法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-04-27

成分ファミリー法によるBWR状態方程式における異種分子間相互作用パラメータの相関

秋定, 諒亮 / AKISADA, Ryosuke

(発行年 / Year)

2013-03-24

(学位授与年月日 / Date of Granted)

2013-03-24

(学位名 / Degree Name)

修士(工学)

(学位授与機関 / Degree Grantor)

法政大学 (Hosei University)

2012 年度修士論文

成分ファミリー法による BWR 状態方程式における 異種分子間相互作用パラメータの相関

CORRELATION OF THE BINARY INTERACTION PARAMETER IN THE MODIFIED GENERALIZED BWR EQUATION OF STATE BY THE LAW OF CHEMICAL COMPONENT FAMILY

指導教員 西海英雄

法政大学大学院工学研究科物質化学専攻修士課程

11R2102

秋定諒亮 Ryosuke AKISADA

Abstract

Based on the relation suggested by Hudson and McCoubrey, we wrote correlation equation of the binary interaction parameter. We found that the binary interaction parameter was correlated as a function of the ratio of critical molar volume. We determined the optimal binary interaction parameter and divided into 4 chemical component families. Using the binary interaction parameter of correlation equation, we examined the prediction abilities of the VLE (vapor-liquid equilibria).

Key Words: modified generalized BWR equation of state, binary interaction parameter

要旨

工業上、多くの熱力学物性値が必要であるが、広い温度域、圧力域にわたって測定されている系は多くない。それらを実験によって全て得ることは、時間、労力、金銭の面で困難である。そこで有効なのが、少ないデータを基にして多くの熱力学物性値を推算できる、状態方程式を利用する方法である。

この方法をとる際、二成分系以上の熱力学物性値を推算するためには、異種分子間の相互作用を補正する項が必要になる。それが異種分子間相互作用パラメータ m_{ij} である。

本研究ではこのパラメータを化学成分の違いにより分類した、成分ファミリーごとに相関式を立て決定した。またこれらは Hudson-McCoubrey の理論に基づき、臨界体積の比の関数として相関している。状態方程式は、BWR 状態方程式を改良した一般化修正 BWR 状態方程式を利用した。相関式によって得られた異種分子間相互作用パラメータを使い、状態方程式を利用して気液平衡関係の逆算を行うことで、相関式の妥当性を検討した。

目次

Abstract	2
目次	4
第1章 緒言	6
第2章 理論	7
2.1 熱力学の基礎	7
2.1.1 理想気体の状態方程式	7
2.1.2 理想気体	7
2.1.3 実在気体	7
2.1.4 圧縮係数	8
2.1.5 Euler の関係式 ······	8
2.1.6 熱力学の基本式	8
2.1.7 Maxwell の関係式	9
2.2 状態方程式の種類と発展	11
2.2.1 van der Waals 状態方程式	11
2.2.2 二変数対応状態原理	12
2.2.3 三変数対応状態原理	14
2.2.4 Peng-Robinson 状態方程式······	15
2.2.5 ビリアル展開型状態方程式	17
2.2.6 BWR 状態方程式	19
2.2.7 混合則の理論的背景	23
2.2.8 Hudson-McCoubrey の理論 ·····	26
2.2.9 混合則	28
第3章 実験	32
3.1 既往研究	32
$3.1.1$ 異種分子間相互作用パラメータ m_{ij} とそのグループ化、および相関式 \cdots	32
3.1.2 m _{ij} の温度、組成依存性····································	35
3.2 N_System	36
3.2.1 プログラムと N_System について	36
3.2.2 西海研データベースと N_System ······	39
3.2.3 N_System (のプログラム) を開くまで	40
3.2.4 bcomp.exe 使用法······	43
3.2.5 bmij.exe 使用法 ······	60
3.2.6 生データの "mix.txt" への登録方法	66

第4章 結果と考察
4.1 成分ファミリーの分類
4.2 相関式の立式
4.2.1 Hudson-McCoubrey の理論に沿って相関できたか71
4.2.2 F1, F5, F6 をまとめることは可能か72
4.3 気液平衡関係の逆算74
4.3.1 合計 6 つの相関式による気液平衡関係の逆算74
4.3.2 F1, F5, F6 に関して、個別のとき、まとめたときの気液平衡逆算の比較90
第5章 結言
参考文献100
謝辞101
記号102
Appendix ·····

第1章 緒言

工業上、多くの熱力学物性値が必要であるが、広い温度域、圧力域にわたって測定されている系は多くない。それらを実験によって全て得ることは、時間、労力、金銭の面で困難である。そこで有効なのが、少ないデータを基にして多くの熱力学物性値を推算できる、状態方程式を利用する方法である。

この方法をとる際、二成分系以上の熱力学物性値を推算するためには、異種分子間の相互作用を補正する項が必要になる。それが異種分子間相互作用パラメータ mijである。一般に無極性物質より成る系では、このパラメータを定数として扱えるが、極性物質を含む系では、温度依存性の他、組成依存性を持つ系が多いため、両者を考慮しなければならない。本研究において、無極性物質より成る系は、このパラメータを化学成分の違いにより分類した、成分ファミリーごとに相関式を立て決定した。またこれらは Hudson-McCoubrey の理論に基づき、臨界体積の比の関数として相関している。極性物質を含む系は、温度依存性と組成依存性の両者を持つアルコールを含む系、温度依存性のみを持つ水素を含む系、水を含む系について、それぞれ相関式を立て決定した。状態方程式は、BWR 状態方程式を改良した一般化修正 BWR 状態方程式を利用した。相関式によって得られた異種分子間相互作用パラメータを使い、状態方程式を利用して気液平衡関係の逆算を行うことで、相関式の妥当性を検討した。

第2章 理論

2.1 熱力学の基礎

2.1.1 理想気体の状態方程式

理想気体の状態方程式は、

PV = RT

(2.1)

である。ここでRは気体定数、Pは圧力[Pa]、Vはモル体積[L/mol]、Tは温度[K]であり、後ろ3つはまとめてPVT関係と呼ばれることも多い。この3種の物性値は私たちにとって最も親しみ深い熱力学物性値である。またPVTの間に成り立つ関係を数学的に記した式は**状態方程式**と呼ばれる。

2.1.2 理想気体

理想気体とは、どんな条件においても式(2.1)が成り立つ気体のことである。また分子論的には、気体の占めている容積に対して分子の大きさが無視できること、分子間の相互作用が無視でき、分子同士が独立して運動していること、分子が完全弾性体であることなどの仮定に基づいている。

理想気体は仮想的な気体であるが、圧力が大気圧以下のような低圧下では、実在する気体でも種類に関係なく、理想気体の状態方程式に従う。

2.1.3 実在気体

実在気体では、分子間相互作用が働く。分子間に働く反発力が膨張を助けたり、引力が収縮を助けたりするため、実在気体は理想気体の法則からずれる。

反発力は分子の直径に比べて短距離な場合にだけ重要な働きをする。一方で、引力の分子間相互作用は比較的長距離なもので、分子直径の数倍の距離まで働く。この力は、分子が互いにかなり接近しているが、接触していないところで重要で、分子が遠く離れると有効に働かない。また温度が非常に低くて、分子が互いに相手を捕らえる程、平均速度が遅い場合にも重要である。

理想気体との関係性と共に簡単にまとめると、低圧では、分子間相互作用はほとんど働かず、気体は理想気体として振る舞う。高圧では、分子が接近しているので反発力が優勢

となり、気体は理想気体よりも圧縮されにくい。中間の圧力では、引力が優勢となり、理想気体よりも圧縮されやすい。

2.1.4 圧縮係数

PVTを表す一つの方法として、次式で定義される圧縮係数(圧縮因子)Zが用いられる。

$$Z = \frac{PV}{RT}$$
(2.2)

ここでVはモル体積であることに注意が必要である。当然であるが、理想気体では圧縮係数Zは1となる。密度が高まるか、圧力が高まるにつれて理想気体の法則からずれる。これは、実在気体では引力、斥力が働くためであり、圧縮係数Zは1からずれる。この圧縮係数Zは後で述べるビリアル展開で使うので、覚えておいてほしい。

2.1.5 Euler の関係式

関数z = f(x,y)とその一次導関数が連続で微分可能なとき、微分の順序には関係なく、以下の交換関係が成り立つ。

$$\frac{\partial z}{\partial y} \left[\left(\frac{\partial z}{\partial x} \right)_y \right]_x = \frac{\partial z}{\partial x} \left[\left(\frac{\partial z}{\partial y} \right)_x \right]_y \tag{2.3}$$

