario-based approach.

The test case generation method based on algebraic spec-
ifications is introduced in [4], and the method of generating
test case from reactive system specification is described in
[5]. Cheon et al [6] use the assertions derived from formal
specification in Object Constraint Language (OCL) as test
oracles, and combine random tesing and OCL to carrying out
automated testing for Java program. Michlmayr et al. introduce
a framework of performing unit testing of publish/subscribe
applications based on LTL specification in [7]. Bandyopad-
hyay et al. [8] improve the existing test input generation
method based on sequence diagrams of UML specification by
considering the effects of the messages on the states of the
participating objects.

Some approaches are proposed to enhance the effectiveness
of the specification-based testing. Fraser et al. [9] investigate
the effects of the test case length on the test result. Based
on their experiments of specification based testing for reactive
systems, they find a long test case can achieve higher coverage
and fault detecting capability than a short one. They intend
to improve the effectiveness of specification-based testing by
changing the length of test case. In [10], Liu et al. propose
a technique called “Vibration” method to ensure all of the
representative program paths of the program are traversed
by the test cases generated from formal specification. This
method provides an effective way of specification-based test
case generation.

I11. BAsiCc CONCEPTS
A. Test Case Generation Algorithm

In order to explain the test case generation algorithm,
we need to define the formal specification and functional
scenario first. For simplicity, let S(Siv, Sov)[Spres Spostl
denote the formal specification of an operation S, where
S;, is the set of all input variables, S,y 18 the set of all
output variables, and Spre and Sp,s; are the pre and post-
condition of S, respectively. For the post-condition Shosts et
Spost = (Ch AD)V(C2AD) V...V (Cy A D,,), where each
C;(i € {1,...,n}) is a predicate called a “guard condition”
that contains no output variable in So, and V;je(1,.. n}
4 # j = Ci AC; = false ; D; a “defining condition”
that contains at least one output variable in S, but no guard
condition. Then, a formal specification of an option can be
expressed as a disjunction expression (~Spre A C1 A D,)V

TABLE I
TEST CASES GENERATION ALGORITHM

No. of Algorithms S Algorithms of test case generation for z;
1 = Tie—nb)
2 > 1 =FE+ Az
3 < z1=FE- Az
4 S similar to above

(~Spre ANC2 AD2) V...V (~Spre A Cp A D,,). A conjunction
~Spre NCi ADj is realized as a functional scenario. We treat a
conjunction ~Sp, AC; AD; as a functional scenario because it
defines an independent behavior: when ~.S,,,.. A C; is satisfied
by the initial state (or input variables), the final state (or the
output variables) is defined by the defining condition D;.

Since test case generation usually depends on the pre-

condition and guard condition, and the defining condition D;
usually does not provide the main information for test case
generation. The defining condition D; is eliminated from the
functional scenario. The conjunction after eliminating defining
condition is ~Spre A Cj, called testing condition. For each
atomic predicate @ in testing condition, the input variables
involved in each atomic predicate expression () can be gener-
ated by using an algorithm that deals with the following three
situations, respectively.

o Situation 1: If only one input variable is involved and @
has the format z; © E, where © € {=, <,>,<,>,#} is
a relational operator and F is a constant expression, using
the algorithms listed in Table I to generate test cases for
variable x.

o Situation 2: If only one input variable is involved and
Q has the format F; © Eo, where E; and Ej are both
arithmetic expressions which may involve variable z1, it
is first transformed to the format z; © E. And then apply
Criterion 1.

o Situation 3: If more than one input variables are involved
and () has the format F; © F», where E; and E; are both
arithmetic expressions possibly involving all the variables
Z1,T2, ..., Ty. First randomly assigning values from ap-
propriate types to the input variables 3,3, ..., %y tO
transform the format into the format E; © E», and then
apply Situation 2.

Note that if one input variable z appears in more than

one atomic predicate expressions, it needs to satisfy all the
expressions which it is involved in.

B. Formal specification Language

The formal specification used in our experiment is written
in SOFL. SOFL is one of the formal specification languages
that specifies operations in terms of pre- and post-conditions.
In principle, the assessment and the improvement are not
dependent on specific specification language, but we need a
specific one to specify the target system in our experiments
and to express the improvement.

