EBAKFEZFEMERE VRS U
HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-15

Accelerating GN Algorithm on Many-core
Processors to Find Community Structure
in Complex Networks

YANG, Liwen

FEHRZARZRFHRB 2R

%Hk?k?ﬁﬁ%.%ﬁﬂ?ﬁ%ﬂﬁ/ﬁﬂ&k#k?ﬁﬁ%.%ﬁﬂ?ﬁ%ﬂ

8

19

22
2013-03

https://doi.org/10.15002/00009516



Accelerating GN Algorithm on Many-core Processors
to Find Community Structure in Complex Networks

Liwen Yang
Graduate School of Computer and Information sciences
Hosei University
E-mail: liwen.yang. 7x@stu.hosei.ac.jp

Abstract—Complex network has become an important field in
science research recently and it is proved that many networks
possess strong community structure. In order to exploit and
utilize networks, we need to detect community structure. Here we
introduce a kind of classical community detecting algorithm,
Givern-Newman (GN) algorithm and propose two methods to
parallel GN algorithm. These two proposed methods are based on
calculating edge betweennmess in parallel. The first method,
calculating full betweenness of each edge for different source

vertices in parallel, was implemented on the many-core processor.

GN algorithm is an iterative community detection algorithm
based on removing edge repeatedly. Our two methods can reduce
the running time of per iteration. As a result, the method using
coarse-grained parallelism for 4-core processor is 3 times faster
than the sequential program of GN algorithm.

Keywords— GN algorithm; community detecting; edge

betweenness; many-core processor

I INTRODUCTION

The study of community structure in networks has a long
history. It is closely related to the ideas of graph partitioning
in graph theory and hierarchical clustering in sociology [1, 2].
Many networks possess strong community structure. For
example, social networks, biochemical networks, food webs
and information networks. It can help us to understand how
network function and topology affect each other. Network is
composed with many kinds of vertices. There are more
connections among the vertices with the same properties, and
there are few connections among the vertices with different
properties. The sub-graph has the vertices with the similar
properties and the edges among the vertices is called cluster
(i.e. community). Community detecting algorithm is used to
find the potential community in the network. So far, many
community detecting algorithms have been around. The most
representative community detecting algorithms are Graph
Partitioning method [9], W-H algorithm [5], Hierarchical
Clustering method [6]. Among them, GN algorithm [3]
belongs to a divided Hierarchical Clustering method. It needs
to recalculate full betweenness (refer Section II part C) for all
remaining edges after removing an edge. This process takes
significant time in GN algorithm.

At present, with the improvement of the hardware’s
performance, many-core processor gradually becomes a
mainstream. But previous community algorithms are almost

Supervisor; Prof. Yuji Sato

sequential. In addition, with the increased information, we
need a faster community detecting algorithm. However,
parallel community detecting algorithm can get the faster
speed on many-core processors.

In this paper, we propose that speed GN algorithm by
parallel processing on many-core processors. That is to
parallelize GN algorithm. The concrete methods are in Section
II1.

The paper is organized as follows. The instruction of
conventional GN algorithm is in Section II. Section III
presents the proposed methods. Experiments and conclusions
are discussed in Section IV and V respectively.

II. CONVENTIONAL GN ALGORITHM

A. GN Algorithm Outline

GN algorithm is the classic algorithm in the area of
community detecting. The basic thought of GN algorithm is
calculating full betweenness of each edge continuously and
progressively removing edge which has the highest edge
betweenness. Fig. 1 shows an example of a small network with
communities. In Fig. 1, the small black circles (i.e. vertices in
network) and the lines (including the black and green ones, i.e.
edges in network) represent the individuals with some
relationship and their relationship respectively. There are three
communities, denoted by the red dashed circles, which have
dense internal links (black lines) but between which there are
only a lower density of external links (green lines). The green
lines will be removed when uses GN algorithm to process this
graph. We can get the potential communities in this graph.

