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Particle Swarm Optimization with Switched Topology

Abstract

This paper is a collection of the three papers [1][2][3] that presented by the author at

international conference in the past.

The first chapter is ”Basic Characteristics of Deterministic PSO with Rotational Dynam-

ics”. In this chapter, we discuss the dynamic characteristics of the Particle Swarm Optimiza-

tion (PSO). We introduce the canonical deterministic particle swarm optimization (CD-PSO)

where the deterministic parameters are normalized and the dynamics is described by a canon-

ical form equation. By using the CD-PSO, we were analyzed effects of random number in

the standard PSO.

The second chapter is ”PSO-based Multiple Optima Search Systems with Switched Topol-

ogy”. In this chapter, we introduce the switched topology and solve multiple optima prob-

lems. We propose two switching rule, i.e., ”random switching” that is switched by a random

number, ”elite preservation switching” that was depending on the value of Pbest. Further,

we consider an application to analysis of the discrete dynamical systems.

The third chapter is ”Particle Swarm Optimization with Switched Topology and Deter-

ministic Parameters”. In this chapter, we discuss the topology with distance. We evaluate

the topology based on the average path length. Although switched topology is dynamic and

the distance cannot be calculated, however we have quantified the distance using a switch-

ing probability as switching path length. We examine a relationship between switching path

length and its searching performance.
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第1章 Basic Characteristics of
Deterministic PSO with
Rotational Dynamics

1.1 Introduction
Particle swarm optimization (PSO) is a meta-heuristic algorithm for solving optimization

problems, proposed by J. Kennedy and R. Eberhart [4][5]. PSO is applicable to variety of
problems that neural networks, power electronics and such [6][7]. The PSO generates to
search velocity towards known candidate solutions. The system contains random numbers
as stochastic factor, therefore it is difficult to analysis of dynamics and parameter settings.
In order to analyze the dynamics of PSO, M. Clerc, and J. Kennedy proposed Deterministic
PSO (D-PSO) system, that removes the stochastic factor from the standard PSO [8]. D-PSO
(and PSO) is difficult to set parameters, since stability is determined by the relationship of
the parameters w, c1 and c2 [10]. We have proposed Canonical Deterministic PSO (CD-
PSO) that transformed D-PSO into canonical form [9][10][11]. Its stability determined by
only one parameter ∆.

On the other hand, PSO dynamics significantly change depending on method of setting
random numbers. Similarly, CD-PSO dynamics depends on method of setting the parameter
of rotation angle.

This paper discusses the differences of the dynamics between the standard PSO and the
CD-PSO.

1.2 Standard PSO
The standard PSO in a D-dimensional search space is described as

vnd ← vnd + c1r
n
1d(Pbestnd − xn

d) + c2r
n
2d(Gbestd − xn

d)

xn
d ← xn

d + vnd
(1.1)

xn
d ∈ < denotes the location and vnd ∈ < denotes the velocity, where n = 1 ∼ N is index of

the particle, and d = 1 ∼ D is index of the dimension. Pbestnd ∈ < is called a personal best,
it means the location of d-th dimension that gives the best value of the evaluation function
of the n-th particle in the past history. Gbestd ∈ < is called a global best, it means the
location of d-th dimension that gives the best value in the evaluation function of all particles.
Standard PSO has three parameters of w, c1 and c2. w is inertia weight coefficient, c1 and c2
are acceleration coefficients. rn1d ∈ [0, 1] and rn2d ∈ [0, 1] are uniform random numbers and
be independent of each other. They are following two definitions.

Scalar random number (PSOs)
The random number of each dimension is the same value in the n-th particle.
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Vector random number (PSOv)
The random number of each dimension is different value in the n-th particle.

We adopted the parameters that are recommended in M. Clerc and J. Kennedy’s paper
[8][12]. {

w = 0.729

c1 = c2 = 1.49445
(1.2)

1.3 Canonical Deterministic PSO
The CD-PSO in a D-dimensional search space is described as[

xn
d

vnd

]
= ∆

[
cos θnd − sin θnd
sin θnd cos θnd

] [
xn
d − pnd
vnd

]
+

[
pnd
0

]
(1.3)

pnd ≡ γ Pbestnd + (1− γ) Gbestd (1.4)

where pnd denotes the target location that determined from the personal best and global best.
CD-PSO has three parameters of γ, ∆ and θnd . The parameter γ controls the mixture rate of
the personal best and global best, ∆ is damping factor that controls convergence of particles.
θnd is rotation angle that controls the frequency and sampling interval of the search. We adopt
two kinds of setting for rotation angle by using basis angle φ.

Single rotation angle (SA)
The rotation angle of each dimension and each particle is the same value, where

θnd = φ (1.5)

Multiple rotation angle (MA)
The rotation angle of each dimension and each particle is different value, where

θnd = [ { (n− 1)D + d } φ ] mod 360◦ (1.6)

In the case of D=3 and N=10, the parameters are as follows:
θ11 θ12 θ13
θ21 θ22 θ23

...
θ101 θ102 θ103

 =


φ 2φ 3φ

4φ 5φ 6φ
...