これを Euler の関係式という。また上式は、次のように簡略化して表すことも多い。

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y} \tag{2.4}$$

2.1.6 熱力学の基本式

熱力学の第一法則と第二法則を結合すると

$$dU = TdS - PdV (2.5)$$

以下に、エンタルピーH、ヘルムホルツエネルギーA、ギブスエネルギーGに関する基本式を示す。

$$dH = TdS + VdP (2.6)$$

$$dA = -SdT - PdV$$

$$dG = -SdT + VdP (2.7)$$

(2.8)

(2.5)~(2.8)の4式を閉鎖系における熱力学の基本式と呼ぶ。

2.1.7 Maxwell の関係式

全微分の定義式を参考にして、P, V, T, Sについて下式を立てると、

$$dU = \left(\frac{\partial U}{\partial S}\right)_{V} dS + \left(\frac{\partial U}{\partial V}\right)_{S} dV \tag{2.9}$$

$$dH = \left(\frac{\partial H}{\partial S}\right)_P dS + \left(\frac{\partial H}{\partial P}\right)_S dP$$

(2.10)

$$dA = \left(\frac{\partial A}{\partial T}\right)_V dT + \left(\frac{\partial A}{\partial V}\right)_T dV$$

(2.11)

$$dG = \left(\frac{\partial G}{\partial T}\right)_P dT + \left(\frac{\partial G}{\partial P}\right)_T dP$$

(2.12)

と表される。

熱力学の基本式(2.5)~(2.8)と上式(2.9)~(2.12)を比較することで、以下の関係式が得られる。

$$T = \left(\frac{\partial U}{\partial S}\right)_{V} = \left(\frac{\partial H}{\partial S}\right)_{P} \tag{2.13}$$

$$P = -\left(\frac{\partial U}{\partial V}\right)_{S} = -\left(\frac{\partial A}{\partial V}\right)_{T}$$

(2.14)

$$V = \left(\frac{\partial H}{\partial P}\right)_S = \left(\frac{\partial G}{\partial P}\right)_T$$

(2.15)

$$S = -\left(\frac{\partial A}{\partial T}\right)_{V} = -\left(\frac{\partial G}{\partial T}\right)_{P}$$

(2.16)

(2.15)と(2.16)におけるGの偏微分項に Euler の関係式を用いると、

$$\frac{\partial^2 G}{\partial T \partial P} = \left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial S}{\partial P}\right)_T \tag{2.17}$$

$$-\frac{\partial^2 A}{\partial V \partial T} = \left(\frac{\partial P}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$$

(2.18)

$$\frac{\partial^2 U}{\partial S \partial V} = \left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V$$

(2.19)

$$\frac{\partial^2 H}{\partial S \partial P} = \left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$$

(2.20)

(2.17)~(2.20)を Maxwell の関係式という。熱力学物性を求めるときにSが入っている項は扱いにくいので歓迎されない。なぜならエントロピーを測定することは容易ではないからである。物性計算の際には Maxwell の関係式を用いて、Sを消去してから計算を行う。これにより全ての熱力学物性はPVTだけで表すことが可能となる。したがって、PVT関係を表した状態方程式が正しく得られれば、全ての熱力学物性を実験に寄らず、計算により求める

ことが可能となる。そのため、実用性を獲得する目的で現在までに多数の状態方程式が提 案されている。

2.2 状態方程式の種類と発展

実在流体のPVT関係を表現するため、あの著名な van der Waals 式から、数多くの状態方程式が提案され、拡張され続けている。その数が数百とも言われる状態方程式であるが、一般に、2種類に分類することができる。 van der Waals型(2定数型)状態方程式とビリアル展開型状態方程式である。以下で、それらについて詳しく述べる。

2.2.1 van der Waals 状態方程式

van der Waals (ファン・デア・ワールス) は、理想気体の分子が接近してきたとき、引力と斥力が働くため理想気体からずれると考え、以下の実在気体の状態方程式を提案した。

- (1) 分子には大きさがあり、ある程度以上は入り込めない排除体積bがある。その分だけ理想気体の空間よりも小さい。すなわち、理想気体の状態方程式中の $V \circ V b$ と置き換える。
- (2) 壁に衝突する分子はバルク(本体ガス)中から引力(分子間力)を受け、引き留められるので、測定される圧力は真の圧力よりも小さい。引力の大きさは、バルク分子の密度と壁に衝突する頻度に比例する。すなわち、密度の二乗に比例すると van der Waals は考えた。よって、真の圧力は引力の補正をして、理想気体の状態方程式中のPをP + a/V 2 と置き換える。

したがって、これらの値を理想気体の状態方程式に代入すると、実在気体の状態方程式が 得られる。

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$
(2.21)

上式を変形すると、以下の van der Waals 状態方程式が導かれる。

$$P = \frac{RT}{V - b} - \frac{a}{V^2} \tag{2.22}$$

a, bは物質によって定まる固有な定数で、aは引力に、bは斥力に関係する量である。

van der Waals 状態方程式は、理想気体から偏倚した実在気体のPVT関係を表現するために提案された。臨界点の存在を予見している点や、次節に示す対応状態原理などの重要な知見が含まれている点で、その後の科学技術の発展に与えた影響は大きく、van der Waals は1910年に第10回ノーベル物理学賞を受賞している。

van der Waals 状態方程式は、数学的に、気体ばかりではなく気液両相を表し得るため、多くの研究者の関心を集め、後世において、気液物性を正確に表す状態方程式のベースとして使われることになった。

van der Waals 状態方程式は、臨界点、あるいは液*PVT*関係を良好に表していない。これは、van der Waals が実在気体について適用できると、述べているのにもかかわらず、彼に続く研究者が、数学形において気液相に適用できたために、誤って状態方程式も気液相まで拡大した結果、特に液相で大きな誤差が生じたことが、原因であると考えられる。van der Waals 定数*a*, *b*は第二ビリアル係数など、気相の性質から得られるので、それが液相まで適用できないのは当然であるかもしれない。

van der Waals 状態方程式の考え方は、直感的で明快だが、元来、気液のPVT関係に適用しようとするものではない。しかし、気液に適用できる実用的な状態方程式を求め、van der Waals 状態方程式を改良しようとする多くの研究が行われ、RK 状態方程式、SRK 状態方程式を経て、現在では実用性を満足する状態方程式として、後述の Peng-Robinson 状態方程式が広く使用されるに至っている。

2.2.2 二変数対応状態原理

2.2.2.1 一般化 van der Waals 状態方程式

van der Waals は、臨界温度 T_c での等温線を観察して、臨界点においては次式が成り立つことを見出した。van der Waals 状態方程式をP = f(T,V)と表す。

- 1. 状態方程式は臨界点を通る: $P_c = f(T_c, V_c)$
- 2. 臨界点での接線勾配は $0:(\partial P/\partial V)_{T_c}=0$
- 3. $T = T_c$ で曲線の凹凸が入れ替わる。(変曲点): $(\partial^2 P/\partial V^2)_{T_c} = 0$

van der Waals 状態方程式に、上記3つの臨界点の性質を適用する。

$$P_{c} = \frac{RT_{c}}{V_{c} - b} - \frac{a}{V_{c}^{2}}$$
(2.23)

$$\left(\frac{\partial P}{\partial V}\right)_{T_c} = -\frac{RT_c}{(V_c - b)^2} + \frac{2a}{V_c^3} = 0$$

$$\left(\frac{\partial^2 P}{\partial V^2}\right)_{T_c} = -\frac{2RT_c}{(V_c - b)^3} - \frac{6a}{V_c^4} = 0$$
(2.24)

未知数をa, b, Rの3つとして、(2.23)~(2.25)を解くと、次式を得る。

$$V_c = 3b \tag{2.26}$$

(2.25)

$$T_c = \frac{8a}{27bR} \tag{2.27}$$

$$P_c = \frac{a}{27b^2} \tag{2.28}$$

これらの式より得られるa, b, Rを式(2.22)に代入すると、一般化 van der Waals 状態方程式が導かれる。

$$P_r = \frac{8T_r}{3V_r - 1} - \frac{3}{V_r^2} \tag{2.29}$$

ただし、添え字rを付す変数は、 $P_r=P/P_c$ 、 $V_r=V/V_c$, $T_r=T/T_c$ で定義される無次元変数で、対臨界値と呼ばれる。

式(2.29)には無次元数である対臨界値 P_r , V_r , T_r 以外の変数が含まれていない。すなわち対臨界値が同じ状態では、各物質のPVTは同じ値となることを示している。言い換えれば、臨界点を $P_r=1$, $V_r=1$, $T_r=1$ として、相似形的にPVTを拡大縮小すれば、全ての物質のPVTは同じ 1 枚の図で示される。よって、物質の熱力学物性には個性がないことを表している。この考えが正しければ、対臨界値を用いることにより、あらゆる物質の熱力学物性を実験せずに、計算だけで求めることができることになる。これを**対応状態原理**という。また、式(2.29)は $P_r=f(T_r,V_r)$ と二変数で表されるので、二変数対応状態原理と呼ばれる。あらゆる物質に適用できると言ったが、実は二変数対応状態原理は無極性で、かつ球状の物質にしか成り立たないことが、以下に述べるように統計力学と対比して明らかとなる。

