EBARFEZMERE VYRS b

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2024-09-03

Supporting Tool for Automatic
Specification-Based Test Result Analysis

LI, Ji

(HpRZE / Publisher)

EHARFEXRFRIERE 2R

(M=t4 / Journal or Publication Title)

FEBRARZRZRACE. FRHMZMERE /| ERKRERFERLE. FHRAFEMAR

1

(% / Volume)
8

(BB ~_R— / Start Page)
23

(8 T7T~R— / End Page)
28

(RITHE / Year)
2013-03

(URL)
https://doi.org/10.15002/00009518

Supporting Tool for Automatic Specification-Based
Test Result Analysis

LilJi
Graduate School of Computer and Information sciences
Hosei University, Tokyo,184-8584, Japan
Email: ljsoar02138@gmail.com

Abstracti—Automatic Specification-Based test result analysis tool
support is crucial for applying specification-based test in
practice .It fills in the blank of lacking in supporting tool for
formal specification test. In this paper, we present a supporting
tool, which enables us to detect errors from various predicate
expressions. The target objective of the testing supported by our
tool is the formal specification written in the Structured Object-
oriented Formal Language (SOFL).The experiment result
indicates that the tool can handle most of types in specification,
besides some rarely used types.

Keywords: specification-based , result analysis, tool

1. INTRODUCTION

In software engineering field, there exist several major
challenges. For instance, engineers have to record what they
plan to build, their solutions to potential problems, the
credibility of the solution, etc. Since formal methods have
made significant contributions to software engineering by
offering formal specification, refinement, and verification
techniques for achieving correct programs. They are, however,
“too good to be true” for most industrial software development
projects. Formal methods can theoretically ensure that a
program is correct with respect to a formal specification, but
have no means to guarantee that the specification accurately
and completely reflects the user’s requirements. Therefore
formal methods have been regarded as an effective way to
solve these challenges. Formal methods emphasize the use of
mathematical notation in writing specifications, both functional
and non-functional, and the employment of formal proofs
based on logical calculus for verifying designs and programs. It
can significantly save development cost and time while
allowing the avoidance of many human errors during a testing
process[7]. However, for such a long time, there is always a
lack of supporting tool for automatic specification-based test.
So it is hard to apply theory into reality. For this reason, it is
necessary to develop a practical tool which can test the
specification automatically.

The Automatic specification-based test result analysis is an
effective technique in software industry. We generate test case
automatically based on specification and assign the test case to

both specification and program, program is refined from the .

Supervisor: Prof. Shaoying Liu

specification. Then we use the test oracle to test if we have
found a bug or not.

The goal of our research is to take the component-based
software engineering approach to produce a package in C# to
support automatic test result analysis from various predicate
expressions. The package includes several classes, each class
contains necessary methods for evaluating various kinds of
predicate expression.

Formal
Specification »| Functional scenario
Test case !
Based on
specification Assign
L 4 \
Program Test oracle

Fig. L. Principle of Specification-Based Test

In figure 1, formal specification is written in SOFL, SOFL
stands for Structured Objected-Oriented Formal Language[6]. It is
both a language and a method for constructing functional
specification and designs for software systems. The essential
structures of a SOFL specification are modules and Condition Data -
Flow Diagrams. A CDFD is a DFD with an operational semantics, is
a directed graph composed of processes describing functional
operations, data flows for data communications among processes and
data stores. In this paper, we regarded it as specification language.
Figure2 is an illustration of process specification. It shows the
structure of a process specification. Below is an example of one type
of specific structure of the package:

Package structure
Package automatic_test evaluation;

Class Evaluation From Relations;

Method Boolean Evaluation From Numeric Exp (operator,
Expl, Exp2, Test case){...}

/* operator is a member of {>,<,=>=<= <>} ¥/

The remainder of the paper is organized as follows .Section
2 describes strategies for automatically testing specification,
including different kind of specification’s recognition and test
case assignment. In section 3, we present a tool that deals with
specification and result display. Section 4 introduces related
work, and finally, we summarize the paper and point out the
challenges and future research in Section 5.In Chapter 11, the
prediction system is proposed. In chapter III, after the
determination of the parameters to optimize the system, the
proposed prediction system is evaluated by using real wine-
sales data. In Chapter IV, we concludes the result and states the
future study.