28φ 29φ 30φ


Based on our trial-and-error testing, the parameters are determined as

γ = 0.0

∆ = 0.95

φ = 180(3−
√
5) = 137.51◦

(1.7)

The value adopted in φ is the golden angle that often appears in nature and is known as a
suitable angle to fill the circle. Perhaps most prominent example is a sequence of sunflower
seeds.
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1.4 Dynamics and bias of searching
In order to compare the difference of the dynamics of the algorithms, we perform some

numerical simulations under the conditions that Gbestd and Pbestnd are fixed to the origin.
Figures 1.1(a), (b), (d) and (e) show a three dimensional projection of ten dimensional vari-
able space in PSOs, PSOv, SA, and MA, respectively. The particles of PSOs and SA are
constrained on certain hyper-plane as shown in Fig. 1.1(a) and Fig. 1.1(d). It is attributed to
the fixed phase difference between each dimension at location and velocity. In the PSOv and
MA, because the random number and rotation angle is different each dimension, the particle
is searching without bias.

In order to quantify the bias of searching, we divided the search area into half-space rel-
ative to the origin in each dimension. Furthermore we measured whether particles searched
it or not. Examples of three-dimensional space, it is divided into eight half-space. Namely,
each half-space is defined as {(+,+,+), (+,+,−), (+,−,+), . . . , (−,−,−)}.

Figures 1.1(c) and 1.1(f) illustrate the time fluctuation of the number of searched half-
spaces. In this case, the evaluation function consists 10 dimensional variable, and the system
has 10 particles. It is divided into 1024 half-spaces. In the PSOs and SA, increasing searched
space is stop soon. In the PSOv and MA, the number of searched half-spaces is increased
smoothly, and it converges to the maximum number. These results clearly indicate that there
exists a bias in PSOs and SA searching. Furthermore demonstrate the similarity between
each PSOs and SA, PAOv and MA.

1.5 Numerical Experiments
We carry out the numerical simulation using some well-known benchmark test functions to

confirm the effects of the bias of searching. We adopted the unimodal function to benchmark
for two reasons. First, it can surely find a good solution if searching every neighborhood.
Second, it unaffected by local solutions. The numerical simulations are carried out applying
the two unimodal functions under the following conditions:

D = 10, N = 10, tmax = 1000, T rials = 1000

1) Sphere function (f1)

f1(x) =
D∑
i=1

x2
i (1.8)

xi ∈ [−64, 64], the global minimum is x∗ = (0, . . . , 0) with f1 (x
∗) = 0. It is unimodal and

separable function.

2) Rotated ellipsoidal function (f2)

f2 (x) =
D∑
i=1

(
i∑

k=1

xk

)2

(1.9)

xi ∈ [−64, 64], the global minimum is x∗ = (0, . . . , 0) with f2 (x
∗) = 0. It is unimodal and

non-separable function.
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To measure the degree of convergence of the particles, we used the following equation:

Convg =
1

N

N∑
n=1

√√√√ D∑
d=1

[xn
d − x̄d]

2

x̄d =
1

N

N∑
n=1

xn
d

(1.10)

Convg represent the average of the Euclidean distance from the center of the particle swarm.
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図 1.2: Search process of Sphere function (f1)

Figures 1.2 and 1.3 show an examples of search process on the f1 and f2. In the PSO
and SA, we can see that the Convg decreases quickly, furthermore fitness stagnated soon. In
contrast, in others, we can see that the Convg decreases slowly, furthermore fitness decrease
to continues. This is consistent with the results expected from described above. Compar-
ing the two functions, f2 is more difficult to search the optimum value than f1 since f2 is
non-separable. The convergence time of the PSOv and MA depend on the difficulty of the
benchmark function, however other cases show the similar in each function.

The results are summarized in Table 1.1. The PSOv and MA can realize better fitness than
the PSOs and SA. MA shows slightly better performance than PSOv, which suggests the
usefulness of CD-PSO.

1.6 Conclusions
This paper described the PSO dynamics by random number, and the CD-PSO dynamics

by rotation angle. Our numerical simulation results indicated that the PSOv and MA are
useful to search optimum solution than the PSOs and SA system. In summary, the search-
ing diversity of the PSOv and MA depends on behavior of each dimension of the particle.
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(b) PSOv
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図 1.3: Search process of Rotated ellipsoidal function (f2)

表 1.1: Results

f1 Fitness f2 Fitness

PSOs 5.26 E+02 6.67 E+02
PSOv 2.14 E-21 3.83 E-04
SA 1.63 E+00 7.14 E+01
MA 3.92 E-22 1.83 E-07

Namely, the behavior is caused by the random factor and the rotation angle. In general, we
can say that the random factor leads to the diversity. On the other hand, our CD-PSO is a
deterministic system, namely, the system does not contain the random factor. Even in such
deterministic system, the CD-PSO can create the diversity to control the rotation angle.

This paper represents bias of the search and benchmark on the unimodal functions. Further
studies are needed in order to analysis of the global search on the multimodal function.
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第2章 PSO-based Multiple Optima
Search Systems with Switched
Topology

2.1 Introduction
The particle swarm optimization (PSO) is a meta-heuristic algorithm for solving optimiza-

tion problems [4][5]. The particles represent potential solutions and move to find the target
solutions according to its own and neighbors’ history. The PSO is applicable to a variety
of systems: neural networks, power electronics circuits [6][7], etc. This paper presents a
novel PSO and considers its application to the multi-solution problems (MSP [6][13]) to find
all the global minima of an objective function. The MSP is inevitable in practical/potential
applications, therefore, several interesting methods have been studied [13]-[17]. This paper
contains three points.