Due to using mathematical notations, SOFL specifications
are precise. The structure of SOFL specification has its own

module ICcardSystem
type
Date = composed of
vear: nat
month’ nat
day: nat
end
ICcardInfo = composed of

activatedDate: Date
monthlyExpireDate: Date
end
var
ext CurrentDate: Date
ext ICcardBase: set of ICcardInfo

inv
¥ iccardInfo is_T(ICcardInfo) -
isBefore(ICcardInfo. activedDate, ICcardInfo.monthlyExpireDate)

Fig. 1. Example of specification and invariant

characteristics, note that the following concepts of SOFL spec-
ification involved in our experiment and following discussion.

« process: A process in SOFL specification defines an
independent operation. It includes a list of input vari-
ables, a list of output variables, pre-condition, and post-
condition. In the following of this paper we use term
“process” replacing “operation” to keep consistent with
SOFL specification.

. module: A module is an assemblage of processes, and
each process can be decomposed to create a new module
including a group of lower level decomposed processes.

« external variable: External variables are variables be-
longing to the whole specification, and all of the pro-
cesses in the specification can use external variables
without listing them in the input variables list.

o invariant: An invariant is a predicate, it expresses a
property of types and variables. The invariant must be
sustained throughout the entire specification.

For example, Figure 1 shows a part of “module” definition
used in our experiments. It is . The words in boldface are
reserved words in SOFL, under the key word “ext” is the
definition of external variables, and the key word “inv” indi-
cates that the following predicate is an invariant and should
be satisfied throughout the entire specification.

IV. STATIC ANALYSIS

The objective of program testing is to test all parts of the
program, to achieve this target need all execution paths in
the program be executed at least once. The execution path
presents an sequence of statements from the start state of the
program to the termination. For any set of values of input
variables, an execution path must exist to process the input

data. For the given values of set of input variables, there is an
unique execution path in program, and it expresses one specific
function of software system. Therefore, we can guarantee that
all parts of the program are tested if all the executable paths
are executed. Since our major concern in the experiment is the
effectiveness of the testing approach or how many parts in the
program of target system can be tested, we use the coverage of
the executable paths to measure the effectiveness of the testing
approach.

Based on the definition of functional scenario, an execution
path can be realized as an implementation of a functional
scenario. Theoretically, one functional scenario should cor-
respond to one and only one execution path if the program
is implemented by following the formal specification exactly.
But in practice, the relation between functional scenario and
execution path may not be a one-to-one correspondence. In
order to figure out how the test cases derived from a functional
scenario influence the coverage of execution paths, we define
that a scenario and a execution path have relation to each
other if all of the test cases derived from the scenario can be
accepted by the execution path. Although this definition is not
sufficient to describe various relations between scenarios and
paths, it is enough for the purpose of our experiment. The
summary of the relations between functional scenarios and
execution paths are listed in the following.

« One Scenario to No Path: If the function defined by the
functional scenario is not implemented in the program or
implemented incorrectly, there is no path being executed
by applying the test cases derived from the scenario. It
may be caused by the programmer misunderstanding the
specification, or mistake made by the programmer during
programming.

« One Scenario to One Path: This is the ideal situation,
the program is implemented according to the specification
exactly. No refinement is made in the specification or
program.

« One Scenario to Multi Paths: This is the most common
situation. It is usually caused by the refinement, which
may occur in specification or program. Since some spec-
ifiers use top-down approach when they specify specifica-
tions, they will define the more general or more abstract
process with less details first, and then decompose the
process into more than one lower level process with
more details. When we try to find execution paths for the
functional scenarios extracted from a more abstract level
specification, it is possible to find more than one paths
corresponding to one specific scenario if the program is
implemented based on the lower level specification. If the
information in lower level specification is not considered
in test cases generating process, some of the relative paths
will not be tested. Another kind of refinement occurs
in the program. It is usually made by the programmer
for different reasons, like improving the effectiveness of
program, complying with the special programming rules,
etc.

S P

« Multi Scenario to One Path: The relation multi scenar-
jos to one path is a reverse relation of one scenario to
multi paths, it usually occurs when programmer abstracts
some functions defined in the specification. The best
reason for programmer to abstract the function is to
simplify the program.

« Paths to No Scenario: This situation is very common
in practice, but unfortunately it will often be ignored
in specification-based testing. According to the concept
of specification-based testing, the process of testing is
on the basis of what the specification says. But, in the
real testing environment, even all of the execution paths
which implement all of the defined functions are tested,
it does not mean that all parts of the program have been
tested. The most possible reason of the occurrence of this
kind of relation is the incompleteness of specification.
The incompleteness can be caused by lacking ideas or
limitation of time, etc. But, in the meantime, the pro-
grammer may try to, or have to, handle some exceptions
or add some functions undefined in the specification. One
specific case is that the program needs to process the input
variables even the values of the input do not evaluate the
predicates of the scenarios to be true. This is because
the specification just defines what kind of inputs can be
handled while the program must respond to all of the
possible inputs. Usually we think these kind of paths
relative to process.

