EBARFEZMERE VYRS b

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-17

Building Traceability for Specification
Evolution and Inspection

CAI, Weichen

(HpRZE / Publisher)

EHARFEXRFRIERE 2R

(M=t4 / Journal or Publication Title)

FEBRARZRZRACE. FRHMZMERE /| ERKRERFERLE. FHRAFEMAR

1

(% / Volume)
8

(BB ~_R— / Start Page)
49

(8 T7T~R— / End Page)
54

(RITHE / Year)
2013-03

(URL)
https://doi.org/10.15002/00009543



Building Traceability for Specification Evolution
and Inspection

Weichen Cai
Graduate School of Computer and Information sciences
Tokyo 184-8584, Japan
Email: weichen.cai jh@stu.hosei.ac,jp
Telephone: (080) 3014-8812

Abstract—Requirements traceability has been widely recog-
nized as an indispensable support for software development
activity, especially during recent years, with the scale of the
software system becoming unprecedentedly larger and the time
period of developing a software system becoming longer. This
situation brings up more evolution in requirements specifications
and makes requirements traceability more attractive. However,
due to the informality of the specifications, the traceability of re-
quirements during evolutions is unlikely to be built systematically
and precisely. In this paper, we use SOFL specification to estab-
lish an effective approach to building requirements traceability
systematically and automatically under certain conditions.

Index Terms—Requirements traceability, formal specification,
documentation evolution

1. INTRODUCTION

Tterative approach for software development has been
widely accepted and used in industrial practice for a long time
[1]. Using an iterative approach always come with changes
in the documents we create and have to maintain during
the whole software development life-cycle. These changes in
the documents are called documentation evolution. A great
challenge in documentation evolution is how to sustain the
consistency between different level documents.

Inconsistency caused by documentation evolution will hap-
pen between either homogeneous documents or heterogeneous
documents Such inconsistency between documents will deteri-
orate the trust to these documents and make most of the docu-
ments less useful [2]{3]. Documentation traceability is mainly
focusing on solving the inconsistency during the document
evolution. By creating links between different documents, the
changes in each document are traceable. But the major obsta-
cle we are facing is that most of the software documents are
written in natural language while manually creating links will
unwillingly cost additional time. Full automation of building
a requirements traceability based on informal documents is
obviously difficult.

Formal methods are likely to have more advantages in
solving traceability problem [4] in an automatic manner, be-
cause the formal documents are organized in a well structured
style. Of many existing formal methods, the SOFL formal
engineering method has proved to be a practical and effective
method for its three-step modeling approach [5]. Developing a

Supervisor is Professor Shaoying Liu

software system using SOFL (Structure Object-oriented For-
mal Language), the starting point is to construct an informal
specification that includes the requirements for functions, data
resources, and constraints. To clarify the semantics of the
descriptions, the informal specification is transformed into
a semi-formal specification. The requirements for functions,
data, and constraints in the semi-formal specification are
organized in a well-structured style in terms of modules with
several kinds of elements (process, function, type identifier,
constant identifier, state variable, invariant). Finally, the semi-
formal specification is transformed into a formal design spec-
ification in which all of the data and functions are defined
using a mathematically-based notation.

To ensure that every requirement presented in the informal
specification is correctly defined in the semi-formal spec-
ification and then further correctly realized in the design
specification, requirements traceability must be built and uti-
lized to rigorously check the consistency between different
level specifications, but how to systematically and somehow
automatically build the traceability is still an open problem.

In this paper, we focus on this problem and propose an
approach to building requirements traceability as a solution.
The essential idea of our approach is that every item in the
informal specification, which can be a data item, functional
description, or a constraint, must be linked to one or more
items in the semi-formal specification that are expected to
define the informal item, and every item in the semi-formal
specification must be linked to one or more items in the formal
design specification in the same principle.

The rest of the paper is organized as follows. We first
introduce some link constraints based on the natural definition
of SOFL specifications in Section 2. Section 3 discusses the
information extracted from each document and the structure it
will be reorganized. We discuss some rules for link creation
in Section 4. In Section 5, a three-step approach is discussed
for automatically link creation. A brief discussion on the
maintenance of the links is given in Section 6. Related work
is introduced in Section 7. Finally, we give conclusions and
point out future research directions in Section 8.

II. TRACEABILITY BETWEEN SPECIFICATIONS

Creating traceability between every two of the three level
specifications means connecting the related elements in differ-

—49 —



ent level specifications and maintain the connection relation
during the life cycle of the specification itself. Two elements
in two different level specifications are connected if one in
the high level specification is “implemented” by the element
in the low level specification.