2.2.2.2 ポテンシャルエネルギー

理想気体は周囲とは全く独立であった。しかし、密度が高くなると、周囲の物質と相互 作用(引力と斥力)を及ぼし合うようになる。それをミクロに表すのがポテンシャルエネ ルギーである。

ポテンシャルエネルギーは、粒子の相対位置によって決まるエネルギーで、二つの分子間に生じる引力と斥力に関係する。よく使われる **Lennard-Jones ポテンシャルエネルギー**は、以下の式で表される。

$$\phi = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$
(2.30)

ここで、 ϵ はポテンシャル深さ、すなわち引力の大きさに関係し、 σ は衝突直径、すなわち斥力を表す。大括弧内の第一項が斥力、第二項が引力を意味している。また、 $\phi < 0$ は引力を、 $\phi > 0$ は斥力を表している。

相互の位置を示すのに1変数rのみであることからLennard-Jonesポテンシャルエネルギーは方向性のない、すなわち球状の無極性分子について適用されることが理解される。

2.2.3 三変数対応状態原理

二変数対応状態原理は、方向性のない球状の無極性流体にしか適用できない。球状分子から偏倚している分子に適用するには、Pitzer による**偏心係数** ω と呼ばれるパラメータを導入する。球状分子から偏倚していくと、蒸気圧に影響することに、Pitzer は着目した。

球状分子が $T_r=0.7(1/T_r=1.429)$ において、 $P^s/P_c\cong 0.1$ となることに注目し、球状分子の偏心係数の値が 0 となるような、パラメータ ω を以下のように定義した。

$$\omega = -\log_{10} \frac{(P^s)_{T_r=0.7}}{P_c} - 1$$
(2.31)

直鎖炭化水素の分子量が大きくなるにつれて、すなわち球状分子から偏倚していくにつれて、偏心係数ωが 0 からずれていくことがわかる。

 ω を導入した三変数一般化状態方程式 $P_r = f(T_r, V_r, \omega)$ は、方向性を持つ形の無極性分子、例えば、 CO_2 , N_2 , O_2 , 炭化水素などに広く適用される。

三変数対応状態原理を、水などの極性物質に適用すると、偏倚が大きくなることについ

ては、原理の適用範囲から言ってやむを得ない。極性物質の統一的扱いは、将来解決されるべき問題である。

20 世紀は大量生産の時代であったと言われるが、それを可能にしたのは三変数対応状態 原理だったとも言える。例えばエンジニアリング会社は、全く実験せずに、あるいは最小 限の実験を行うだけで、製油所(石油は大部分の成分が無極性物質である。)のような大規 模の工場を設計できるようになったのは、対応状態原理という理論的背景があってのこと である。

2.2.4 Peng-Robinson 状態方程式

van der Waals 状態方程式は、定性的に気液両相のPVT関係を表すが、蒸気圧などの物性推算精度は低く、実用的ではない。その後、van der Waals 状態方程式を改良した種々の状態方程式が提案された。現在、最も広く使われている Peng-Robinson 状態方程式は、van der Waals 状態方程式の引力項を経験的に修正した、三変数対応状態原理に基づく一般化状態方程式である。

$$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b) + b(V - b)}$$
(2.32)

臨界点における条件より、次式を得る。

$$a(T_c) = 0.45724 \frac{R^2 T_c^2}{P_c}$$

$$b(T_c) = 0.07780 \frac{RT_c}{P_c}$$
(2.33)

(2.34)

状態方程式が石油成分の蒸留計算に用いられるようになり、蒸気圧を良好に表すことが求められるようになった。そのため、次に示す温度関数 α 項[式(2.36)]が $a(T_c)$ 項[式(2.33)]に乗じられて、a(T)と定義された。

$$a(T) = a(T_c) \cdot \alpha(T_r, \omega)$$
(2.35)

$$\alpha^{\frac{1}{2}} = 1 + \kappa \left(1 - T_r^{\frac{1}{2}} \right) \tag{2.36}$$

κはωの関数で、次式で表される。

$$\kappa = 0.37464 + 1.54226\omega - 0.26992\omega^2 \tag{2.37}$$

式(2.36)より明らかなように、 $T_r=1$ すなわち臨界温度では、 $\alpha=1$ となり、臨界点における α は式(2.33)を満足することがわかる。

bについては、全ての温度域で臨界点におけるb[式(2.34)]を用いるため、次のように記す。

$$b(T) = b(T_c) \tag{2.38}$$

2.2.5 ビリアル展開型状態方程式

2.2.5.1 ビリアル係数

圧縮係数Zは、次式で定義される。

$$Z = \frac{PV}{RT} = \frac{P}{\rho RT}$$
(2.39)

圧縮係数Zを1/Vで、ビリアル展開と呼ばれる無限級数に展開すると、次式で表される。

$$Z = \frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + \cdots$$
(2.40)

また、密度ρで展開すると、次式で表される。

$$Z = \frac{PV}{RT} = \frac{P}{\rho RT} = 1 + B\rho + C\rho^2 + \cdots$$
(2.41)

B, C, D, …は、それぞれ第二、第三、第四、…ビリアル係数などと呼ばれる。

Bは**第二ビリアル係数**と呼ばれ、二体分子間の相互作用に関係する量であり、温度だけの関数である。同様に*C*, *D*, …は、それぞれ第三、第四、…ビリアル係数と呼ばれ、三分子間、四分子間、…の相互作用に関係する量である。このような相互作用を加えることで、気体から液体まで表すことができるというイメージがビリアル展開である。

2.2.5.2 第二ビリアル係数Bとポテンシャル関数φとの関係

統計力学から、第二ビリアル係数Bはポテンシャル関数 ϕ と下式で関係づけられる。

$$B = -\frac{N_{\rm A}}{2} \int_0^\infty \left[\exp\left(-\frac{\phi(r)}{kT}\right) - 1 \right] 4\pi r^2 dr$$
(2.42)

2.2.5.3 van der Waals 状態方程式とビリアル係数との関係

van der Waals 状態方程式をビリアル展開式で表すと、次式のようになる。

$$B = b - \frac{a}{RT}$$

$$C = b^2$$
(2.43)

本結果は、第二ビリアル係数Bと1/Tが直線関係にあるとき、van der Waals 定数a, bの値を求めることができることを示している。

2.2.6 BWR 状態方程式

2.2.6.1 15 定数一般化 BWR 状態方程式

1940 年、Benedict, Webb, Rubin の 3 人は、ビリアル展開型の状態方程式として、以下の 8 定数式を提案した。

$$P = \rho RT + \left(B_0 RT - A_0 - \frac{C_0}{T^2}\right) \rho^2 + (bRT - a)\rho^3 + a\alpha\rho^6 + c\rho^3 \frac{1 + \gamma\rho^2}{T^2} \exp(-\gamma\rho^2)$$
(2.45)

最後の項は、マクローリン展開すると密度の無限級数となり、経験的にではあるが、気液 相を表す状態方程式であることを示している。

これは 8 つの定数を含むが、1972 年、Starling は実用精度や低温域への適用を検討した、一般化 11 定数式を提案した。この式は BWRS 状態方程式と呼ばれ、一定の成果を上げたが不十分な点もあった。

1977 年、Nishiumi, Saito らは、適用温度範囲を拡大した **15 定数一般化 BWR 状態方程式**を提案した。

$$P = \rho RT + \left(B_0 RT - A_0 - \frac{C_0}{T^2} + \frac{D_0}{T^3} - \frac{E_0}{T^4}\right) \rho^2$$

$$+ \left(bRT - a - \frac{d}{T} - \frac{e}{T^4} - \frac{f}{T^{23}}\right) \rho^3$$

$$+ \alpha \left(a + \frac{d}{T} + \frac{e}{T^4} + \frac{f}{T^{23}}\right) \rho^6$$

$$+ \left(\frac{c}{T^2} + \frac{g}{T^8} + \frac{h}{T^{17}}\right) \rho^3 (1 + \gamma \rho^2) \exp(-\gamma \rho^2)$$
(2.46)