II. AUTOMATIC SPECIFICATION-BASED TEST RESULT
ANALYSIS STRATEGY

Automatic specification-based test result analysis is the
last step in software testing. It has 2 goals at different levels:
ideal goal and practical goal[3]. Ideal goal is to find all of the
bugs in the program which is extremely difficult as we know.
Practical goal is to meet required coverage criteria, such as
statement coverage or path. Compared to the ideal goal, the
practical goal is relatively easier to achieve but there are still
many challenges lying ahead. In this paper, we have made
efforts to reach the practical goal.

A. Hoare Logic

Hoare logic is the fundamental of our evaluation. It is
based on predicate logic and provides a set of axioms to define
the semantics of programming languages.

{~Spre} P {CAD}

B. Test Oracle

Definition 1: Let Spost=(C1AD1)V(C2AD2)V -V
(Cn/ADn),where each Ci (i€{1,....,n}) is a predicate called a
"guard condition “"without output variable, Di is called
“defining condition”" contains at least one output variable.
Then a functional scenario f5 is a conjunction Sy, /A Ci/\Di,
and the expression (Sp,. ACIADI)V (S5 AC2AD2)V -
V(Spre \Cn/ADn)is called a functional scenario form(FSF)
of S.

Definition2:Let =S5, ,ACAD be a functional scenario of
specification(3].

S, and P is program which is refined from the specification,
t is the test case which is automatically generated, r is the
result of P using t, then, if the following test oracle holds:

Spre (DACH)A-D(t,r)
it indicates that a bug is found in program P by t.[8]

As formal specification needs to use mathematical formula,
in order to contain all the types to describe software

requirements, we need to divide the specification into several
kinds of type.

They are numeric, string, char, set, sequence, map, product,
composite, compound, conjunction and disjunction. Following
are detail technique for numeric, set, sequence and compound

types.

IIT. TESTRESULT ANALYSIS

We apply bottom-up approach to describe test result
analysis algorithms, starting from atomic predicate
expressions and proceeding to compound, conjunctions and
disjunctions. In the package which I developed, it contains 4
kinds of class. We first discuss the algorithms for predicate
expressions involving only variables of numerical types, set
types and sequence types, respectively, and then extend to
their combination-compound types.

A. Structure of my package is as follows:
Package structure
Package automatic_test_evaluation;

Class Evaluation From Relations;

by Method Boolean Evaluation From Numeric

Exp(operator, Expl, Exp2, Test case){...}

/* operator is a member of{>,<,=>=<=<}, Expl is
numeric specification , Exp2 is corresponding program, which
we assume that the result have been given. Test case is a file
address where stores automatically generated test cases, which
can be extracted and assigned to Expl, the following 2) to 7
are similar */

2) Method Boolean Evaluation From String
Exp(operator,Exp1,Exp2,Testcase){...}
/* operator is a member of{=<>} */

3) Method Boolean Evaluation From Enumeration
Exp(operator,Exp1,Exp2,Testcase){...}
/* operator is a member of{=<>} */

4) Method Boolean Evaluation From Char
Exp(operator,Exp1,Exp2,Testcase){...}
/* operator is a member of{=,<>} */

3) Method Boolean Evaluation From Set
Exp(operator,Exp1,Exp2, Testcase){...}
/* operator is a member of{inset, notin, union, inter, diff,

subset, psubset, =, <> } */

6) Method Boolean Evaluation From Sequence
Exp(operator,Exp1,Exp2,Testcase){...}
/* operator is a member of{len, S(i), conc, elems, inds=,<}
*/

7) Method Boolean Evaluation From Compound
Exp(operator,Exp1,Exp2,Testcase){...}

— 24—

/* operator is a member of
{numeric,set,sequence,string,char,enumeration and their
combinations} */

B. Test case

Similar to automatic specification-based test result analysis,
test case generation is also an automatic specification-based
test case generation. Details are in another paper. As we know,
the consistency of specifications can’t be decided only on one
group of test case, because only one group of test case’s
correctness can’t be guaranteed. So we need several groups of
test case.

Definition 1 : Let P be an atomic specification contains
variables x1, x2....xn. Let Tc be the test case generated based
on P, like t1,t2,....tn, they are a group of values bound to
x1,x2....xn, respectively[12].

Definition 2 : Let Td be a test set for P. A test of P is a set
of evaluations of P with all the test cases in the test set Td[12].

Definition 3 : A test suite for P is a set of pairs of test set
and expected results corresponding to test cases[12].

For example, suppose P= x>0 A y=x+1, where x and y are
real numbers, respectively, then
(1) (x=1,y=2)is atest case for P.