A. Traceability between informal and semi-formal specifica-
tions

During the transformation from an informal specification
to a semi-formal specification, the elements in the informal
specification are usually refined into more precise structures:
1) function in informal specification will be transformed into
function, process or module in semi-formal specification, 2)
data resource will be transformed into type identifier, constant
identifier or state variable, 3) constraint will be transformed
into invariant.

Automatically creating trace links between the informal
specification and the semi-formal specification is difficult since
the informal specification is written in a natural language
and its semantics is hard to be understood by computer
algorithms. Therefore, the links are usually created manually.
Our approach supports the creation of such links by checking
whether there is any element in the informal specification that
is not linked to any element in the semi-formal specification.
If there is such a case, it implies that some “requirement”
documented in the informal specification is unlikely to be
reflected in the semi-formal specification.

B. Traceability between semi-formal and formal specifications

Due to the commonality of the module structure in both
level specifications, the creation of the traceability links is
straightforward. This situation also allows for an automatic
support for building traceability links. Since this part is the
main part of our contribution, we will focus on the discussion
of this issue in the rest of this paper.

III. ELEMENT CONVERSION

The elements of interest include process, function, type
identifier, constant identifier, state variable and invariant. Their
conversion into a pair of concept declaration and structural
declaration is described below.

Most kinds of elements declaration in software requirement
specification can be divided into two parts — a concept dec-
laration and a structural declaration. The concept declarations
are some kinds of notations which are defined all by the
user himself. To a rational requirement analyzer, the concept
declaration of element will typically indicate the real world
concept that the element is willing to represent. The structural
declaration goes after the concept declaration typically indicate
"how to do" or "how to represent”.

Definition 1: Let C. denote a set of concept declarations in
the specification and S, denote a set of structural declarations.
Then, E = {(c,S)lc € Ce A S C S.} is a set of element
defined in the specification. But in some cases, where the
concept declaration is missing, we add a special signal "#"
to C.. Such signal indicate that the element do not have a

concept declaration. Being a set of structural declaration, S,
is actually a set of pair which has a concept declaration and
a value declaration within it. V. is denoted as a set of value
declaration. So we have S, = {(c,v)|c € Ce Av € Ve}. By
applying this definition, we are able to convert the element in
SOFL into a common format.

As we have introduced in Section 2, both semiformal and
formal specification share the same structure and constitute by
same components which are type definition, constant defini-
tion, variable definition process definition and invariant defi-
nition. We will discuss the judging rules of creating different
links for these components respectively in this section.

IV. CRITERION FOR LINKING ELEMENTS

In this section, we will discuss several rules used to help
determine whether two elements belong to the semi-formal
specification and the formal specification respectively should
be linked or not. we first discuss the basic principle of ail the
rules.

In the requirement specification, user may frequently change
their mind on how the system should perform by modifying the
structural declaration without changing concept declaration.
Such characteristic helps us to identify the related element
between different level specifications, because whether two
corresponded elements change in structural declaration, the
concept declaration will remain the same. So in our criterion,
we first look into the concept declaration to determine whether
two elements should be linked or not. If we can't find the
corresponding elements based on the concept declaration, we
then look into structural declaration to find the element with
same implementation.

Since links created based on the concept declaration and
the structural declaration don’t have the same trustability, we
create four kinds of links as follow.

A. Credible link

The credible link is a kind of link which we strongly believe
that the linked elements represent the same concept in the real
world. If the two elements within different level specifications
have the same concept declaration, a credible link will be
created.

Definition 2: Let F denote a set of elements. C, is a set
of concept declarations and e is a an element belonging to E.
Then, we define C{e) : E — C..

The criterion for creating credible link is then defined as
follow:

Criterion 1: Let MO denote the module defined in the
semi-formal specification, and FM denote the module defined
in the formal specification. e; and eg are two element defined
in MO and FM respectively. CL is denoted as a set of
credible link between MO and FM. CL = {(e1,e3)le; €
MOAey € FMAC(e1) = Cle2)}

B. Suspected link and Incredible link

The suspected link and incredible link are both created
automatically by looking into the structural declaration of two

— 50—



element. But structural declaration of the element has two
different format :

Definition 3: Let E denote a set of element. C, is a set of
concept declaration. S, is a set of structural declaration. e is
a an element belongs to E. S(e) : E — S..