V. EXPERIMENTS

In this section, we present two experiments. Each experi-
ment performs a testing by applying the functional scenario-
based test case generation method. One of the experiments is
unit testing, and the other is an integration testing. Carrying
out these two testing experiments is not aim to compare
the effectiveness of the test cases generation method among
specific cases, but to assess the effectiveness of the method
under different test environments and attain some experience
in using the method in practice.

In our cases, if the functional scenarios used to generate
test cases are from a lower level module, the testing can be
realized as a “unit testing”. On the contrary, if the functional
scenarios used to generate test cases are from a higher level
module, we consider the testing as an “integration testing”.
Different researchers may have different understanding under
their viewpoint. Here we just use the concepts of unit testing
and integration testing to different two kind of testing cases,
one is based on the relatively higher level specification and the
other one is based on the relatively lower level specification.

A. Target Systems

1) Income Tax Calculation System: The Income Tax Cal-
culation system is the target system of the unit testing. This
system is aim to help tax payers to calculate their amount
of tax. According to [11], the tax payers are divided into
two categories based on the type of their income. The two
categories of tax payers use different formulas to calculate

the amount of tax, but they have the similar process. The tax
payer first calculates his or her “amount of income”, and then
calculates the“deduction of income”. Finally, the “amount of
tax” is calculated based on the the difference between “amount
of taxable income” and “deduction of income”.

The specifications of the Income Tax Calculation system
are separated into three levels. The top level, or the first
level, specification contains 2 processes. Each process, which
presents a tax calculation process for one category of tax
payers, is decomposed into a module containing 3 processes
in the second level specification. These 3 processes in each
second level module correspond to the three steps in tax
amount calculation mentioned previously. Each process in the
second level modules is decomposed to construct the lowest
level, or the third level, specification. There are 61 processes
contained in the lowest level specification. And totally 69
processes are defined in all three level specifications, which are
formally specified in SOFL. The implementation of the system
is developed by using Java under the Eclipse environment. The
implementation program contains 15 classes, and more than
2500 lines code.

2) IC Card System: The target system of the integration
testing generating test cases from specification directly is an
IC card system. The IC card can be used to take the public
transportations, and it associates with a bank account. Since
card holders can use the card without authority, the maximum
amount that can be deposited in the IC card is limited to
prevent the potential economic loss from losing the card.
Customers can swipe the cards to take transportation or use the
cards to buy train tickets. If the balance in card is not enough,
the customers can reload by cash or from associated banks
account. The customers can also transfer the money back to
the bank accounts, but they can not get cash from the IC cards
directly. For the customers who need commute, they can set
monthly payment for one route to get discounts.

We design and define 6 processes in the top level module.
This module presents the most abstract definition of the IC
card system, and each of the 6 processes represents a function
of the system described previously. Based on the top-down
concept, we decompose each of these processes for further
defining. There are total 12 lower level processes defined in
the specification and some of them are reused to construct
higher level processes. All of these 18 processes are specified
formally by using SOFL, and the implementation program
contains 14 classes, 2200 lines code.

B. Unit Testing

The Income Tax Calculation system is the target system of
the unit testing. To perform the testing, we derive test cases
from the processes defined in the lowest level specification.
Totally 29 processes derived from the same process in the
first level specification are used to generated test cases for
testing their corresponding program units. Total 615 test cases
are generated from the 207 functional scenarios, which are ex-
tracted from the 29 processes in the testing. The target program
units contain 223 execution paths, and 211 paths are tested

TABLE II
EXCERPT OF UNIT TESTING RESULT

No. | Process Name | Number of Scenario | Relative Paths | Test Cases | Tested Paths Coverage(%)
1 IFDSTAT_A 2 2 8 2 100
2 EI_A 11 12 35 11 91
3 MI_A 20 24 63 20 83
4 OI_A 2 8 2 100
5 T A 1 1 1 100
TABLE III
INTEGRATION TESTING RESULT
No. | Process Name Number of Scenario | Relative Paths | Test Cases | Tested Paths | Coverage(%)
1 RailwayTravel 5 12 35 6 50
2 PurchaseTickets 2 18 2 67
3 ReloadByCash 2} 17 2) 60
4 SetMonthlyPayment 2 78 77 28 36
5 ReloadFromAccount 3 34 3 43
6 TransferToAccount 2 16 2 29

by applying the 615 test cases. The average path coverage is
approximately 94 percent. The excerpt of the testing results
are listed in Table 1L Item “Number of Scenario” identifies
the scenario in a process; “Relative Paths” shows how many
execution paths in program have relations with the scenarios;
“Test Cases” denotes how many test cases are generated from
this scenario and “Tested Paths” indicates how many paths are
tested; “Coverage” shows the coverage of executable paths.