Figure 1. A small network with communities



B. Modularity

In order to know how many communities networks can be
divided into, a quality measure of a particular division of a
network, modularity is proposed by Newman and Girvan [4]:

k 2
Q = Z] (ell —al' ) (1)

I=

Where consider a particular division of a network into &
communities and define a £ X & symmetric matrix e whose
element e; represents the fraction of all edges in the network
that link vertices in community 7 to vertices in community J.
Therefore, e; represents the fraction of edges in the network
that connect vertices in the same community. a; = }.; e;; refers
to the fraction of edges that connect to vertices in community i.
Generally the bigger this value of Q is, the better the result is.
Fig. 2 shows a dendrogram of a network with 12 vertices. This
dendrogram represents an entire nested of possible community
divisions for the network and it is divided into 4 communities.
The vertices in the same color are in the same communities. At
the right of the figure we also show the modularity calculated
by Eq. (1). We can use the value of the modularity (i.e. Q) to
judge where we should cut the dendrogram to get a significant
division. Each division (there are different number of
communities in each division) corresponds to a value of
modularity. The peak of the modularity (red dotted line)
corresponds to perfect community division.

’ modularity
9 010203 04 05

SORINUALOD JO JBQUINY B4}

elafe)eX J

Figure 2. Modularity and dendrogram for a community-structure graph.

C. Edge Betweenness Definition and Calculation

Betweenness of an edge is the number of the shortest paths
around this edge from a source vertex s. Do repeatedly the
process for all possible source vertices s and we can get full
betweenness of an edge through summing the betweenness.

Suppose a graph with m edges and » vertices. Breadth-first
search for this graph can find the shortest paths from a source
vertex s to all others in time O(m). Calculate the number of the
shortest paths along each vertex from source vertex s. Weight
w; represents the number of shortest paths along vertex i from
source vertex s. Suppose vertex i connecting with s, and J is
farther than i from the source vertex s, and then the fraction of
the shortest path from j through i to s is given by wy/w;. Thus,
to calculate betweenness starting at s, we need do the
following steps [4]:

1. Find each “leaf” vertex f, there are no paths from s to
other vertices go through 1.

2. Suppose vertex i adjoins f, a weight of w/wy is
assigned to the edge from fto i.

3. Starting with the edges that are farthest from the
source vertex s and work up towards s. To the edge
from vertex i to j, j is farther from s than i, assign a
weight that is 1 plus the sum of the weights on the
neighboring edges (i.e., each of them shares a
common vertex with this edge) immediately below it,
all multiplied by w/w;.
4. Repeat from step 3 until vertex s is reached.
Now repeat the above process for all » source vertex s, and
sum the edges of weights (betweenness) each time, we can get
the full betweenness for all edge in time O(nn).

HI. PROPOSED PARALLEL METHODS

According to the basic thought of GN algorithm, the
process of calculating and removing edges is repeated m times.
Here we define m is the number of edges in graph. From
aforementioned, the process of calculating betweenness is the
main part of GN algorithm. Therefore, our method is
decreasing the running time of calculating betweenness. Here
we propose two parallel ways: Coarse-grained parallelism and
Fine-grained parallelism.

A. Coarse-grained Parallelism

In coarse-grained parallelism, we regard the process of
calculating betweenness for all edges from each source vertex
as a task. Copy the graph data for each task and it can avoid
data dependency and access conflict. All tasks on different
cores run in parallel at the same time. Here suppose the number
of tasks is equal to the number of cores. Synchronize only
when all tasks end, and then start another iteration process. All
tasks can execute in parallel during each iteration process.
Therefore, speed up the program of GN algorithm successfully.
For multi-thread technology, as Fig. 3 shows, the circles in the
rectangle represent any vertices in a graph including source
vertices. Any vertex in a graph has a chance to be a source
vertex. Therefore, the number of vertices is equivalent to the
number of source vertices. Allocate each task to each thread. Ti
represents that thread i performs a task for source vertex i. And
this graph is an undirected and unweighted graph. The dotted
line with arrow only represents the direction of search from
source vertex S; to target vertex in the shortest path tree.

4

L

Figure 3. Graph search from different source vertices

5(e) = SEV Is(e) @

—-—90—



In the formula above, s and e represent a source vertex and
an edge in a graph. ¥ represents all the vertices. Jy(e) refers to
betweenness of edge e for a source vertex s. (e) represents the
sum of betweenness for different source vertices (i.e. full
betweenness). All values of di(e) can be calculated in parallel.