First, our PSO uses deterministic update of the particle position and velocity. The standard
PSOs usually include stochastic parameters in the update and it is hard to analyze the con-
vergence dynamics. Since the deterministic dynamical systems have strong analysis theory
of the stability, several deterministic PSOs have been presented and their stability has been
analyzed [8]. We have also proposed the canonical deterministic particle swarm optimization
(CD-PSO) where the deterministic parameters are normalized and the dynamics is described
by a canonical form equation [9][10][11]. The CD-PSO is convenient to grasp the effects of
parameters on stability and dynamics.

Second, we consider the effects of the average distance (Lavg) of the swarm topology on
the search capability. In the standard PSOs, the particle velocity depends on the best candi-
date solutions in the past history and all the particles know information of the best candidate.
In other words, the swarm has network of fully connected topology. In this case, the particles
tend to converge to one solution and are hard to find other solutions. In order to solve the
MSP, it is important to delay the convergence and obstruct the transmission of information
among the particles where the Lavg seems to be a vary important factor. We then investigate
influence of the Lavg of several network structures (topology) upon the search capability in
several examples. Especially, we introduce the switched topology and investigate its effects.
In the switched topology, the information is not transmitted from the edge if the switch is
off. The switching intervals relate virtually to the Lavg.

Third, we consider an application to analysis of the discrete dynamical systems (DDS). As
a first step, we try to find multiple periodic points in two-dimensional DDS: it is one of the
most basic problems to approach rich bifurcation phenomena. The problem is described as an
MSP. . Performing numerical experiments for typical examples, the algorithm performance
is investigated. There do not exist many works on application to DDS except for our works
[17][18].
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(a) Full (b) Ring2 (c) Ring (d) D-ring2 (e) D-ring

図 2.1: Network topology. Blue particles are neighbor of the red particle.

2.2 Particle swarm optimization
In this chapter, we derive the CD-PSO from the standard PSO.

2.2.1 Standard PSO
The standard PSO is described by

vn ← wvn + c1r
n
1 (Pbestn − xn) + c2r

n
2 (Lbestn − xn)

xn ← xn + vn
(2.1)

where xn = (xn
1 . . . x

n
D) ∈ <D denotes the location and vn = (vn1 . . . v

n
D) ∈ <D denotes the

velocity, and n denote indices of particles. Pbestn ∈ <D is called a personal best. It means
the location that gives the best value of the evaluation function of the n-th particle in the past
history. Lbestn ∈ <D is called a local best. It means the location that gives the best value
in neighborhood of the particle. The standard PSO has three parameters w, c1 and c2. w is a
weight coefficient. c1 and c2 are acceleration coefficients. rn

1 ∈ [0, 1]D and rn
2 ∈ [0, 1]D are

independent uniform random numbers. We have adopted the parameter values recommended
in Refs. [8] and [12]. {

w = 0.729

c1 = c2 = 1.49445
(2.2)

Since Eq. (3.1) includes random numbers, we refer it as stochastic PSO hereafter.

2.2.2 Canonical Deterministic PSO
The CD-PSO can be derived from the stochastic PSO by omitting the stochastic factors.

For simplicity we introduce the notation

pn = γPbestn + (1− γ)Lbestn (2.3)

γ =
c1

c1 + c2
, pn = (pn1 . . . p

n
D) (2.4)

where pn can be regarded as a desired fixed point, and means target location of searching.
The parameter γ controls the mixture rate of the personal best and the local best. Since the
variable component in each dimension is independent, we can consider one dimensional case
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without loss of generality. Therefore, we consider one dimensional system hereafter. The
one dimensional CD-PSO can be transformed into the following matrix form:[

vnd
ynd

]
=

[
δ −ω
ω δ

][
vnd
ynd

]
(2.5)

where ynd = xn
d −pnd . Note that this system does not include stochastic factors, therefore, this

system is a deterministic system. The trajectory on the phase space rotates clockwise while
the convergence. The dynamics of the CD-PSO is governed by the eigenvalues of the matrix
in Eq. (2.5). The eigenvalues λ are given as

λ = δ ± jω (2.6)

If λ are complex conjugate pairs, the system exhibits remarkable searching ability. Since this
is a discrete-time system, the damping factor ∆ and the rotation angle θ on each iteration can
be derived by the complex eigenvalues as

∆ =
√
δ2 + ω2 (2.7)

θ = arctan
ω

δ
(2.8)

If the damping factor satisfies the condition 0 < ∆ < 1 then the system is said to be stable.
Based on the above discussion, the CD-PSO is described as[

xn
d

vnd

]
= ∆

[
cos θnd − sin θnd
sin θnd cos θnd

][
xn
d − pnd
vnd

]
+

[
pnd
0

]
(2.9)

where target location pnd ≡ Lbestn corresponds to γ = 0. The CD-PSO has two parameters
∆ and θnd . The parameter ∆ is a damping factor that controls convergence of particles. θnd is
a rotation angle that controls the frequency and sampling interval of the search.

We determine the rotation angle θnd as follows:

θnd = [ { (n− 1)D + d } φ ] mod 360◦ (2.10)

where φ is basis angle. In the cases of D=3 and N=10, the parameters are as follows:
θ11 θ12 θ13
θ21 θ22 θ23

...
θ101 θ102 θ103

 =


φ 2φ 3φ

4φ 5φ 6φ
...