上式の15定数を以下に示す。

```
B_0 = (0.443690 + 0.115449\omega)/\rho_c
A_0 = (1.28438 - 0.920731\omega)RT_c/\rho_c
C_0 = (0.356306 + 1.70871\omega)RT_c^3/\rho_c
D_0 = (0.0307452 + 0.179433\omega)RT_c^4/\rho_c
E_0 = (0.006450 - 0.022143\omega \exp(-3.8\omega))RT_c^5/\rho_c
b = (0.528629 + 0.349261\omega)/\rho_c^2
a = (0.484011 + 0.754130\omega)RT_c/\rho_c^2
d = (0.0732828 + 0.463492\omega)RT_c^2/\rho_c^2
\alpha = (0.0705233 - 0.044448\omega)/\rho_c^3
c = (0.504087 + 1.32245\omega)RT_c^3/\rho_c^2
\gamma = (0.544979 - 0.270896\omega)/\rho_c^2
e = [4.65593 \times 10^{-3} - 3.07393 \times 10^{-2}\omega + 5.58125 \times 10^{-2}\omega^2 - 3.40721]
                     \times 10^{-3} \exp(-7.72753\omega - 45.3152\omega^2)]RT_c^5/\rho_c^2
f = [0.697 \times 10^{-13} + 8.08 \times 10^{-13}\omega - 16.0 \times 10^{-13}\omega^2 - 0.363078]
                     \times 10^{-13} \exp(30.9009\omega - 283.680\omega^2)]RT_c^{24}/\rho_c^2
g = [2.20 \times 10^{-5} - 1.065 \times 10^{-4}\omega + 1.09 \times 10^{-5} \exp(-26.024\omega)]RT_c^9/\rho_c^2
h = [-2.40 \times 10^{-11} + 11.8 \times 10^{-11} \omega - 2.05 \times 10^{-11} \exp(-21.52\omega)] RT_c^{18}/\rho_c^2
                                                                                                                      (2.47)
```

van der Waals 型一般化状態方程式の 2 つの定数に比べて、一般化 BWR 状態方程式は 15 定数と複雑な印象を与えるが、 $A_0 \sim E_0$, $a \sim h$, α , γ の 15 定数は、臨界温度 T_c , 臨界密度 ρ_c と Pitzer の偏心係数 ω の関数として一般化されており、思考上のシンプルさは、van der Waals 型一般化状態方程式と全く変わらない。

計算上も、コンピュータの使用を前提としている現代では特に問題にならない。 使用上は、問題としている系において、どちらの状態方程式のほうが推算性は良いのか、 あるいは、理論的にどちらが望ましいのかが重要である。

2.2.6.2 拡張 15 定数一般化 BWR 状態方程式

この状態方程式は、パラメータを増やすことによって、極性物質の挙動を表す改良が施されており、非正規流体(非極性物質や無視できるほどの弱い極性を持った物質)はもとより、アルコール類などの極性物質を含む系、軽質と重質の混ざった非対称な系、さらに低温域にまで適用できる。以下に拡張 15 定数一般化 BWR 状態方程式を示す。

$$P = \rho RT + \left[B_0 RT - (A_0 + \Psi_A) - \frac{C_0}{T^2} + \frac{D_0}{T^3} - \frac{E_0 + \Psi_E}{T^4} \right] \rho^2$$

$$+ \left(bRT - a - \frac{d}{T} - \frac{e}{T^4} - \frac{f}{T^{23}} \right) \rho^3$$

$$+ \alpha \left(a + \frac{d}{T} + \frac{e}{T^4} + \frac{f}{T^{23}} \right) \rho^6$$

$$+ \left(\frac{c}{T^2} + \frac{g}{T^8} + \frac{h}{T^{17}} + T\Psi_s \right) \rho^3 (1 + \gamma \rho^2) \exp(-\gamma \rho^2)$$
(2.48)

ここで、**Ψ**_sは次式で表される。

$$\Psi_{S} = s_3 + \frac{s_1}{T^{s_2}} \tag{2.49}$$

上式中の 5 つのパラメータ Ψ_A , Ψ_E , s_3 , s_1 , s_2 は、極性あるいは量子効果による寄与を表し、無次元である s_2 を除く極性パラメータは、無次元パラメータ Ψ_A^* , Ψ_E^* , s_3^* , s_1^* と次の関係にある。

$$\Psi_{A} = \Psi_{A}^{*}RT_{c}V_{c}$$

$$\Psi_{E} = \Psi_{E}^{*}RT_{c}^{5}V_{c}$$

$$s_{3} = s_{3}^{*}RV_{c}^{2}$$

$$s_{1} = s_{1}^{*}RT_{c}^{s_{2}}V_{c}^{2}$$
(2.50)

拡張 15 定数一般化 BWR 状態方程式の 15 定数は、15 定数一般化 BWR 状態方程式のそれ と同様に定義される。

 Ψ_A^* 、 Ψ_E^* は第二ビリアル係数データを、 s_3^* 、 s_1^* 、 s_2 は蒸気圧データを良好に表すように決定される。

2.2.6.3 BWR 状態方程式からの第二ビリアル係数

15 定数一般化 BWR 状態方程式の第二ビリアル係数Bは、式(2.41)と式(2.46)を ρ RTで割った式を比較することで、次式が得られる。

$$B = B_0 - \frac{A_0}{RT} - \frac{C_0}{RT^3} + \frac{D_0}{RT^4} - \frac{E_0}{RT^5}$$
(2.51)

2.2.7 混合則の理論的背景

状態方程式を用いて、混合物の物性を推算するためには、純物質の状態方程式の定数を 組成の関数として表す必要がある。これを**混合則**と呼び、以下に理論的根拠を示す。

2.2.7.1 異種分子間相互作用

極性分子は、分子内電荷の偏りにより双極子モーメントを持つ。極性分子が、無極性分子を極性分子に接近すると、極性分子の双極子モーメントは、相手の分子中に電気的偏り (分極)をつくり、お互いに引力が生じる。この現象を**誘起双極子**と呼ぶ。

London は、無極性分子の H_2 が、なぜ2原子分子となるのかを量子力学から明らかにした。 それは、瞬間的に見ると核の H^+ と電子から成る双極子モーメントが生じて、お互いに誘起力を及ぼし合い、無極性分子間にも引力が働くため、 H_2 分子が形成される。これを無極性物質の相互作用に拡張し、分散力 ϕ_{12} と呼ぶことにして、次式で定義する。

$$\phi_{12} = -\frac{3}{2} \frac{I_1 I_2}{I_1 + I_2} \frac{\alpha_1 \alpha_2}{r^6}$$
(2.52)

ここで、rは分子間距離、Iはイオン化ポテンシャルエネルギー(外殻電子を引きはがすために必要なエネルギー)、 α は分極率を指す。

同種分子間では、上式において1 = 2と置くことで、 ϕ_{11} , ϕ_{22} を得る。

異種分子間 Lennard-Jones ポテンシャルエネルギーは、次式で記される。

$$\phi_{12} = 4\varepsilon_{12} \left[\left(\frac{\sigma_{12}}{r} \right)^{12} - \left(\frac{\sigma_{12}}{r} \right)^{6} \right]$$
(2.53)

(2.52)を(2.53)の引力項部分(6乗部分)と等置すると、次式を得る。

$$\frac{3}{2} \frac{I_1 I_2}{I_1 + I_2} \alpha_1 \alpha_2 = 4\varepsilon_{12} \sigma_{12}^6$$
(2.54)

また同種分子間では、次式を得る。

$$\frac{3}{4}I_{1}\alpha_{1}^{2} = 4\varepsilon_{1}\sigma_{1}^{6} \tag{2.55}$$

式(2.55)から α_1 を求め、式(2.54)に代入して α_1 を消去する。同様な操作を行い α_2 を消去すると、以下の式を得る。

$$\varepsilon_{12} = \left(\frac{\sqrt{I_1 I_2}}{(I_1 + I_2)/2}\right) \frac{\sigma_1^3 \sigma_2^3}{\sigma_{12}^6} \sqrt{\varepsilon_1 \varepsilon_2}$$
(2.56)

 ε_{12} は異種分子間の引力深さで、異種分子間引力に関係している。右辺のIを含む項は、幾何平均と算術平均の比でほぼIである。したがって、近似的に次式を得ることができる。

$$\varepsilon_{12} = \frac{\sigma_1^3 \sigma_2^3}{\sigma_{12}^6} \sqrt{\varepsilon_1 \varepsilon_2}$$
(2.57)

異種分子間斥力は、剛体球のそれと同じであると考えられるので、次式が成り立つ。

$$\sigma_{12} = \frac{\sigma_1 + \sigma_2}{2} \tag{2.58}$$

上式を式(2.57)に代入すると、右辺において、純物質の物性 ϵ_1 , ϵ_2 , σ_1 , σ_2 だけから、異種分子間パラメータ ϵ_{12} を得られることがわかる。

一方、式(2.29)の基本定数は、 V_c , T_c の 2 つである。球状無極性分子の T_c 及び V_c は、Lennard-Jones ポテンシャルエネルギーの ε , σ と次のような関係が成り立つことが知られている。

$$\varepsilon = k_T T_c \tag{2.59}$$

$$\sigma^3 = k_V V_c \tag{2.60}$$

(2.60)

これらは、マクロな量(T_c , V_c)をミクロな量(ε , σ)に、あるいはその逆に変換できることを表している。上記関係は全ての物質に成り立つわけではないが、議論を展開していくためには有用な関係式である。