B. Fine-grained Parallelism

In this part, we introduce our method about Fine-grained
parallelism by Fig. 4. In Fig. 4, we see that the search process
starting from source vertex s is similar to p-breadth first search.
Here p refers to the number of processors. The parallelization is
performed in a task and this task includes two procedures. One
is calculating the number of the shortest paths from s to vertex i
using breadth-first search. The other one is a backtracking
course. That is calculating betweenness of edges from leaf
vertex to s. We can search all the vertices with the same
adjacent vertex in parallel for starting from one source vertex.
More specifically, we can operate in parallel for each of them
when travels the adjacent vertices of a vertex. Apparently, the
degree of parallelism depends on the degree of each vertex. In
the sparse graph, the degree of vertices is very small. Therefore,
this method can get a better result in a dense graph than a
sparse graph.

e R

e e —

N
]
P's ®

Figurc 4. Graph search from one source vertex

IV. EXPERIMENTS

A. Execution Platform and Test Data

We perform all experiments on a PC with the following
properties: Intel(R) Core (TM) i7 960 3.20GHz CPU, 12
GB RAM, 1TB Hard disk drive. The test datasets we used are
downloaded from a website about network data [7]. They are
the undirected and unweighted graphs and from the realistic
data. Here we introduce Dolphins network [4, 8} in detail. It
was generated by Lusseau et al. for seven years of observation
of 62 dolphins living off Doubtful Sound. The network has 62
vertices (representing the dolphins) and 159 edges
(representing a significant frequent association. It is divided
into two large communities, and the larger of the two is also
divided into four smaller sub-communities. The Dolphins
network has five communities in total [4].

B. Experimental Methods

There are two experimental methods applied for each
network. For comparison with our parallel method, we also
implement the sequential program of GN algorithm. And then
design and implement the parallel program of GN algorithm on
multi-core processor by Java multi-thread technology.

1) Sequential program of GN algorithm

In this part, implement a sequential program in Java of GN
algorithm. Problem Analysis Diagram of GN algorithm is
shown in Fig. 5. The procedure of GN algorithm [3] with
modularity for detecting community is simply stated as
follows:

1. Calculate the full betweenness (full betweenness is the
accumulation of betweenness) for all edges in the
network.

2. Remove the edge with the highest full betweenness. We
should compute the value of modularity while gets a
new community and record the network structure in
this time.

3. Recalculate full betweenness for all remaining edges.

4. Repeat from step 2 until no edges remain. And then
choose the division situation corresponding to the
maximum value of modularity.

Test these six datasets using the sequential program of GN

algorithm and record the experimental results in Tab. 2.

G

inputixt
fculate
h recal
create grap betweenness
white edge can | [ find edge with max
be rermoved betweenness and
remove it

compute Q and store the

Y— division situation
generate a. new { corresponding to every Q
community

output result

End

Figure 5. Problem Analysis Diagram of GN algorithm

2) Parallel program of GN algorithm on multi-core
processor

In this experiment, we adopt the task-level parallelism
reach the goal of accelerating GN algorithm. Since this kind of
coarse-grained parallelism needs relatively small amount of
communication. It is better to simplify programming and can
reduce the running time of program. Specifically, search in a
graph by breadth-first search algorithm from a source vertex
and calculate the distance from this source vertex to any other
vertices. And then calculate the number of the shortest paths
along each vertex. According to the preceding results, we can
obtain the number of the shortest paths along each edge (i.c.
betweenness). We use synchronization mechanism to avoid
read-write conflict when calculates full betweenness. (full
betweenness is the accumulation of betweenness). In other -
words, multiple threads can execute simultaneously, and then
accumulate each thread’s results using synchronization
mechanism when all the threads end in each iteration process.
Because of assigning a copy of the graph data for each thread,
each thread executes on its exclusive data. Therefore, the
value of modularity is not changed. At the same time, it
ensures the correctness of parallel program.