28φ 29φ 30φ


Based on our preliminary experimental results, the parameters are determined as{

∆ = 0.98

φ = 180(3−
√
5) = 137.51◦

(2.11)

The value adopted in φ is the golden angle that often appears in nature and is known as a
suitable angle to fill the circle.
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2.3 Topology of network structure
For the stochastic PSO, the location information which gives the best value of the eval-

uation function is shared with the other particles in the swarm. On the other hand, there is
the case where the best information is given within a subset in the whole swarm. In such
a case, the best information is called as a local best Lbestn. How to get the local best in-
formation from any population is equivalent to construct a network structure. Namely, the
population corresponds to the connection relations which can be expressed as network topol-
ogy in the graph theory. Such a network structure influences the performance of searching
capability. Therefore, we analyze a relationship between network structures of swarm and
the performance by using graph theory of features.

We use the average distance Lavg and the number of edges M in the graph theory as
measures to evaluate the topology. The distance between two vertices in a graph is the
number of edges in the shortest path connecting them. The average distance Lavg means its
average and is described as

Lavg =
1

N(N − 1)

∑
m

∑
m6=n

rmn (2.12)

where N denotes the number of particles, and rmn represents the distance between the m-th
and n-th particles.

2.3.1 Undirected topology
In order to compare the effects of the topology, we consider some examples as illustrated

in Fig. 3.2 (a)-(c): fully connected mesh topology (Full), ring network topology (Ring)
and extended ring topology of adjacent two vertices apart (Ring2). We have carried out the
following numerical simulations with these topologies of the CD-PSO. In order to confirm
the performance, Himmeiblau function is used as a benchmark function. The function is
described as the following:

fHimmelblau (x) =
(
x2
1 + x2 − 11

)2
+
(
x1 + x2

2 − 7
)2

(2.13)

where x = (x1, x2)
T ∈ [−6, 6]2. This function has 4 global optima (solutions) as illustrated

in Fig. 2.2. The criterion for successful search is fHimmelblau (x) < 0.01. The experimental
conditions are summarized in Table 3.3. We measure the success rate (SR) in average of
10 trials. Each trial is calculated 200 times with different initial values. The initial values
are given from uniform random numbers with ranges xn

d ∈ [−6, 6] and vnd ∈ [−6, 6]. The
results are summarized in Table 2.2. The SR tends to be improved as Lavg increases and M
decreases.

2.3.2 Directed topology
In order to increase the Lavg, a directed graph is applied to our system. In general, topolo-

gies used in PSO are undirected graph. However it is easy to convert undirected graph into
directed graph. In this paper, we consider a directed ring topology (D-ring) and a directed
extended ring topology (D-ring2) as shown in Figs. 3.2 (d) and (e). We have carried out
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図 2.2: Contour map of the Himmelblau function where colder color denotes lower height.
The red crosses denote the multi-solution.

表 2.1: Parameter configuration for the benchmark problem
swarm’s size N 40
damping factor ∆ 0.98
rotation angle θnd Eq. (3.5)(3.6)
maximum iteration 800
trial number 200 × 10

similar numerical simulations to confirm effects of the directed graph. The results are sum-
marized in Table 2.3. The directed topology has longer average distance than the undirected
graph topology. The experimental results indicate that the directed graph topology improves
the SR. This fact suggests that the long average distance leads to the improved SR.

表 2.2: Undirected topology
topology Full Ring2 Ring
Lavg 1.0 5.4 10.3
M 780 80 40

degree 39 4 2
SR 0% 30% 62%

2.4 Switched topology
In order to increase the Lavg further, we introduce the switched topology. We apply the

switches to the edges. The switch-off means that the corresponding edge is unconnected.
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表 2.3: Directed topology
topology D-ring2 D-ring
Lavg 10.3 20.0
M 80 40

indegree 2 1
SR 50% 80%

 0 %20 %40 %60 %80 %100 %
 0 %

20 %

40 %

60 %

80 %

100 %

Switching rate (P
sw

)

S
u
cc

es
s 

ra
te

 (
S

R
)

 

 

D−ring (ESW)

D−ring (RSW)

Ring (RSW)

D−ring2 (RSW)

Ring2 (RSW)

(a) CD-PSO

 0 %20 %40 %60 %80 %100 %
 0 %

20 %

40 %

60 %

80 %

100 %

Switching rate (P
sw

)

S
u
cc

es
s 

ra
te

 (
S

R
)

 

 

D−ring (ESW)

D−ring (RSW)

Ring (RSW)

D−ring2 (RSW)

Ring2 (RSW)

(b) Stochastic PSO

 0 %20 %40 %60 %80 %100 %
0

50

100

150

200

250

Switching rate (P
sw

)

#
IT

E

(c) CD-PSO

 0 %20 %40 %60 %80 %100 %
0

50

100

150

200

250

Switching rate (P
sw

)

#
IT

E

(d) Stochastic PSO

図 2.3: Result of Himmelblau function

The switch-on means that the edges are connected. The number of switches is equal to the
number of edges M . When the switch is off, the information is not transmitted between the
edges.