C. Integration Testing

The target system of the integration testing is the IC card
system. Only the functional scenarios extracted from the 6
processes in the top level are used to generate test cases.
There are 112 execution paths in the program correspond to
the functions defined in the 6 processes. Total 192 test cases
are generated from the 17 functional scenarios in the testing,
and the brief statistics of the results are listed in Table III. The
details of this integration testing can be found in [12].

D. Results Analysis

The result of the experiment indicates that the functional
scenario-based test cases generation method is more effective
if the test cases are generated based on relatively lower level
specification. But the data in Table II shows that even the
test cases are derived from the lowest level specification,
some execution paths still cannot be tested. We think the
ineffectiveness is caused by two reasons. The first reason is
that the specification is not well defined, and the second reason
is the refinement in program. These two reasons are also the
causes of the relation “one scenario to multi paths” and “paths
to no scenarios” mentioned in Section IV. The results confirms
our analysis that the existence of these two relations usually
reduces the rate of testing coverage.

Comparing to the unit testing, the situation faced by inte-
gration testing is more complex. The reason is that the test
cases used in the testing are generated based on relatively

higher level specification. Therefore, the ineffectiveness may
be caused by the refinement in specification. In that case, the
coverage of paths can be improved by considering the lower
level specification in test cases generation process.

VI. IMPROVEMENT PROPOSALS

Based on the previous analysis, the ineffectiveness is usually
caused by the appearance of the relation “paths to no scenario”
and “paths to multi scenario”. To test the execution paths in
relation to “paths to no scenario”, we should derive test cases
from the functions undefined in specification. Based on the
concept of FSBT, test cases derived from one defined function
are actually derived from the resting condition ~Sp.. AC;, and
the test cases generated from the scenario can be presented as
G(~Spre A C;). Here we use G(p) to denotes the set of test
cases derived from predicate p. In order to derive test cases for
undefined function, we use Proposal 1 to extend the contents
of the set of test cases derived from one defined function.

Proposal 1: Let ~Sy,.. A C; A D; be a functional scenario
in specification, extend set of test cases G(~Spr. A C;) into
G((~Spre A Cs) V =(~Spre A Ci)) = G(~Spre A C;) U
G(ﬁ("’spre N Ci))

We use predicate —(~Spre A C;) to present the functions
undefined in the scenario ~Sp.e A C; A D;. The test cases
derived from this predicate can be used to test the execution
paths implementing functions that are not defined in the
scenario. Note that this predicate can be constructed into a
predicate expression in which the conjunction clauses may be
the testing condition of other functional scenario in the same
operation. And this will result in that the test cases derived
from the predicate may satisfy other scenarios. Although it is
possible to generate test cases from the same resting condition
more than once, the duplication of generation do not affect the
test coverage.

In order to test the paths in relation “one scenario to multi
paths”, we must handle the problems causing this relation.

Two causes of the occurrence of this relation are refinement
in program and refinement in specification. To handle the first
cause we must analyse the structure of the program. The
second cause indicates that the functional scenario used to
generate test cases may be defined in a higher level specifi-
cation but the program is implemented based on the refined
lower level specification. Therefore the test cases generation
process should consider the refined specification, as reflected
in Proposal 2.

Proposal 2: Let F(z) be the disjunction of functional
scenarios that contain input variable z. And let F'(x) be the
disjunction of functional scenarios which are in the decom-
posed module containing z. The test cases generated from the
scenarios in higher level module should satisfy the condition:
VI € G(F'(z)) -3T. € G(F(x)) Tc(z) = (@)

The notation 7. in Criterion 2 denotes one test case of high
level specification while the notation T/ indicates one test case
of lower level specification. T..(z) and T7.(z) present the value
of input variable z in the test case 7. and T respectively.
The criterion requires all of the values of z generated from
lower level specification should be contained in the test cases
derived from higher level specification. Since the values of z is
generated from refined specification, the test cases containing
all of these values can be realized as generated by considering
refined specification.