上記関係から、式(2.29)右辺の基本物性 T_c , V_c は、引力と斥力を表すミクロな性質 ε , σ に関係していると考えられる。そのことより、式(2.29)で表される二変数対応状態原理は、無極性で、かつ球状の物質にしか適用できないことがわかる。

ここで、式(2.59)と式(2.60)で示したように、ミクロの関係をマクロの関係に変換すると、 次式を得る。

$$V_{cij} = \left(\frac{V_{ci}^{\frac{1}{3}} + V_{cj}^{\frac{1}{3}}}{2}\right)^{3}$$

$$T_{cij} = m_{ij} \sqrt{T_{ci}T_{cj}}$$
(2.61)

(2.62)

2.2.8 Hudson-McCoubrey の理論

Reed および Hudson-McCoubrey は、London の分散力と Lennard-Jones ポテンシャルの引力 項部分を等しいと置き、 m_{ij} が V_{ci}/V_{cj} の関数として表されることを示した。

London の分散力は次式で定義される。

$$\phi_{12} = -\frac{3}{2} \frac{I_1 I_2}{I_1 + I_2} \frac{\alpha_1 \alpha_2}{r^6}$$
(2.52)

異種分子間 Lennard-Jones ポテンシャルエネルギーは、次式で定義される。

$$\phi_{12} = 4\varepsilon_{12} \left[\left(\frac{\sigma_{12}}{r} \right)^{12} - \left(\frac{\sigma_{12}}{r} \right)^{6} \right]$$
(2.53)

異種分子間の引力深さ ϵ_{12} は、次式で近似される。

$$\varepsilon_{12} = \frac{\sigma_1^3 \sigma_2^3}{\left(\frac{\sigma_1 + \sigma_2}{2}\right)^6} \sqrt{\varepsilon_1 \varepsilon_2}$$
(2.63)

球状無極性分子に対して、 $V_c \propto \sigma^6$, $T_c \propto \varepsilon$ の関係が適用できる。これを基にして式を変形すると、次式を得る。

$$T_{cij} = 64 \left[\left(\frac{V_{ci}}{V_{cj}} \right)^{\frac{1}{6}} + \left(\frac{V_{ci}}{V_{cj}} \right)^{-\frac{1}{6}} \right]^{-6} \sqrt{T_{ci}T_{cj}}$$
(2.64)

式(2.62)と式(2.64)を比較すると、次の関係が成り立つ。

$$m_{ij} = 64 \left[\left(\frac{V_{ci}}{V_{cj}} \right)^{\frac{1}{6}} + \left(\frac{V_{ci}}{V_{cj}} \right)^{-\frac{1}{6}} \right]^{-6}$$
(2.65)

すなわち、異種分子間相互作用パラメータ m_{ij} は、成分の臨界容積比 V_{ci}/V_{cj} の値で決まることを示している。同種分子間では $m_{ij}=1$ となり、 m_{ij} 軸(y軸)対称であることがわかる。ただし、式(2.62)で定義される m_{ij} は、特に二成分系気液平衡データを良好に表すように決定される、調整パラメータとして扱われることが多い。

2.2.9 混合則

一般的に、状態方程式を利用して混合物の熱力学物性値を推算するためには、純物質の 状態方程式中の定数をモル分率 x_i の関数として表す必要がある。そのためには定数に対して 混合則を定めなければならない。

そこで、状態方程式を混合物に適応するための理論的背景を統計力学から証明した。統計力学から、第二ビリアル係数Bを構成する定数 A_0 などに対して、二重和が成り立つことがわかっている。

$$B = B_0 - \frac{A_0}{RT} - \frac{C_0}{RT^3} + \frac{D_0}{RT^4} - \frac{E_0}{RT^5}$$
(2.51)

2.2.9.1 15 定数一般化 BWR 状態方程式の混合則

以下にAoの例を示す。

$$A_0 = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j A_{0ij}$$
(2.66)

二重和を利用して、 A_0 などの定数が対応状態原理に従い、異種分子間にも適応できると仮定した。 A_0 は以下のように書き換えられる。

$$A_0 = (1.28438 - 0.920731\omega_{ij})RT_{cij}/\rho_{cij}$$
(2.67)

式(2.67)中の ρ_{cij} , ω_{ij} , T_{cij} は、次式から得られる。

$$V_{cij} = \left(\frac{V_{ci}^{\frac{1}{3}} + V_{cj}^{\frac{1}{3}}}{2}\right)^{3}$$
(2.61)

$$\omega_{ij} = \left(\frac{\omega_i + \omega_j}{2}\right) \tag{2.68}$$

$$T_{cij} = m_{ij} \sqrt{T_{ci} T_{cj}}$$

$$\tag{2.62}$$

式(2.61)は、剛体球に対して成り立つが、引力を持つ、実際の分子にも近似的に適応した。式(2.68)は、理論的根拠は特にないが、ωの違いが気液平衡計算に与える寄与が小さいので、簡単な算術平均を用いている。式(2.62)は、ポテンシャル深さに対する幾何平均則を、マクロな量である臨界温度に当てはめた式であり、異種分子間相互作用パラメータの定義式と言える。

全ての定数に対して混合則を適応して、結果を以下に示す。 まず、二重和が成り立つため、以下の式が得られる。

$$B_0 = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j B_{0ij}$$

$$A_0 = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j A_{0ij}$$

$$C_0 = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j C_{0ij}$$

$$D_0 = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j D_{0ij}$$

$$E_0 = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j E_{0ij}$$

(2.69)

次に二重和を利用して、定数が対応状態原理に従い、異種分子間にも適応できると仮定 した。式を書き換えた結果を以下に示す。

$$B_{0} = (0.443690 + 0.115449\omega_{ij})/\rho_{cij}$$

$$A_{0} = (1.28438 - 0.920731\omega_{ij})RT_{cij}/\rho_{cij}$$

$$C_{0} = (0.356306 + 1.70871\omega_{ij})RT_{cij}^{3}/\rho_{cij}$$

$$D_{0} = (0.0307452 + 0.179433\omega_{ij})RT_{cij}^{4}/\rho_{cij}$$

$$E_{0} = (0.006450 - 0.022143\omega_{ij}\exp(-3.8\omega_{ij}))RT_{cij}^{5}/\rho_{cij}$$

$$(2.70)$$

その他の定数は、以下のような純物質の値を用いた、経験的な混合則が用いられる。

$$b = \left[\sum_{i=1}^{N} (x_i b_i)^{\frac{1}{3}}\right]^3$$

$$a = \left[\sum_{i=1}^{N} (x_i a_i)^{\frac{1}{3}}\right]^3$$

$$d = \left[\sum_{i=1}^{N} (x_i a_i)^{\frac{1}{3}}\right]^3$$

$$c = \left[\sum_{i=1}^{N} (x_i c_i)^{\frac{1}{3}}\right]^3$$

$$\alpha = \left[\sum_{i=1}^{N} (x_i \alpha_i)^{\frac{1}{3}}\right]^3$$

$$\gamma = \left[\sum_{i=1}^{N} (x_i \gamma_i)^{\frac{1}{3}}\right]^3$$
(2.71)

$$e = \left[\sum_{i=1}^{N} (x_i e_i)^{\frac{1}{3}}\right]^3$$

$$f = \left[\sum_{i=1}^{N} (x_i f_i)^{\frac{1}{3}}\right]^3$$

$$g = \sum_{i=1}^{N} x_i g_i$$

$$h = \sum_{i=1}^{N} x_i h_i$$
(2.72)

極性パラメータに対しては、次の混合則が用いられる。

$$\Psi_{A} = \sum_{i=1}^{N} x_{i} x_{j} \Psi_{Aij} = \sum_{i=1}^{N} x_{i} x_{j} \Psi_{Aij}^{*} R T_{cij} V_{cij}
\Psi_{E} = \sum_{i=1}^{N} x_{i} x_{j} \Psi_{Eij} = \sum_{i=1}^{N} x_{i} x_{j} \Psi_{Eij}^{*} R T_{cij}^{5} V_{cij}
\Psi_{S} = \sum_{i=1}^{N} x_{i} \left(s_{3i} + \frac{s_{1i}}{T^{s_{2i}}} \right)$$
(2.73)

式(2.73)中のパラメータは次の関係にある。

$$\Psi_{Aij}^{*} = \frac{\Psi_{Ai}^{*} + \Psi_{Aj}^{*}}{2}$$

$$\Psi_{Eij}^{*} = \frac{\Psi_{Ei}^{*} + \Psi_{Ej}^{*}}{2}$$

$$s_{3} = s_{3}^{*} R V_{c}^{2}$$

$$s_{1} = s_{1}^{*} R T_{c}^{s_{2}} V_{c}^{2}$$
(2.74)