2.4.1 Random switching
As a rule of the switch, we apply the random switching rule (RSW). In RSW, k switches

are turned on depending on uniform random numbers. We defined switching rate Psw =
k/M . Figure 2.4 (a) shows example of a case of M = 4, k = 1. Namely Psw is equal to 0.25
shown in Fig.2.4 (b).

We have carried out similar numerical simulations to confirm effects of the switched topol-
ogy using RSW. The results of SR are summarized in Fig. 2.3 (a). Note that the case of
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図 2.4: Switched topology

Psw = 100% equals to normal topology without switching. The case of Psw = 0% means
each particle is isolated, thus, it refers to its own information only. The experimental results
indicate that smaller Psw leads to the improved SR. In smaller Psw, almost all the switches
are turned off and transmission of information is difficult. Hence it ought to increase Lavg

when Psw decreases. The long Lavg seems to be effective.
The results of #ITE are summarized in Fig. 2.3 (c), where #ITE denotes the average

number of iterations to attain the criterion. It measures search speed. The experimental
results show that the #ITE has a peak of around Psw = 50%.

2.4.2 Elite preservation switching
The RSW is a stochastic switching rule and does not consider the state of the particles. In

this chapter, we introduce a deterministic switching rule applying the concept of elite preser-
vation strategy. Elite preservation strategy is used in genetic algorithms and it preserves a
superior individual preferentially. In the PSO, the particle which has a good Pbestn, can be
regarded as an elite. Elite preservation switching (ESW) is preferentially detached from the
connected edge. In order to separate the elite effectively, we apply a D-ring topology. The
ESW is defined as the following. First, determine the elite by ranks of Pbestn as shown in
Fig.2.5 (a). Second, turn off the switch that connects to the elite as shown in Fig.2.5 (b). The
elite particles are separated from other elites by the ESW.

We have carried out similar numerical simulations using the ESW. The results are illus-
trated in Figs. 2.3 (a) and (c), where Psw is calculated by the rate of the elites in the swarm.
The ESW procedure exhibits the highest SR and the fastest #ITE. It should be emphasized
that the CD-PSO using the ESW is a completely deterministic system.

2.4.3 Comparison with the stochastic PSO
We has used the CD-PSO for analyze to effects of the topology without stochastic factors.

In this chapter, we compare the conventional stochastic PSO in Eq. (3.1) with the CD-PSO.
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図 2.5: Elite preservation switching

We have carried out the same numerical simulations using stochastic PSO with parameters
in Eq. (2.2). The results are illustrated in Figs. 2.3 (b) and (d), The experimental results
indicate that the long average distance and smaller Psw lead to the improved SR. This trend
is similar to the CD-PSO. However, when the ESW is applied to the stochastic PSO, the
search performance is not improved as compared with the CD-PSO.

The stochastic PSO has a random number parameter rn
2 . If rn

2 = 0, it does not use Lbestn

to move the particles. This is equivalent to switch off in topology. The stochastic PSO is
difficult to analyze, because random number parameters affect the topology.

2.4.4 Summary of experimental results
The above experimental results can be summarized as follows:

A The longer Lavg leads to the improved SR.

B The smaller Psw, which is interpreted as longer Lavg, leads to the improved SR.

C The CD-PSO with ESW is a complete deterministic system that can realize high SR and
small #ITE.

2.5 Exploring periodic points of dynamical systems
In this chapter, we apply the CD-PSO to exploring periodic points of dynamical systems.

For simplicity, we consider the 2-dimensional system (2D map) described by

x(t+ 1) = F (x(t)) :

{
x1(t+ 1) = F1 (x1(t), x2(t))

x2(t+ 1) = F2 (x1(t), x2(t))
(2.14)

where t is a discrete time. A point Q is said to be a T -periodic points if F T (Q) =
Q,F k(Q) 6= Q for 0 < k < T , where F T is the T -fold composition of F . A 1-periodic
point is referred to as a fixed point. We consider exploring T -periodic points. It is basic to
analyze bifurcation phenomena of the dynamical systems. The evaluation function is defined
by

fT (x1(t), x2(t)) =
{
F T
1 (x1(t), x2(t))− x1(t)

}2
+
{
F T
2 (x1(t), x2(t))− x2(t)

}2
(2.15)

It is nonnegative function that becomes 0 if [x1(t), x2(t)] is a T -periodic or T ′-periodic
point, where T ′ is the divisor of T . We explore periodic points on two well-known 2D maps.
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Ikeda map

{
F1 [x1(t), x2(t)] = u(x1 cos τ − x2 sin τ) + 1

F2 [x1(t), x2(t)] = u(x1 sin τ + x2 cos τ)
(2.16)

τ = 0.4− 6
1+x2

1+x2
2

where (x1(t), x2(t))
T ∈ [−2.5, 4.5]2 and u = 0.9. Substituting Eq. (2.16) with T = 1 and

T = 2 into Eq. (2.15), we obtain the evaluation function fIkeda1 and fIkeda2, respectively.

Henon map

{
F1 [x1(t), x2(t)] = cosαx1 − sinα(x2 − x2

1)

F2 [x1(t), x2(t)] = sinαx1 + cosα(x2 − x2
1)

(2.17)

where (x1(t), x2(t))
T ∈ [−1, 1]2 and cosα = 0.24. Substituting Eq. (2.17) with T = 5 into

Eq. (2.15), we obtain the evaluation function fHenon5.