C. Experimental Results

The results of our parallel GN algorithm are the same as the
sequential GN algorithm. The output of the algorithm for the
Dolphins network [4, 8] is shown in Fig. 6. The characteristics
of network and the experimental results are shown in Tab. 1
and Tab 2. Q presents the modularity of the network (graph).
Network scale is the number of vertices plus edges.

Figure 6. Dolphins network

TABLE 1. NETWORK CHARACTERISTICS
Network Vertex number Edge number Network scale
Karate 34 78 112
Dolphins 62 159 221
Polbooks 105 441 546
Football 115 616 731
Jazz 198 2742 2940
Power 4941 6594 11535
TABLE I EXPERIMENTAL RESULTS COMPARISON
1 Thread’s 4 Thread’s Speedu
Network o run time(s) run time(s) I:'atio P
Karate 0.538 0.132 0.101 1.31
Dolphins 0.610 0.450 0.302 1.49
Polbooks 0.569 4.507 1.996 2.26
Football 0.662 8.813 3.608 2.44
Jazz 0.3]18 348.692 115.809 3.01
Power 0.935 23883 12704 1.88

D. Discussion

In experiments, the tendency of speedup ratio with network
scale is shown in Fig. 7. We can see that speedup ratio of
sequential and parallel program is up to 3 on 4-core processor.

In parallel program, build a copy of graph data for every
thread. So it will not change other threads’ graph data when
every thread is computing betweenness of every edge for one
source vertex. We use synchronization mechanism when
compute full betweenness of edges. Consequently, the value
of modularity is not changed. Through observing the
experimental results in Tab. 2, we can know parallel program
is faster than the sequential and ensure the correctness of
experimental results. Fig. 7 shows that Speedup ratio does not
increase immeasurably with the increased network scale.
There are three reasons: one is that the number of threads

should match the number of processor cores. Another one is
that the number of program’s tasks should match the number
of threads. The last one is that the computation of each task
tends to large and equivalent is very important. When these
three conditions have been met, the speedup ratio will reach
the maximum. Therefore, we can get the better result when
execute parallel GN algorithm by coarse-grained paratlelism
to process the large network on many-core processors. For
fine-grained parallelism, it will also apparently raise speed
without distributed storage.

35
3 =
25
0 X * Karate
B A
s ? ® W Dolphins
-
Bis - A Polbooks
o L
-3 s . Football
Y Jazz
0.5
@& Power
0
1 10 100 1000 10000
Network scale

Figure 7. Tendency of speedup ratio with network scale

V. CONCLUSIONS

In this thesis, we have proposed two methods to parallelize
GN algorithm and showed that our methods can reduce the
execution time to find community structure in complex
networks. Specially, we implemented our paraliel GN
algorithm by coarse-grained parallelism on Intel Core i7, and
evaluated our methods using real networks, such as Dolphins
network. The evaluation results showed our coarse-grained
parallel method can yield the best case performance speed-up
3 times on 4-core processor.

REFERENCES

{11 M.R. Garey and D. S. Johnson, Computers and In-tractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.

[2] J. Scott, Social Network Analysis. A handbook. Sage Publications,
London 2™ edition, 2000.

[3] M.EJ. Newman and M.Givan, Community structure in social and
biological networks. Proc. of International Acdemic of Science, 7821-
7826, 2002.

[4] M.EJ. Newman and M.Givan, Finding and Evaluation Community
Structure in Network. Physical Review E, 69, 2003.8.11.

[5] WuF, Huberman B A. Finding communities in linear time: A Physics
approach [J] Euro. Phys. JB, 38:331-338, 2003.

[6] Scott, J., Social Network Analysis: A Handbook, Sage Publication,
London, 2" edition, 2000.

[71 hitp://www-personal.umich.edw/~mejn/netdata/.
[8] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M.
Dawson, The bottlenose dolphin community of Doubtful Sound features

a large proportion of long-lasting associations. Behavioral Ecology and
Sociobiology 54, pp 396-405, 2003.
[9] George Karypis, Vipin Kumar, A Coarse-Gramin Parallel Formulation

of Multilevel k-way Graph Parationing Algorithm. Parallel processing
for scientific computing, SIAM, 1997.

—99—