第3章 実験

3.1 既往研究

3.1.1 異種分子間相互作用パラメータ m_{ij} とそのグループ化、および相関式

Reed³⁾および Hudson-McCoubrey⁴⁾は、London の分散力と Lennard-Jones ポテンシャルの引力部分を等しいと置いて、 m_{ij} が次式で表わされることを示した。

$$m_{ij} = 64 \left[\left(\frac{V_{ci}}{V_{cj}} \right)^{\frac{1}{6}} + \left(\frac{V_{ci}}{V_{cj}} \right)^{-\frac{1}{6}} \right]^{-6}$$
(3.1)

式(3.1)は、 m_{ij} に影響を与える因子が V_{ci}/V_{cj} であることを示していると考えられる。この考えに基づくと、BWR 状態方程式の m_{ij} が V_{ci}/V_{cj} の関数で表わされることが推測される。また、これは無極性物質に対して成り立ち、種々の仮定が含まれているので実験データを良好に表現できるとは必ずしも望めない。

 m_{ij} は気液平衡に大きな影響を与える。そこで、2 成分系の気液平衡を良く表わすように各系の m_{ij} を決定し、 m_{ij} を縦軸に、 V_{ci}/V_{cj} を横軸にとり、いろいろな系の m_{ij} をプロットしたところ、表 3.1 に示すような化学的に似た物質グループごとに規則性が見られ、相関式をまとめることができた。

表 3.1	異種分子間相互作用パラメータによるグループ分け	

	Alkane (C1~C10)	Cyclo- alkane	Alkane (C10~)	Alkene	Arene	Carbon dioxide	Nitrogen	Hydrogen sulfide	Acethylene
Alkane(C1~C10)	A1	A2	A3	B1	B2	В3	B5	B6	В8
Cycloalkane		A2	A3	B1	B2	В3	B5	-	-
Alkane(C10 ∼)			-	B1	-	В3	B5	B6	-
Alkene				B1	B2	B4	-	B6	B9
Arene					B2	В3	B5	B7	B4
Carbon dioxide						1.000	B5	B6	-
Nitrogen							1.000	B6	-
Hydrogen sulfide								1.000	-
Acethylene									1.000

相関式は2種類に分類することができる。

一つ目は、Hudson-McCoubrey の理論に基づく相関式

$$m_{ij} = 64 \left[\left\{ k_1 \left(\frac{V_{ci}}{V_{cj}} \right) \right\}^{\frac{1}{6}} + \left\{ k_1 \left(\frac{V_{ci}}{V_{cj}} \right) \right\}^{-\frac{1}{6}} \right]^{-6} + k_2$$
(3.2)

二つ目は、2次関数型の相関式で、式(3.2)でうまく表せないときに、こちらを使用した。

$$m_{ij} = k_3 + k_4 \left(\frac{V_{ci}}{V_{cj}}\right) + k_5 \left(\frac{V_{ci}}{V_{cj}}\right)^2$$
 (3.3)

ただし、 V_{ci}/V_{cj} の値は1を超えるように計算した。 表 3.2 に、相関式の相関係数を、グループごとに示した。

表 3.2 相関係数の一覧

(1) 式(3.2)の相関係数

Sysytems	A1	A2	A3
k_1	0.91	0.91	0.7
k_2	0	-0.003	0
Mximum values of (V_{ci}/V_{cj}) tested	4.95	3.47	7.25

(2) 式(3.3)の相関係数

System	B1	B2	В3	B4	B5	B6	В7	B8	В9
\mathbf{k}_3	1.027	0.949	0.972	1	1.026	0.962	0.991	0.929	1.083
\mathbf{k}_4	-0.028	0.0685	-0.019	-0.019	-0.036	-0.011	-0.011	0.013	-0.095
k_5	0	-0.028	0	0	0	0	0	-0.0046	0
Mximum values of (v_{ci}/v_{cj}) tested	5.79	3.23	7.64	3.33	4.73	6.16	3.8	4.34	1.6

図 3.1 に m_{ij} と V_{ci}/V_{cj} の関係をグループごとに示した。

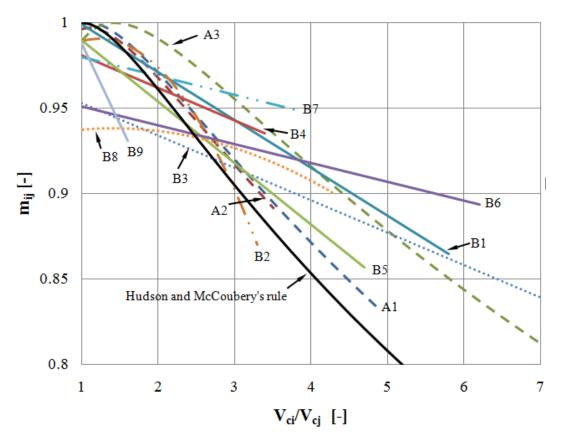


図 3.1 m_{ij} と V_{ci}/V_{cj} の関係

3.1.2 m_{ij}の温度、組成依存性

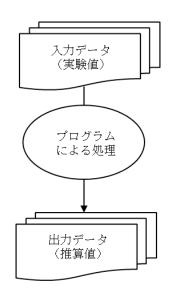
混合物の熱力学的物性値の推算には、分子間の相互作用を補正するパラメータである m_{ii}

の導入が必要になることは既に述べた。無極性物質から成る系では m_{ij} を定数として扱え、相関式から計算できることも既に述べた。しかしながら、極性物質を扱う場合はそう簡単ではない。極性物質は、無極性物質とは違い分散力のほかに、静電気的な相互作用や水素結合的な相互作用などを持つからだ。そのような相互作用を 3 変数対応状態原理に基づく一般化状態方程式では表現する事が出来ない。したがって、式(2.26)は極性物質に適用することは出来なくなる。

しかしながら、Prigogene らはポテンシャルが無極性部分と極性部分の分から成り、かつ前者が後者より十分に大きいときには異種分子間ポテンシャルが温度の影響を受けることを示している。Nohka らはこの結果と Hudson-McCoubery の理論を結び付け極性-非極性物質間の m_{ij} は増加しやがて一定値に達する事を導いた。このことは状態方程式を無極性部分と極性部分に分けることができ、かつ前者の影響が大きいと見なせる系においては、温度の関数になることが期待できる。

本研究室でも、Nohka らが示したように m_{ij} が増加して、やがて一定値に達する事という結果を得ている。水素を含む系において、温度依存性を持つ結果を得ている。また、水、アルコール類を含む系においては、温度依存性、あるいは温度依存性と組成依存性の両方を示すという結果を得ている。

3.2 N_System


この章は、実験方法というよりも、N-Systemの使い方に終始する。

N-System の基本的な操作法については、西海研究室資料に記載されているので割愛する。 この章では基本的な操作法を習得しているという前提の下、さらに実務的な操作法につい て述べることとする。

3.2.1 プログラムと N_System について

3.2.1.1 プログラムについて簡単に

N-System はプログラム集である。プログラムのおおよその概念は以下の通りであり、簡単に言うなら、ある入力値に対して一定の操作を行い、その計算値を返すというものだ。

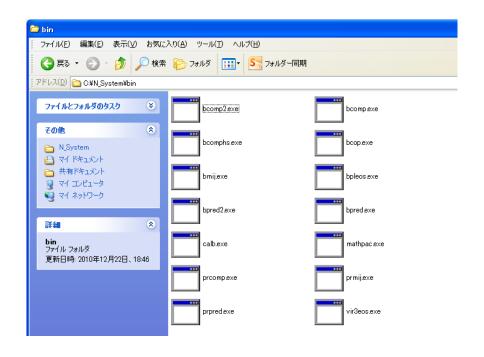
例えば、台形の面積を求めるプログラムを考えるとする。この時、上底と下底の長さが入力データとなり、 ${(上底)+(下底)}\times(高さ)\div 2$ という計算がプログラム本体となり、計算結果が出力データとなる。このような決まりきった計算の流れをひとまとまりにして、簡単に計算できようにパッケージ化したものがプログラムである。

N-System はフォートランというプログラミング言語により書かれており、フォートランは大別するならコンパイラ言語に属するプログラミング言語である。コンパイラ言語とは、人間が記述したソースコードを、機械が実行可能な形式であるオブジェクトコードに変換してから実行するという2段階の操作が必要な言語の総称である。

本研究室では、様々な化学工学における計算を、とりわけ相平衡やエントロピーなどの 熱力学的計算をプログラム化しており、そのプログラム集を N-System と呼んでいる。