Definition 4: Let s denote a structural declaration belongs
to S.. V. is denoted as a set of value declaration belongs to
each structural declaration. V'(e) : Se — V.

Using the function definition above, suspected link and
incredible link are created based on the criterion blow.

Criterion 2: Let MO denote the module defined as semi-
formal specification, and F'M as the module defined in formal
specification. e; and es are two element defined in MO and
FM respectively. SL is denoted as a set of suspected link
between MO and FM. SL = {(e1,e2)les € MO Aex €
FM A C(er) # Clez) AC(S(er)) = C(S(e2)) # #}

Criterion 3: We use the same notation with criterion 2 and
let IL denoted as a set of incredible link. IL = {(e1, e2)le1 €
MOAey € FMAC(e1) # Cle2) AN[C(S(e1)) = C(S(ez)) =
#) V (C(S(e1)) # C(S(e2))] AV (S(er)) = V(S(e2))}

C. Missing link

The missing link is a slightly different from the other three
ones. According to the SOFL specification inspection tech-
nology, any element defined in the semi-formal specification
should be implemented in the formal specification [6]. So the
missing link represents a link.between one element in the
semiformal specification and a missing element which should
have been implemented in the formal specification. Having
this kind of link means after the three criterions been applied,
the element defined in semi-formal specification still remain
unlinked. Mathematically speaking, this criterion is defined as
follow:

Criterion 4: We denote withinCL(e), withinSL(e),
withinIL(e) as the function showing whether element
e in the semi-formal specification has a credible
link, a suspected link or a incredible link. Let ML
denoted as a set of missing link. ML = {ele €
MO A withinCL(e) A withinSL(e) A withinIL(e)}

One thing that we should emphasize here is that all cri-
terions can only be applied to the elements declared within
module specifications. We will discuss the linking criterion
for the module later since module is has a more complicated
structure to which the criterion above may not be appropriate
to apply. Making judgment on linking two modules will be
discussed in the following section.

V. AUTOMATICALLY LINK CREATION

In our approach, we will go through three steps to create
trace linking automatically. We call these three steps dividing,
judging and combining, respectively. In this section, we will
introduce the purpose and approach of each step in detail.

A. Step 1: Dividing
To create a link between two elements belong to semi-
formal and formal specification respectively, we first pick

Library
System SMt

\\\
egister Manage
SMZ( User ) < Book SM3

.

Set < Add > /Borrow
SM4 Account Book KLend SM>5
SMé6 SM7
Search
Book
SM8 SM9
Fig. 1. Tree diagram convert from semi-formal specification
( Library
System FM1
FM2 FM3
Set Set < Add ) orrow
FM4 Qccoun; Pass> Book Lend FMb
FM6 7
Change Search
@ount Book
FM10 M
Fig. 2. Tree diagram convert from formal specification

up an element in the semi-formal specification and figure
out its corresponding element in formal specification. It is
theoretically acceptable. But unfortunately, figuring out the
corresponding element will force us to go through the whole
specification in practice. Dividing step is to split the specifica-
tion into several little pieces so that we do not need to search
through the whole specification to find the potential related
elements.

Before we discuss the approach of splitting the tree, another
SOFL specification’s feature should be introduced here. Both
semi-formal and formal specifications are constitute by several
module declarations. But these modules are not all on the
same level. In SOFL, in case that the process within a module
is quite complicated, we may decompose this process into
another module and declare that this module is decomposed
from a high level module. Having such relationship between
modules, we can actually construct a tree diagram against the
SOFL specification. In the tree diagram, each node represent
a module. A module decomposed from high level module is
called a child module, while the high level module is called a
parent module. A child module is represented by a child node
in the tree belongs to a parent node which represents a parent
module. Semi-formal specification’s tree diagram is shown
in Figure. 1. The tree diagram of the formal specification is
shown in Figure. 2.



{ {lsMm1}, {FM1}

/{[SM3}. {FMm3}

(lsw, sw), (s, F@

{{sm2}, {FM2}

{{sme}, {FMé6}

K[O {FM10) ) ( fiSMal, o} {{SMQ} {FM9}}

{{SM4} {Fma}

Fig. 3. Derived tree from tree diagram of semi-formal and formal specifi-

cation

The algorithm we introduced next doesn’t look into the
definition within each module, so we just show the module
name in Figure. 1 and Figure. 2. There are three difference
between Figure. 1 and Figure. 2. After converted from semi-
formal to formal specification, we miss module Change Pass
in semi-formal specification and have a new module Change
Account formal specification. Also module Book Manage
changes its name to Book Base after the conversion.