表 2.4: Condition of periodic points search
evaluation function fIkeda1 fIkeda2 fHenon5

the number of optima 3 5 11
initial location [−2.5, 4.5]2 [−2.5, 4.5]2 [−1, 1]2

initial velocity [−3.5, 3.5]2 [−3.5, 3.5]2 [−1, 1]2

the criterion for success 0.01 0.005 0.0001

Figure 3.4 shows contour maps of these evaluation functions where the red crosses denote
the periodic points, the target multi-solution. We have carried out the same numerical sim-
ulations using evaluation function of each mapping. The other experimental conditions are
summarized in Table 2.4. The simulation results are shown in Figs. 2.7, 2.8, and 2.9. We
can see similar trend to A to C in section 2.4.4. However, the CD-PSO with ESW of fHenon5

gives lower SR than other problems. It requires further analysis.

2.6 Conclusions
Effects of topology in a multiple optima search have been discussed in this paper. A di-

rected graph is applied to the topology, and it is shown that the SR tends to be improved as
the average distance increases. We have then considered the switched topology. The simula-
tion results indicate that smaller switching rate leads to the improved SR. The result indicates
frequent transmission of information is not necessary. This characteristic is effective in par-
allel computing. Since switched topology is disconnected, the average distance cannot be
calculated. It is future problems to quantify distance using the switching rate.
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図 2.6: Contour maps of the evaluation functions where colder color denotes lower height.
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図 2.7: fIkeda1 for fixed points of the Ikeda map.
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図 2.8: fIkeda2 for 2-periodic points and fixed points of the Ikeda map.
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図 2.9: fHenon5 for 5-periodic points and fixed point of Henon map.

24



第3章 Particle Swarm Optimization
with Switched Topology and
Deterministic Parameters

3.1 Introduction
The particle swarm optimization (PSO) is a population-based optimization algorithm in-

spired by flocking behavior of living beings [4][5]. The PSO is simple in concept, is easy
to implement and can search feasible solutions without gradient information of the evalua-
tion function. The PSO has been applied to design of various systems [6] including neural
networks [19], power electrical circuits [7][20] and discrete dynamical systems [18]. The
PSO consists with particles which move to find solution(s) in the search space. Each particle
memorizes own best location which represents a feasible solution. Such own best location is
called as Pbest. Another best information is selected from a limited population, and the best
information is called as Lbest. Each particle determines the direction of movement using
Pbest and Lbest. The conventional PSO contains random parameters and can be regarded
as a stochastic system. Thus, the theoretical analysis of the dynamics of the conventional
PSO is pretty difficult.

In order to improve the PSO performance, this paper studies PSO with switched topology
and deterministic parameters. The proposed PSO does not include stochastic parameters and
is suitable for theoretical analysis. The switched topology can give flexibility to determine
the Lbest. If the Lbest information is selected from all the particles, the corresponding net-
work can be regarded as a complete graph. There are a variety of network topologies to be
represented in the complex network [21]. In order to clarify the relationship between the
network topology and the searching performance, the average distance of the network is a
basic measure [11]. In graph theory, the distance between two vertices is the number of the
edges in a shortest path connecting them. Roughly speaking, longer average distance tends
to give better search performance [11]. For example, the ring topology gives longer aver-
age distance than complete graph. Moreover, the directed graph structure gives the longer
average distance than the undirected graph. In order to prolong the average distance, we
introduce the switched topology to the link. The switched topology is a dynamic topology
to change a connection structure depending on the state of switches. In order to characterize
the switched topology, we propose an index to measure the feature of the graph. The index
is a switching distance that corresponds to the average distance in usual graph. Based on
the switching distance, we investigate the search performance. We then apply the PSO with
switched topology to the multi-solution problems (MSPs [2][6][13]). The purpose of the
MSP is to find all global minima of an objective function. The MSP is inevitable in prac-
tical problems and various algorithms have been discussed [13]-[17]. We have carried out
numerical simulations to confirm the effect of the switching topology by using well-known
benchmark functions of the MSP.

Note that [2] has presented the switched topology, however, it does not discuss the switch-
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ing distance and numerical simulation of typical benchmarks.

3.2 Particle swarm optimization
In this section, we introduce a canonical deterministic PSO (CD-PSO).

3.2.1 Standard PSO
The conventional particle swarm optimization system contains stochastic factors and we

call it the standard PSO. In order to analyze the dynamics theoretically, and to implement the
system by an electronics circuit, we proposed a canonical deterministic PSO [9][10]. The
canonical deterministic PSO (CD-PSO) is based on the standard PSO [4][5]. Therefore, as
a preparation to introduce the CD-PSO, we summarize the standard PSO. The standard PSO
is described by

vn ← wvn + c1r
n
1 (Pbestn − xn) + c2r

n
2 (Lbestn − xn)

xn ← xn + vn
(3.1)

where xn = (xn
1 . . . x

n
D) ∈ <D denotes a location of particle, vn = (vn1 . . . v

n
D) ∈ <D denotes

its velocity, and n denotes an index of particle. Pbestn ∈ <D is called as a personal best. It
means the location that gives the best value of the evaluation function of the n-th particle in
the past history. Lbestn ∈ <D is called as a local best. It means the location that gives the
best value in the neighborhood of the n-th particle. The standard PSO has three parameters
w, c1 and c2. w is an inertia coefficient. c1 and c2 are acceleration coefficients. rn

1 ∈ [0, 1]D

and rn
2 ∈ [0, 1]D are independent uniform random numbers. If a PSO includes a random

parameter, we refer it as a stochastic PSO hereafter.