2) {(x=1, y=2),(x=3, y=4),(x=-4, y=-3)} is a test set for P.
(3)

X y Er (expected results)
1 3 false
-2 -1 true

According to the tool we developed, test case generated and
test result analysis’s result are stored respectively, which we
use XML to store. Tool function will be shown later.

C. Test Objects
1) For numeric types.

For numeric types in this paper, we indicate four types
defined in SOFL: zero, natural numbers, integers and real
numbers. They are denoted by the symbols natO,nat,int and
real, respectively.

Operators:Unary,minus,Addition,Subtraction, Division
Multiplication, , Less than, Greater than, Less or equal,
Greater or equal, Less-between, Equal, Not equal

Operator Name Type
-X Unary minus real->real
X+Y Addition real*real->real
X-Y Subtraction real*real->real
X*Y Multiplication real *real->real
XY Division real*real->real

Table I. Relational Operators

Operator Name Type
X<Y Less than real*real->bool
X>Y Greater than real *real->bool
X<=Y Less or equal real*real->bool
X>=Y Greater or equal real*real->bool
X<Y<Z Less-between real*real*real->bool
X<=Y<=Z Less-equal- real*real *real->bool
between
X=Y Equal real*real->bool
XY Not equal real*real->bool

Table I1. Relational Operators

Each operator above is a predicate that takes some
arguments and yields a truth value.

Testing steps
We have 3 basic steps in automatic specification-based test
result analysis for numeric type .

Step'1: Automatically test case generation. This step is
described in Liu's another paper{3].

Step 2: Automatically recognize the numeric specification
and assign the test case to both specification and program.

Step 3: Inspect the test oracle to find if there exists a bug in
the program.

In figure 2, x is input variable and y is output variable.
According to the post condition, the functional scenario is:
xX>=0 A x>=5 A y=x+3.

In the functional scenario, x>=0 is, x>=5 and x<5 is
C(guard condition), y=x+3 and y=x-3 is D(defining
condition).Then we assign the test case to functional scenario,
and guard condition assignment is convenient, but defining
condition is complicated. We use Reversed Polish Notation to
transform the equation to postfix expression.

Reversed Polish Notation can transform an expression into
postfix order, which is easy for computer to recognize and
calculate. For example, a*(b+c)/d-+e is a prefix notation,
taking account into the operator precedence, we assign each
operator a natural value to represent their precedence. As the
follow shows:

Operators “ 7y *J/ +,-
Precedence 5 5 4 3
value

Among the operators, “(“and “)” have the highest priority, we
create 2 stack A and B, stack A stores operators, stack B stores
the final expression.

Step 1:Scan the expression from left to right, if the char is
operator, put it into stack A, or put it into stack B.

Step 2:Compare the next operator OP with the operator in A,
if OP lager, put OP into A, or put OP into B. If OP is “y” then
pop operators in A until “ (” , and put them into B

—925—

according to first out first in principle, canceling a pair of

“(“ and “)” at the same time.

Step 3: Repeat step2 until the expression is completed scanned.
Pop the operators in A to B according to first out first in
principle.

Step 4: Pop all the chars in B.

Then the expression is transformed into:

a,b,ct *d,/,e +

Following is the data situation in stack A and B:

A B

* a

* ’(a

* a,b

* (+ a,b

* (+ a,b,c

* a, b, c+

/ a,b,ct *

/ ab,ct *d

+ ab,ct *d,/

+ a,b,ct+ *d,/ e
a,b, et *d /e +

Table Ill. Transforming Process

So "x+3" can be transformed to "x,3,+". After assignment, we
g0 to next step.

In this paper, we focus on step 2 and step 3, and we assume
that program result has been given using test case. What's
more, only one test case is not enough, so we will generate a
set of test case-test set.

Specification
Process Test(x: int) y: int

Pre x>=0
Post (x>=5=>y=x+3) and
x<5=>y=x-3

Fig Il. Formal Specification

Inp T Out Test Defining Test Oralce
ut put Condition Conditio
n
x| Y| s.AC D |s ACAr-D
6 TRUE TRUE FALSE
TRUE FALSE TRUE
4 TRUE FALSE TRUE

We can obviously find bug in the analysis table above, when

Table IV. Test Result Analysis Tabel

the test oracle's value is true, it indicates that a bug is found in
the program cause the value of the program and the value of
the specification are not the same.

In this paper, we focus on step 2 and step 3, and we
assume that program result has been given using test case.
What's more, only one test case is not enough, so we will
generate a set of test case-test set.