After applying our algorithm to both tree diagrams, we will
derive a tree diagram with each node represent a pair of sets
of modules belong to semi-formal and formal specification
respectively.

Definition 5: Let N represent the node in the derived tree.

= (SM,FM). SM and F M are the subset of modules de-
fined in the semiformal and formal specification respectively.

Algorithm 1: Denote SMT as the tree diagram represent
the semiformal specification while FMT represent the formal
specification. Let DT be the tree derived by the algorithm.

Step 1: Pick up the top node in SMT and FMT. If the module
name equal, create N in DT, go to Step 2. Otherwise, put all
sm and fm on the same layer into N in DT’

Step 2: Find all the child sm and fm of SM and FM
within N which have the same module name, create N in
DT until there is no child left Apply Step 2 to every new
node. If there still child left, go to Step 3.

Step 3: If only fm left, create N with sm missing. If only
sm left, create N with fm missing. If both left, put all sm
and fm on the same layer into N in DT".

After applying this algorithm to the two tree diagrams in
Figure. 1 and Figure. 2, we derive a new tree shown in Figure.
3 whose nodes are either a pair of two modules that have
highly potential to related with each other or a pair of sets
of modules between some of which relation may exist. We
use the notation of each module beside the module name to
represent them in Figure. 3.

In the next step, we start with each leaf node in the new tree
but not pick up a module in semi-formal specification while
have all the module in formal specification as a perspective
alternative.

B. Step 2: Judging

Considering the complex structure of the module, such kind
of judgment is not quite trustful. In this section we will
introduce our approach on making judgment on how close
two modules are related by looking into the elements within
the modules. In the former section, we have already introduced
the judging rules for linking two elements in the semi-formal
and formal specification respectively. Based on these rules,
linking between two elements can be finished by computer
automatically. This section will discuss the way of linking
to module automatically. The main idea here is changing the
problem of module linking into a problem of quantitative
evaluation. The detail will be discussed below.

Firstly, we pick up two potentially related modules and
apply the criteria on judging rules for element which we have
introduced in the former section to every kind of elements in
both module. Recall that in our approach four kinds of links
which represent different level trustability will be create by
using the judging rules. In the judging step each kind of link
will be assigned a quantitative value as a score: 1) credible
link =10, 2) suspected link = 6, 3) incredible link = 4, 4)
missing link = 0.

Giving each link a score, we turned the level of trustability
into a quantitative value. Then we simply calculate the mean
trustability of the links between same type elements using the
following formula.

Definition 6: Denote C as the number of credible link, S
as the number of suspected link, I as the number of incredible
link and M as the number of the missing link. Let Ag be the
average trustability of element E.

WOxCH+6xS+4xT+0xM

Ap = CtrS+I+M

(1)

In the Formula. 1, we have the aggregated value of the all
the links in the numerator and the number of the all the links
in the denominator. The result from the formula is the mean
value of links we have which can be considered as a level of
trustability on the whole. From Formula. 1, we can easily find
that Ag € [0,10].

Having the quantitative value of trustability for each com-
ponent within one module, we will calculate the level of
trustability for the module based on the value of each com-
ponent. Simply sum of the value of the component together
sounds very straight forward. But as the complexity of each
component is not equal, having more elements with complicate
structure linked will make the link between two modules more
trustful. So a weighted sum calculation sounds more precise.

How much weight should be assigned to each component
comes to be a problem. The basic idea is that the more compli-
cate component will have more contribution to the trustability
which should be assign a larger weight than others. But even
the basic idea is the same, there’s still a lot different ways to
given a set of weight which all of them are actually acceptable
for different users. So in this paper, we give function and
process a weight equal 25%, while constant identifier, type



identifier, state variable a weight equal 15%, and type invariant
5%.

Based on the given weights, we using the following formula
to calculate the W M (weighted mean) of each component’s
linking trustability as the trustability of the link between two
module. In the formula we use the following function named
isDef to check whether a given type of component has been
defined in the semi-formal specification.