3.2.2 Canonical Deterministic PSO
The CD-PSO can be derived from the stochastic PSO by omitting the stochastic factors.

For simplicity, we introduce the following notations.

pn = γPbestn + (1− γ)Lbestn (3.2)

γ =
c1

c1 + c2
, pn = (pn1 . . . p

n
D) (3.3)

where pn can be regarded as a desired fixed point, and means a target location of searching.
The parameter γ controls the mixture rate between the personal best and the local best. In this
paper, we consider the case where γ = 0, namely, the desired fixed point corresponds to the
local best of each particle. Since the variable component in each dimension is independent,
we can consider one dimensional case without loss of generality. Therefore, we consider one
dimensional system hereafter. The one dimensional CD-PSO is described by the following
matrix form [9][10].[

xn
d

vnd

]
= ∆

[
cos θnd − sin θnd
sin θnd cos θnd

][
xn
d − pnd
vnd

]
+

[
pnd
0

]
(3.4)
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図 3.1: The trajectory of the CD-PSO in the phase space

where target location is pnd ≡ Lbestn. Note that this system does not include stochastic
factors, therefore, this system can be regarded as a deterministic system. The CD-PSO has
two parameters ∆ and θnd . The parameter ∆ is a damping factor that controls convergence
speed of particles. θnd denotes a rotation angle that controls the sampling interval of the
search. If the damping factor ∆ satisfies the condition 0 < |∆| < 1, the system is said to
be a stable and the trajectory on the phase space converges to the fixed point while rotating
clockwise as shown in Fig. 3.1.

We determine the rotation angle θnd as follows:

θnd = [ { (n− 1)D + d } φ ] mod 360◦ (3.5)

where φ is a basis angle. In the case of D=3 and N=10, the parameters are set as follows:
θ11 θ12 θ13
θ21 θ22 θ23

...
θ101 θ102 θ103

 =


φ 2φ 3φ

4φ 5φ 6φ
...

28φ 29φ 30φ


Based on our preliminary experimental results [1], the parameters are determined as{

∆ = 0.98

φ = 180(3−
√
5) = 137.51◦

(3.6)

The applied rotation angle is called as the golden angle. The golden angle often appears
in nature and is known as a suitable angle to fill the circle. By using the golden angle, we
expect that the CD-PSO is to explore the various points.

3.3 Topology of network structure
In exploring, PSO’s particles move toward the known location which gives the best value

of the evaluation function. The location information is shared with the other particles in
the swarm. Structure of information sharing among the particles can be represented by a
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(a) Full (b) Ring2 (c) Ring (d) D-ring2 (e) D-ring

図 3.2: Network topologies. Blue particles are neighbor of the red particle.

topology of network. Figure 3.2 shows the typical topologies. In standard PSO, the global
best (Gbest) is applied, which is the known best location in the swarm. In other words all the
particles know all other particle’s information of the swarm. Namely, the standard PSO uses
fully connected topology as shown in Fig. 3.2(a). In this case, the best information is easily
transmitted and all the particles converge into Gbest speedily. However, it can explore only
one solution and tends to trap into local solutions.

In other case, PSO also uses Lbest, which treats the best information within a limited
population. For example, in the limited population as shown in Fig. 3.2(c), each particle is
connected to the both sides’ particles. State of the exchange of the best information can be
expressed as a graph in this way. In this case, the PSO uses ring connected topology as shown
in Fig. 3.2(c). Comparing with the full connection, the transmission speed of the best infor-
mation of the ring topology is said to be slow. Namely, the information transmission speed is
depended on the characteristic of the graph which corresponds to the network structure. Thus
we pay attention to the average distance of the graph. For simplicity, we consider the PSO
has regular network topologies in this paper. Each node of the regular network topologies
has the same number of links exactly. Figure 3.2 illustrates the examples of objective regular
network topologies. Figures 3.2(a), (b) and (c) are undirected network topologies, namely,
complete graph, extended circle graph, and circle graph, respectively. Figures 3.2(d) and (e)
are directed extended circle graph and directed circle graph, respectively.

3.3.1 Average distance
The average distance L is said to be a measure of difficulty of information transmission

for topology. The L is defined by the following equation:

L =
1

N(N − 1)

∑
m

∑
m6=n

lmn (3.7)

where N denotes the number of particles, and lmn represents the distance between the m-th
and n-th particles. Table 3.1 represents the calculation results of each topology, where M is
the number of edges and indegree is the number of edges directed into a vertex in a directed
graph. We have reported that the longer L leads to the improved exploring [11].

3.4 Switched topology
In the regular network topologies, the directed ring topology has the longest average dis-

tance. In order to increase the average distance L further, we introduce the switched topol-
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表 3.1: The basic data of topologies in the case of 20 particles
Topology Full Ring2 Ring D-ring2 D-ring

L 1.00 2.89 5.26 5.26 10.0
M 190 40 20 40 20

indegree 19 4 2 2 1

(a) Converted to the switching distance
from the switching rate Psw

%25=
sw

p

4

4

4

44

4 4

4

(b) A ring topology with uniform switching. The number de-
notes the switching distance.