2) For Set and Sequence Types
Set and sequence are types dealing with collection.

A set is an unordered collection of distinct objects where
each object is known as an element of the set. Since computers
can deal with only finite sets, we require that any set of a set
type be finite. A set type is declared by applying the set type
constructor to an element type.

A sequence is an ordered collection of objects that allows
duplications of objects .As with sets, the objects are known as
elements of the sequence

The difference between them is set is an unordered
collection of distinct objects while sequence is an ordered
collection of objects that allows duplications of objects.

Set contains the following operators: inset, notin, union,
inter, diff, subset, psubset.

Sequence contains the following operators: len, S(i), conc,
elems, inds. ,

The details of these operators are in Liu’s book about
SOFL.[7]

Let us consider a simple operation as an example. Suppose an
operation Borrow in a Book register system is defined as
follows:

process Borrow(borrow-req:
BorrowRequest)warning:string|Confirmation
:string;

rd :userlist;
wr :booklist;
exists[b:elems(booklist)]|b.name=borrow-
req.bookname and b.JD =borrow-req.ID
and exists [u inset(userlist)] |
u.username=borrow-req.username and
u.userlD=borrow-req.userID;

if borrow-req.HoldQuantity>=5

return warning;
else confirmationmes="success";
end-process

ext

pre

post

Where BorrowRequest is type defined in the section of
the type declarations of the specification(omitted for
brevity),string is the string type.

In specification, operator "exists[b:elems(booklist)]" is
implemented in C# as the following method:

— 26—

public Boolean elems(string b,string booklist,string testcase)

{
string[] sLine = File.ReadAllLines(testcase,
Encoding.Default);
string[] sep = new string[] { "=", "[", "I" };

string[] booklist = sLine[0].Split(sep,
StringSplitOptions.RemoveEmptyEntries);
List<string> list = new List<string>();

int count = 0;

for (int j = 0; j < booklist[1].Length; j++)

string book = booklist[1].Substring(j, 1);
if (book ="{")
{ count=j;

}
if (book =="}")
{
list. Add(booklist[1].Substring(count, j - count + 1));
}
}
for(int u=0;u<list.Count;u++)

{

for(int t=1;t<list.Count-1;t++)

{
if(list[u]==list[t])
{ list. Remove(list[t]);
}
}
}

string{] str = new stringflist.Count];
for (int k = 0; k < list.Count; k++)
{ str[k] = list[k];

if(str.contains(b))
return true;

else
return false;

}

In the program implementing the specification, as there
may exists the situation like this: test case may contains
embedded collection, for example:

[1,2,{3,4},5].According to set and sequence definition,
element {3,4}is a single element, so we firstly divide the
collection into "1","2".,"{3""4}","5" format, then recombine
them based on "{" and "}",the elements between "{" and the
first "} "after "{" are put together to form one element.

3) For compound types

Specification-based test result analysis for compound
types is hard to handle because it is the combination of all the
types mentioned above. Since the complexity depends on
embedding among different data types, we divide the
discussion into 3 kinds.

(@) ®) ©

collection based numeric based logic based

diff(s1,union(s1,s2)) len(s)+q>2 x inset
union(s1,s2)

Table V. Compound Type Classification

The following are details of the 3 types:

(a).expression contains only set and sequence, the result type
of it is set or sequence type, where the operator contains are all
belongs to set or sequence.

(b).expression contains "len" and numeric operators, the result
type of it is numeric value or boolean value, where the
operator contains are all belongs to numeric, set and sequence.
(¢).expression contains "inset" operator, the result type of it is
boolean value, where the operator contains are all belongs to
set and sequence. Specifically, algorithms for dealing with
each kind of situation are described below.

Alogrithm1: We apply recognizing while assigning method to
deal with situation (a).

Below the major step for testing situation (a) in compound
type.

NO. of Operators Algorithms for situation
algorithms (a)

Step 1:Split expression
M into atomic expression.
Step 2:Assign the atomic
expression, replace the
atomic expression with
newly calculated value.
Step 3: Rearrange
expression ,if there exists
no operator in expression,
then output the final
value. Otherwise, go
back to step 2.

Union, inter, diff

S(i), conc, elems, | Omitted ,similar to above

@ inds

Table V1. Algorithms For Situation (a)

Algorithm 2:In this situation, we apply the algorithm
mentioned previously. Details are in table 8.