Definition 7: Let SM be a semi-formal specification. P, F,
C, T, V, I are denoted a process, function, constant identifier,
type identifier, state variable, type invariant, respectively. E =
{P|F|C|T|V]|IL

1 if E is defined in SM

0 if E isn't defined in SM @)

isDef(SM, E) = {

Am
WM = Total )
Ay = 2% x (Ap+A)+
15% x (A¢g + Ar + Ay) +
5% X AI
Total = 25% x (isDef(SM,P)+isDef(SM,F))+

15% x (Def(SM,C) +isDef(SM,T) + (4)
isDef(SM,V)) + 5% x isDef(I) 5)

In Formula. 3, we calculate the weighted mean of each
component’s trustability in the numerator. But leaving some
of the components undefined is also acceptable in SOFL
specification. In such case, by dividing the sum of weight
who are defined in the module, we can automatically adjust
the weights used in the numerator.

In this section we calculate the trustability of each com-
ponent as Ag. Then based on Ag, we using Formula. 3
to calculate WM.As Ap € [0,10], we can easily find that
WM € [0,10).We now convert the value of WM into one
kind of link between two modules using function toLink.

WM =10
WM € [6,10)

Credible Link  if
Suspected Link i f
Incredible Link if WM € [4,6)
Missing Link  if WM €[0,4)

The type of link between two modaules is the final judgement
in the judging result. In the next section, based on this result,
we will discuss judging not only the leaf node but also the
nonleaf nodes in the derived tree from the dividing step and
finally link all the modules and elements in the specification.

toLink(W M) =

C. Step 3: Combining

In this section, we will start from the leaf node in the derived
tree, push the result up to their parent nodes and finally reach
the top node as an end. The main idea here is combining
the linking result of two child modules as the just one link
between two processes in their parent nodes.

Since the amount of modules within SM and F'M might
be different from each node. the combining operation applied

to each nodes will be a little different. We divide the node
into four type of structure. The combining process will be
discussed respectively.

1) Type 1 node: Type 1 node is a node defined as follow.

Definition 8: Denote N as a type 1 node. N = (SM, FM)
where SM = {sm} and FM = {fm}.

A type 1 node is a most common node that only has one
module in both SM and F'M. we conduct the judging step
and pass the result to its parent node. If the type 1 node is a
nonleaf node, we just add the link pass from the all the child
nodes as links between process before we apply the judging
operation

2) Type 2 node: Type 2 node is the more complicated node
defined as follow.

Definition 9: Denote N as a type 2 node. N =
(SM,FM) where SM = {smqy,smg,...sm;} and FM =
{fmy, fma, o fmg}

Type 2 node has multiple modules within both SM and
FM. Combining operation for leaf node will go through 2
steps. Denote the type 4 node ready to be deal with as N =
{SM,FM}

Stepl: Pick up one module denoted as sm in SM, apply the
judging operation to sm and each module in FM. Link fm
with s which have the largest W M between them. Pass the
link to the parent node in derived tree. Create a sibling node
denoted as Ng;piing of N. Move sm and fm from SM and
FM within N to SM and FM within Ngpiing if WM # 0.
If WM = 0, only move sm.

Step2: Move all the sibling nodes of sm and fm in
specification tree diagram to Ny = {SMup, F' Mgy} which
is another sibling node of N. Repeat Stepl to NNgp until
SMyp = 9.

3) Type 3 and type 4 node: Type 3 node is a node defined
as follow.

Definition 10: Denote N as a type 2 node. N =
(SM,FM) where SM = {sm} and FM = @.

Type 3 node have a module in SM but no potential
related module in formal specification which always cause
by the change in the structure of the tree diagram of the
specifications. To such kind of node, we pass a missing link
to the parent node base on the concept that each definition
in semi-formal specification should be implement in formal
specification..

Type 4 node is a node defined exactly conserved with type
2 node.

Definition 11: Denote N as a type 2 node. N =
(SM,FM) where SM = @ and FM = {fm}.

Type 4 node has a module in FM but no potential related
module in semi-formal specification. This kind of node is
probably cause by the decompose operation from turning semi-
formal specification to formal specification. To such kind of
node, we simply skip this node and move on to its sibling
nodes.

Going through the three steps, we finally trace all the
elements and the modules.



V1. MAINTENANCE

Maintenance means that after the trace links are created,
users are required to eliminate all the missing link and we
also strongly recommend user check the suspected link and the
incredible link to make sure they are correct. And the manually
change to the links will cause the whole links change.

The maintenance of traceability environment also contains
maintenance of consistency between each specifications, what
means that once an element changed in one specification, the
link connect with the corresponding element in the other two
specification will be disconnected and replaced by two missing
link. :

VII. RELATED WORK

A large amount of publications have affirmed that require-
ment traceability plays an essential role in software engineer-
ing [8][7]. However, once the problem come to how the trace
information can be create and maintain, the lists become very
short.