図 3.3: Switching distance

ogy. We apply the switches to the edges. The switch-off means that the corresponding edge
is unconnected. The switch-on means that the edge is connected. The number of switches
is equal to the number of edges M . When the switch is off, the information is not trans-
mitted between the nodes. This operation can realize similar effects to increase the average
distance.

3.4.1 Switching rate
We assume that the average distance is depend on the switching rule. Although there are

various switching rules, we apply the random switching rule (RSW), which is k switches are
turned on depending on uniform random numbers. We defined switching rate Psw = k/M .
Note that the case of Psw = 100% equals to normal topology without switching. The case of
Psw = 0% means all particles are isolated, thus, they refer to their own information only.

3.4.2 Switching distance
In order to quantify distance in switched topology, we introduce a switching distance Lsw.

The switching distance Lsw is given by a reciprocal number of the Psw as shown in Fig.
3.3(a). For example, in the case of Psw = 25%, the switching distance is 1/0.25 = 4 where
the switch turns on once in four times. In the case of Psw = 100%, the switching distance
is 1 and equals to normal topology. Figure 3.3(b) shows the switched ring topology with
Psw = 25% constant. In this case, since the network is a regular network, the switching
distance is calculated as follows.

Lsw = L · 1

Psw

(3.8)

We adopt the random switching for topology of Fig. 3.2 hereafter.
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表 3.2: Benchmark functions

Function
Domain

of x
Optimal

value
The number
of solutions

The criterion
for successful

f1 (x) =
(
x2 − 5.1

4π2x
2
1 +

5
πx1 − 6

)2
+10

(
1− 1

8π

)
cos (x1) + 10

[−5, 15]2 0 3 0.05

f2 (x) =
(
x2
1 + x2 − 11

)2
+
(
x1 + x2

2 − 7
)2

[−6, 6]2 0 4 0.05

f3 (x) = 2− cos(πx1) + cos( 12πx2) [−3, 3]2 0 6 0.01

f4 (x) =
∑5

i=1 i cos [(i+ 1)x1 + i]

·
∑5

i=1 i cos [(i+ 1)x2 + i] + 186.731

[−4, 8]2 0 8 20

3.5 Simulation
In order to clarify a relationship between the switched topology and its searching perfor-

mance, we carry out some numerical simulations by using benchmark functions as shown
in Table 3.2. These functions are called that f1 (x) is Branin, f2 (x) is Himmelblau and
f4 (x) is Shubert. These functions are well-known benchmark functions of the MSPs [22]-
[24]. (However f3 (x) is an original function of this paper.) Thus, these functions have
plural optimal solutions. Contour of the benchmark functions are illustrated in Fig. 3.4. In
these figures, the cross-mark (×) denotes an optimal point. The purpose of these numerical
simulations is to find all the optimal solutions of an objective function. The experimental
conditions are summarized in Table 3.3. We measure the average of the number of found
optimal solutions (#SOL). Each trial is calculated with different initial values of xn and vn.
The initial values are set by uniform random numbers.

3.5.1 Search process
Figures 3.5 and 3.6 illustrate search process of the normal (Psw = 1.0) and the switched

(Psw = 0.25) ring topologies in f2 (x), respectively. Since the information transmission of
the normal ring topology is faster than that of the switched ring topology, particles of the
normal ring topology tend to be attracted to the other solutions. However, in the switched
ring topology, the information transmission is often cut off. Consequently, the information
transmission speed of the switched ring topology seems to be slow. Hence particles are not
attracted and are able to find many solutions.

表 3.3: Parameter configuration for the benchmark problems
swarm’s size N 20
damping factor ∆ 0.98
rotation angle θnd Eqs. (3.5)(3.6)
maximum iteration 1000
trial number 4000
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図 3.4: Contour maps of the benchmark functions where the red crosses denote the multi-
solution.

3.5.2 Results
We have carried out trials by changing the Psw in the benchmark functions. The simulation

results are summarized in Fig. 3.7. The experimental results indicate that the long switching
distance leads to improved #SOL on all benchmarks. It indicates that the slow information
transmission is effective.

3.6 Conclusions
In this paper, we have studied the PSO with switched topology and defined the switching

distance which corresponds to the average distance of the normal graph. Generally, since
switched topology has the time-variant disconnected edge, the average distance cannot be
calculated. However we quantified the distance using a switching rate as ”switching dis-
tance”. We applied the switched topology to the MSP and clarified the relation between the
switching distance and its searching performance. The simulation results indicate that the
longer switching distance leads to the improved performance. In the same switching dis-
tance, the results are different in each topology. It represents that only the switching distance
cannot evaluate the topology. It needs further consideration.
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(a) t = 0 (b) t = 50

(c) t = 100 (d) t = 300

図 3.5: Search process of f2 (x) using the normal ring topology (Psw = 100%). Blue crosses
denote Lbest. Solid lines denote branch of switch-on. Dotted lines denote branch of switch-
off. Red crosses denote solutions are found.

(a) t = 0 (b) t = 50

(c) t = 100 (d) t = 300

図 3.6: Same as Fig. 3.5 except for the switched ring topology (Psw = 25%).
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図 3.7: The average distance effects the performance which is evaluated by the average
number of the found optimal solutions (#SOL) for each benchmark functions. Full, Ring2,
Ring, D-ring2 and D-ring are defined in Fig. 3.2.
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