No. Of Operators Algorithms for
algorithms situation (b)
(1) len,+,- Stepl:Calculate

2 *,/9<,>,<=’>=’

<>,union,diff,inter,in
ds,conc,s(i),elems.

len operator
using algorithm I.
Step2:Transform
the format into
numeric format,
using numeric
algorithm

Table VII. Algorithms For Situation (b)

Algorithm 3:Situation (c) deals with "inset" operator. Cause
expression is divided by "inset" into two parts .Algorithm is in
table 10

No. Of
algorithms

Algorithms for
situation (c)

Operators

len:+7’1 *:/a<:>,<:’>=5
@ . <>,union,diff,inter,inds
,conc,s(i),elems.

Step 1: separate
expression into
two parts by
"inset"

Step 2:according
to each part,
apply algorithm1
and algorithm?2.

Table VIII. .Algorithm For Situation (c)

IV. DESIGN OF THE TOOL

The automatic specification-based test result analysis
supporting tool is designed to support the process of reviews
using the component-based package on the basis of SOFL
specification language[4]. Specifically, the tool offers the
following functions:

Automatically judge the consistency between the
specification and the refined program. The way to do this is to
automatically recognize the specification and call the related
package which is developed in C#. Then compare the program
result with the specification result after assigning the test case
to specification.

V. RELATED WORK

The automatic specification-based test result analysis is
introduced in Liu’s paper. In this thesis, we describe a tool that
supports most kinds of the testing objects. In addition, there
have existed some tools to support test result analysis using
other testing methods. In this section, we overview the
existing test result analysis tools and the approaches
underlying the tools.

O.B.Bellal and his team present the analysis of test

results in the context of OSD communication protocols. They

use principles involved in the comparison of test results with
respect to a reference specification which may be non-
deterministic. Their analysis tool TETRA performs the
analysis for specifications written in the formal description
technique LOTOS[9], which is a formal specification
language developed by ISO for the description of OSI
communication protocols and services.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an approach to applying the
specification-based test result analysis method into a tool
support. We described the component-based package to solve
the specification-based testing. And the tool realized automatic
test case generation and automatic test result analysis.

In the future, we are interested in extending the test
objective to more data types, like map, composite, conjunction
and disjunction, etc.

REFERENCES

[1] Fumiko Nagoya, Shaoying Liu, Yuting Chen, "A Tool and Case Study
for Specification-Based Program Review", The 29th Annual
International Computer Software and Applications Conference
(COMPSAC2005), Edinburgh, Sotland, July 25-28, 2005, IEEE
Computer Society Press, pp. 375-380

[2] Shaoying Liu, “An Approach to Applying SOFL for Agile Process and
Its Application in Developing a Test Support Tool", Innovations in
Systems and Software Engineering, Springer London, 11334 6(1), 22
December, DOT 10.1007/511334-0114-3.

[3] Shaoying Liu, “Automatic Specification-Based Testing: Challenges and
Possibilities”, 5th Intl. Conf. on Theoretical Aspects of Software
Engineering, IEEE CS Press, Xi’an, China, Aug. 29-31, 2011, pp. 5-8.

[4] Fumiko Nagoya, Shaoying Liu, Yuting Chen, “Design of a Tool for
Specification-Based Program Review”, Workshop on SOFL in the 10th
IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS2005), Shanghai, China, 16-20 June 2005, IEEE
Computer Society Press, pp. 10-11.

[5] Shaoying Liu and Hao Wang ™ Shaoying Liu, “Pre-Post Notation is
Questionable in Effectively Specifying Operations of Object-Oriented
Systems”, Frontier of Computer Science in China, DOI 10.1007/s1 1704~
011-0130-y, 2011, pp. 1-12.

[6] Shaoying Liu, "Formal Engineering for Industrial Software
Development using the SOFL Method”, Springer-Verlag, March 2004,
428 pages, ISBN 3-540-20602-7.

[7] Shaoying Liu, "Developing Quality Sofiware Systems Using the SOFL
Formal Engineering Method”, Proceedings of 4th International
Conference on Formal Engineering Methods (ICFEM2002), LNCS

[8]1 Shaoying Liu, “Verifying Consistency and Validity of Formal
Specifications by Testing", Proceedings of World Congress on Formal
Methods in the Development of Computing Systems, FM'99 - Formal
Methods, Lecture Notes in Computer Science, No. 1708, Springer-
Verlag, Toulouse, France, September 20-24, 1999, pp. 896-914.

[91 O.B. Bellal, G.v. Bochmann, M. Dubuc, F. Saba, “ Automatic Test
Result Analysis for High-Level Specifications” — 1991

~ 98—