3.2.1.2 N_System の構成

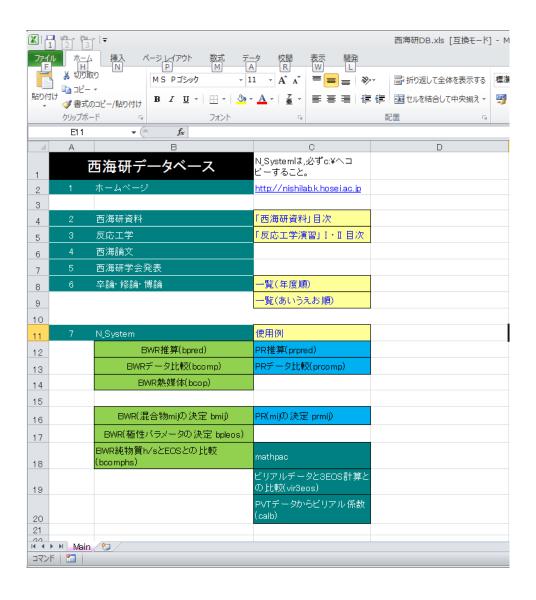
N-System は C ドライブの直下に置かれたときに実行できるようにプログラムが組まれており、実行形式であるのでインストールは不要である。もし、個人のパソコンに導入したい場合は C ドライブの直下にコピーするだけで実行可能である。つまり、N-System の絶対パスは $C:YN_System$ である。N-System 内には次のようなフォルダが用意されている。


bin: プログラム本体。(フォートランで書かれたプログラムをコンパイルしたもの)

expdata:実験値などプログラムを動かした時に使用される生データ。基データ。

kekka: 結果ファイルの保存場所。

Source Files: ソースファイル。(フォートランで書かれたプログラムでコンパイルされる以前のもの)


プログラム本体は"bin"フォルダ内にあり、開くと次のような画面が表示される。

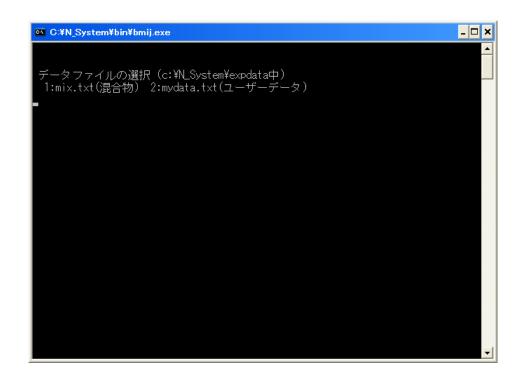
それぞれが単位プログラムである。本研究では、相関式から計算した推算値と実験値を比較するプログラムである"bcomp.exe"、2 成分系の m_{ij} を気液平衡関係にフィッティングして決定するプログラムである"bmij.exe"を多く使用した。

3.2.2 西海研データベースと N_System

現在、西海研究室で共有しているデスクトップパソコンには、"西海研 DB.xls"というファイルがデスクトップにショートカット(リンク元: C:\mathbb{YN_DataBase\mathbb{YD} 西海研 DB.xls})として置かれている。"西海研 DB.xls"は、西海研究室資料や卒論・修論類、そして N-Systemなどの本研究室で頻繁に使用されるファイル、あるいはプログラムへのハイパーリンク集である。ファイルを開くと、下記のような画面が表示される。



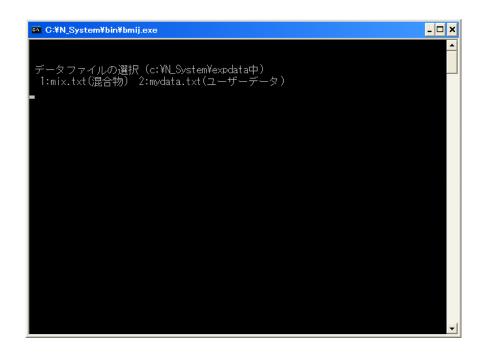
メニューの 7 が N-System である。N-System は単位操作ごとにパッケージ化されており、使用に際しては使い分けが必要である。(西海研究室資料に詳しく書かれているので、ここでは言及しない。)


3.2.3 N_System (のプログラム) を開くまで

3.2.3.1 N_System (のプログラム) を開くまで (基本)

N-System のプログラムの一つであるBWR(混合物 mij の決定 bmij)の開き方を例にとる。まず、BWR(混合物 mij の決定 bmij)をクリックする。次のような画面が現れる。

今、リンクから ".exe" 型のファイルを開こうとしているために表示されているが、このファイルは安全であるため、無視して、"OK" をクリックする。すると、次のような画面が現れる。



ここまでが、基本的な開き方である。

3.2.3.2 N-System (のプログラム) を開くまで (DB 使わずに)

"西海研 DB.xls"はあくまでショートカット集であるので、当然だがファイルを直接開くこともできる。N-System は、C ドライブの直下に置かれている(そうでなければ動かない)ので、どのパソコンでも絶対パスは同じである。

3.2.1.2 で述べた通り、"bin" フォルダにプログラムは収められているので、使いたいプログラムを選択して、ダブルクリックするだけで実行できる。このとき、エラーは表示されず、次のような画面が直接開く。

頻繁に N-System を使用する場合、"西海研 DB.xls"を使用するよりも、プログラムそのもののショートカットを作成し、デスクトップに置いておくことが、時間短縮の早道であるように考えられる。

3.2.3.3 物質コード番号と文献番号

N-System では、物質には物質コード番号が付けられ、登録されている。例えば、メタンは1番、二酸化炭素は116番といった具合に番号がついている。N-System のほとんどのプログラムでは、番号を知るためのヘルプが用意されている。(物質コード番号の知り方は、西海研究室資料を参照のこと。)しかし、何度も繰り返し演算を行う場合には、いちいち検索をかけていると手間なので、Excelファイルとして一覧を用意しておくと便利である。一覧は、Appendix にも載せたが、電子データとして残しておくので、そちらを参照してもらいたい。

"bcomp.exe"も"bmij.exe"も入力ファイルとして実験値を使用する。これらの計算に用いる実験値は、"expdata"フォルダの"mix.txt"というファイルに収められている。ここに登録されている実験値は、論文を収集して、登録したものである。当然だが、どんな系についても登録されているわけではない。1成分系気液平衡、2成分系気液平衡、あるいはそれ以上の混合物の気液平衡の莫大なデータが登録されている。

使用したいデータを簡単に探し出せるようにするために、物質には物質番号がつけられており、気液平衡などの文献データには登録順に番号がついている。

3.2.4 bcomp.exe 使用法 (BWR 状態方程式による気液平衡の実験値と計算値の比較)

"bcomp.exe"で行える演算は、BWR 状態方程式による気液平衡の実験値と計算値の比較である。純物質であっても、混合物であってもほぼ同様の操作で比較することができる。

3.2.4.1 bcomp.exe による気液平衡計算

水素(物質コード番号:136)とトルエン(物質コード番号:102)の2 成分系気液平衡の計算例を次に記す。

1: 登録データを使用するため

```
データファイルの選択(c:¥N_System¥expdata中)
1:mix.txt(混合物) 2:pure.txt(純物質) 3:mydata.txt(ユーザーデータ)
1
実験データセット番号(02)を入力してください
(0:実験データ処理 -1:物質コード番号 -2:純物質物性 -3:mij -4:終了)
```

0: ヘルプに入るため

```
実験データセット番号(02)を入力してください
(0:実験データ処理 -1:物質コード番号 -2:純物質物性 -3:mij -4:終了)
0
1:タイトル 2:検索 3:データ表示
4:選択データコビー 5:データ入力 0:終了
```

2: 検索をかけたいので

```
1:タイトル 2:検索 3:データ表示
4:選択データコビー 5:データ入力 0:終了
2
検索成分数 (0:関係無し)
```

2:2成分ともに検索かけたい物質が決まっているので

136, 102: 水素とトルエンの物質コード番号を入力

ヘルプから抜け出したいので。(水素とトルエンを含む系は一つしか表示されていないが、 他の系では必ずしもそうはならない。例えば、水素、メタン、トルエンを含む系の3成分 系の登録があったならば、それも表示されるからである。)

```
1:タイトル 2:検索 3:データ表示
4:選択データコピー 5:データ入力 0:終了
0
実験データセット番号(02)を入力してください
(0:実験データ処理 -1:物質コード番号 -2:純物質物性 -3:mij -4:終了)
```

220: 水素とトルエンの文献番号は220番と分かったので。(また、ここまで行うと初期画面に戻っている。もし、検索条件を変えたければもう一度、0から繰り返す。)

```
実験データセット番号(02)を入力してください
(0:実験データ処理 -1:物質コード番号 -2:純物質物性 -3:mij -4:終了)
220

等温気液平衡
        T[C],P[atm],V[1/mol]
        系: 2 成分
        成分番号: 1 H2 (コード番号:136)
        成分番号: 2 toluene(コード番号:102)
              H2-TOLUENE
        JAMES J. SIMNICK,HERBERT M. SEBASTIAN,HO-MU,AND CHAO 1(91)-1
        o.k.? Enter:yes N:no
```