In addition to the factors affecting the effectiveness of
testing, we also find that some test cases generated from
functional scenarios are invalid. By invalid we mean these test
cases are not satisfied with invariants, which are a predicate
need to be sustained throughout the entire specification. The
invalid test cases exist because the test cases are generated
without considering invariant. To avoid generating invalid test
cases, Proposal 3 can be applied in the test case generation
process.

Proposal 3: Let an invariant on type T be I; = Vi € T
-Q(t, w). Then replace G(~Spre A C;) with G(~Spre A Ci A
Vz € Sy is_T(z) = Q(t, w)[z/t]).

In the former predicate, z stands for the variables of
scenario which are in type T'. The criterion requires that if the
scenario has input variables in type 7', the test cases generated
from the scenario should satisfy the invariant. So that we can
avoid generating invalid test cases violating the invariant.

Finally, we perform the experiments again with the three
proposal. For the sake of space, we just present the comparison
of integration testing in Figure 2. The y-axis presents the
coverage and the x-axis indicates each process involved in
the experiments. Obviously, the effectiveness is improved by
using our proposal.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we performed two experiments to assess the
functional scenario-based test cases generation method. Based
on the static analysis and test results we find that this method is
effective when the specification is well defined, but it may be
ineffective if the specification is not well defined. We propose
some improvement when the higher level specification are

¥ Original M improved

Fig. 2. Result of Improved FSBT

used in test case generation to ensure more execution paths can
be tested. The final results show that our proposal can improve
the effectiveness of the testing method. In the future, we intend
to use a large-scale system to assess the test cases generation
method and the proposals farther, and build a software tool to
implement the testing method with our proposals.

REFERENCES

[1] Shaoying Liu, and Shin Nakajima. A Decompositional Approach to
Automatic Test Case Generation Based on Formal Specification. Fourth
IEEE International Conference on Secure Software Integration and
Reliability Improvement, pages 147-155, 2010.

[2] J. Dick, and A. Faivre. Automating the Generation and Sequencing
of Test Cases from Model-based Specifications. In Proceedings of
FME °93: Industrial-Strength Formal Methods, pages 268-284, Odense,
Denmark, 1993. Springer-Verlag Lecture Notes in Computer Science
Volume 670.

[3] Shaoying Liu. Formal Engineering for Industrial Software Development
Using the SOFL Method. Springer-Verlag, ISBN 3-540-20602-7, 2004.

[4] M. C. Gaudel and P. Le Gall. Testing Data Types Implementation from
Algebraic Specifications. In R. Hierons, J. Bowen, and M. Harman,
editors, Formal Methods and Testing, pages 209-239. LNCS 4949,
Springer-Verlag, 2008.

[5] M. Broy, B. Jonsson, J. -P. Katoen, M. Leucker, and A. Pretschner (eds.).
Model-based Testing of Reactive Systems. LNCS 3472, Springer-Verlag,
2005.

[6] Yoonsik Cheon, and Carmen Avila. Automating Java Program Testing
Using OCL and Aspect). 7th International Conference on Information
Technology, pages 1020-1025, 2010.

[7] Anton Michlmayr, Pascal Fenkam, and Schahram Dustdar. Specification-
Based Unit Testing of Publich/Subscribe Applications. Proceedings
of the 26th IEEE International Conference on Distributed Computing
Systems Workshops, pages 34-34, 2006.

[8] Aritra Bandyopadhyay, and Sudipto Ghosh. Test Input Generation using
UML Sequence and State Machines Models. International Conference
on Software Testing Verification and Validation, pages 121-130, 2009.

[9] Gordon Fraser, and Angelo Gargantini. Experiments on the Test Case

Length in Specification Based Test Case Generation. ICSE Workshop

on Automation of Software Test, pages 18-26, 2009.

Shaoying Liu, and Shin Nakajima. A “Vibration” Method for Auto-

matically Generating Test Cases Based on Formal Specifications. 18th

Asia-Pacific Software Engineering Conference, pages 5-8, 2011.

http://www.nta.go.jp/tetsuzuki/shinkoku/shotoku/tebiki2010/pdf/43.pdf

Cencen Li,Shangying Liu, and Shin Nakajima. An Experiment for

Assessment of a “Functional Scenario-based” Test Case Generation

Method. Proceedings of International Conference on Software Engineer-

ing and Technology, pages 64-71, 2012.

[10]

[11]
[12]