Works of Gotel and Finkelstein [7] have done an inves-
tigation on the traceability problem and discuss the reason
for which it still exist. One reason they stated is that the
lack of pre-requirements traceability. They argue that tracing
requirement is not enough since the requirement may not be
capture rationale. We agree with this point, however, we also
believe that extra time consumption cause by manually trace
information creation also limits the adoption of the current
approach in the industrial practice.

The approaches introduced by Haumer et al. [2] and Jackson
[9] is a small sample of manual traceability technique. Since
even a small system can still cause the traceability become
complex. Manual traceability detection, though corrective,
may cost too much extra effort.

Easterbrook and Callahan [10] introduced an approach
for verification and validation of specification using formal
method. In their works, they introduced an AND/OR table as
an intermediate to relate textual requirements and SCR model.
However, they didn’t give the concrete process of the trace
information generating.

Despite some deficiencies of the approach we mentioned
above, all techniques discussed are useful since they cover
the software development approach and requirement modeling
techniques outside formal method domain.

VIII. CONCLUSION

In this paper we presented an approach supporting the
automatically generation of trace information by using SOFL
method. We discuss the corresponding relationship between
heterogeneous requirement specification and the way in which
we draw out the necessary information from the specification
and convert into a structure format. We then go through a
three-step approach for creating the trace information auto-
matically. At last we discuss the maintenance of the trace
information has been created. A major strength of this ap-
proach is that it take the advantage of the structuralized
specification in formal method and automate the process of

the trace information creation without additional information
outside the specification. Also our approach can be adjust to
other formal method specification as long as its specification
has a modulized structure which can be convert into a tree
diagram.

The key contribution of our approach is reduce the enor-
mous efforts and complexity of generating traces by automat-
ically deriving trace information from the existed documen-
tation. This leads to a lower cost for adding traceability into
software development process and consequently more benefit
will obtained.

Further work will concentrate on a more precise judgment
on the potential related module to accelerate the performance
of trace generate and an self-adjustable weight for calculate the
trustability between two module. Also a tool will be developed
to support our approach in the near future.

REFERENCES

[1] Sooriamurthi, R., Introduction to Programming and Software Develop-
ment: an Interactive, Incremental and Iterative Approach, Proceedings of
the 36th Annual Meeting of the Decision Sicences Institute DSI-2005,
San Francisco, California, pp 1851-1856

[2] Haumer, P., Pohl, K., Weidenhaupt, K., and Jarke, M., Improving
Reviews by Extending Traceability, Proceedings of the 32nd Annual
Hawaii International Conference on System Sciences (HICSS), 1999.

[3] Clarke, S., Harrison, W., Ossher, H., and Traa, P. Subject-Oriented
Design: Towards Improved Alignment of Requirements, Design, and
Code, Proceedings of 1999 ACM SIGPLAN Conferencer on Object-
Oriented Programming, Systems, Languages, and Applications, Dallas,
TX, October 1998, pp.325-339

(4] Hughes, T. and Martin, C. Design Traceability of Complex Systems,
Proceedings of the 4th Annual Symposium on Human Interaction with
Complex Systems, 1998, pp.37-41

[5] S. Liu, Formal Engineering for Industrial Software Development Using
the SOFL Method, Springer-Verlag, 2004.

[6] S.Liu, Tamai. T and Nakajima. S, A Framework for Integrating Formal
Specification, Review, and Testing to ‘Enhance Software Reliability,
International Journal of Software Engineering and Knowledge Engineer-
ing, Volume 21, Number 2, March 2011, pp. 259-288

[71 Gotel, 0. C. Z. and Finkelstein, A. C. W., An Analysis of the Re-
quirements Traceability Problem, Proceedings of the First International
Conference on Requirements Engineering, 1994, pp. 94-101.

[8] Watkins R. and Neal M., Why and How of Requirements Tracing. IEEE
Sopare 11(4), 1994, 104-106.

[9] Jackson, J., A Keyphrase Based Traceability Scheme, IEE Colloguium

on Tools and Techniques for Maintaining Traceability During Design,

1991, pp.2-1-214.

Easterbrook S.; Callahan J., Formal Method for Verification and Vali-

dation of partial specification: A Case Study, Journal of Systems and

Software, Volume 40, Number 3, March 1998, pp. 199-210(12)

(101

— 54—