Enter: 系の確認。間違っていれば、N

```
等温気液平衡
I[C],P[atm],V[I/mol]
系: 2 成分
成分番号: 1 H2 (コード番号:136)
成分番号: 2 toluene(コード番号:102)
H2-TOLUENE
JAMES J. SIMNICK,HERBERT M. SEBASTIAN,HO-MU,AND CHAO 1(91)-1

o.k.? Enter:yes N:no

等温気液平衡(2成分系)
1:T,P 固定(フラッシュ), 2:T,液組成×固定
```

1: フラッシュ計算なので

```
等温気液平衡(2成分系)
1:T,P 固定(フラッシュ), 2:T,液組成× 固定
1
通常計算(画面ブロットなし/mij相関値/チェック計算なし)?
Enter:yes N:no F:終了
```

Enter: 通常計算なので

```
通常計算(画面プロットなし/mij相関値/チェック計算なし)?
Enter:yes N:no F:終了

1 H2
2 toluene
T= 188.70[C] = 461.85[K]
<---- x,y平均絶対偏倚= 0.6771E-02 計算点数: 14 --->
<--- 成分 1 K値の絶対値平均偏倚: 4.27[%] 計算点数: 7 --->
<--- 成分 2 K値の絶対値平均偏倚: 13.35[%] 計算点数: 7 --->

T= 229.00[C] = 502.15[K]
<---- x,y平均絶対偏倚= 0.4855E-02 計算点数: 14 --->
<--- 成分 1 K値の絶対値平均偏倚: 5.50[%] 計算点数: 7 --->
<--- 成分 2 K値の絶対値平均偏倚: 3.42[%] 計算点数: 7 --->

T= 269.00[C] = 542.15[K]
<---- x,y平均絶対偏倚= 0.1032E-01 計算点数: 12 --->
<--- 成分 1 K値の絶対値平均偏倚: 5.01[%] 計算点数: 6 --->
<--- 成分 2 K値の絶対値平均偏倚: 5.81[%] 計算点数: 6 --->

T= 302.00[C] = 575.15[K]
<---- x,y平均絶対偏倚= 0.7014E-01 計算点数: 6 --->
<--- 成分 1 K値の絶対値平均偏倚: 5.81[%] 計算点数: 6 --->
<--- 成分 1 K値の絶対値平均偏倚: 29.29[%] 計算点数: 3 --->

実験データセット番号(02)を入力してください
(0:実験データ地理 -1:物質コード番号 -2:純物質物性 -3:mij -4:終了)
```

-4: 終了する。(この時点で一通りの計算が終了している。)

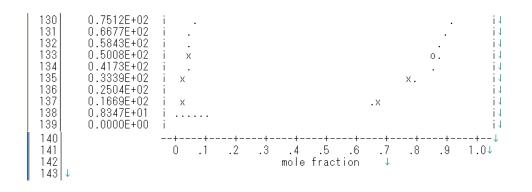
```
実験データセット番号(02)を入力してください

(0:実験データ処理 -1:物質コード番号 -2:純物質物性 -3:mij -4:終了)

-4

******* 詳細結果が c:¥N_System¥kekka¥fort7.txtに、

Sigma Plot用の数値(存在する場合)が同¥fort8.txt に書かれています ****


何か、キーを押してください。
```

Enter: どのキーでもよいが、押すと、プログラムは消える。そして、詳細な結果が"kekka" フォルダの"fort.7.txt"と、解析用の実験結果だけが書き込まれたものである"fort.8.txt" に出力される。

3.2.4.2 bcomp.exe の出力結果(fort.7.txt の概要)

```
4 C¥N_System¥kekka¥fort7.txt - 秀丸
ファイル(E) 編集(E) 表示(V) 検索(S) ウィンドウ(W) マクロ(M) その他(O)
     2
            JAMES J. SIMNICK, HERBERT M. SEBASTIAN, HO-MU, AND CHAO 1(91)-1
   4 1 ↓
   5
6
7
     1
   8
   9
  10 | ↓
  11
12
  13
       ****** H2-TOLUENE
  14
           ******* Hosei Univ. (version 7.5)
     \downarrow
  15
  16
17
                     データ源:JAMES J. SIMNICK,HERBERT M. SEBASTIAN,HO-MU,AND CHAO 1(
     91)-1
  18
  19 ↓
  20|↓
  21
22
23
24
                                                                     ./O [deg.C]
x1[-]
                                                            実験データ↓
                                                         温度: 188.70
P [atm ] x1[
                                                                                y1[-]↓
                                                                    0.011300
0.018700
0.034200
                                                      0.20000E+02
                                                                               0.667400↓
  25
26
27
28
29
                                                      0.29900E+02
                                                                               0.767800↓
                                                                               0.842500↓
0.906400↓
                                                      0.49700E+02
                                                      0.99800E+02
                                                                     0.070400
                                                      0.14990E+03
                                                                     0.102300
                                                                               0.928400↓
  30
                                                      0.20020E+03
                                                                     0.133100 0.9374001
  31
                                                      0.25040E+03
                                                                     0.164500 0.9430001
  32
33
34
                                                                       188.70
                                                                   T=
                                                                                  [C]↓
                                                                       461.85[K]↓
蒸気圧 [atm]↓
蒸気圧無し↓
  35
  36
                                                       成 分
  37
                                                       Ĥ2
  38
                                                                  2
                                                                        0.58545E+01↓
                                                       toluene
  39
  40
                                  DI Dg
err-K[%]↓
mol/I
                                                                                   y-cal
           T[C]
                       P[atm ]
                                              成分
                                                   х-ехр
                                                              x-cal
                                                                        у-ехр
  41
                        K-cal
          (
188.70 0.20000E+02 7.509
  42
                                        0.5450
                                                   0.011300 0.012064 0.667400 0.6663
  44
     03
          0.5906E+02
                        0.5523E+02
                                        6.49↓
  45
                                                2 0.988700
                                                             0.987936 0.332600 0.3336
  46
     97
          0.3364E+00
                        0.3378E+00
                                        0.41↓
  48
           188.70 0.29900E+02 7.561
                                        0.7978
                                                1 0.018700 0.020295 0.767800 0.7681
  49 38
          0.4106E+02 0.3785E+02
                                        7.82↓
  50
                                                2 0.981300 0.979705 0.232200 0.2318
  51
     62
          0.2366E+00
                        0.2367E+00
                                        0.024
  52
           188.70 0.49700E+02 7.665
                                        1.2932
                                                1 0.034200 0.036309 0.842500 0.8526
     56
                       0.2348E+02
  54
          0.2463E+02
                                        4.67↓
  55
                                                2 0.965800
                                                              0.963691
                                                                        0.157500 0.1473
  56
     44
          0.1631E+00
                        0.1529E+00
                                        6.24↓
  57
  58
           188.70 0.99800E+02 7.925
                                        2.4900
                                               1 0.070400 0.074078 0.906400 0.9187
  59 53
          0.1287E+02 0.1240E+02
                                        3.67↓
```

```
2 0.929600 0.925922 0.093600 0.0812
        0.1007E+00 0.8775E-01 12.85↓
61 | 47
62
    \downarrow
        188.70 0.14990E+03 8.178 3.6136 1 0.102300 0.108307 0.928400 0.9415 0.9075E+01 0.8693E+01 4.21 \downarrow
63
64 28
                                            2 0.897700 0.891693 0.071600 0.0584
65
66
   72
        0.7976E-01 0.6557E-01
                                 17.78↓
67
        188.70  0.20020E+03  8.427  4.6770  1  0.133100  0.139496  0.937400  0.9534
68
69 03
        0.7043E+01 0.6835E+01
                                    2.96↓
70 l
                                             2 0.866900 0.860504 0.062600 0.046!
71
72
73
74
   97
        0.7221E-01 0.5415E-01
                                   25.01↓
    \downarrow
        86
        0.5733E+01 0.5727E+01 0.10↓
                                             2 0.835500 0.832213 0.057000 0.039
75
76
   14
        31.11↓
77
               <---- x、y平均絶対偏倚 = 0.6771E-02 計算点数: 14
<---- x 平均絶対偏倚: 0.3405E-02 □ 計算点数: 7
78
79
               <---- y 平均絶対偏倚: 0.1014E-01 □ 計算点数: 7 ---->↓
<---□ 成分 1 K値の平均絶対偏倚 4.27[%] 計算点数: 7 --->↓
<---□ 成分 2 K値の平均絶対偏倚 13.35[%] 計算点数: 7 --->↓
80
81
82
83 1↓
84 ↓
        ****H2-TOLUENE
85
                                   の気液平衡*****↓
86
87 ↓
            データ源: JAMES J. SIMNICK, HERBERT M. SEBASTIAN, HO-MU, AND CHAO 1(91)-1
88
89 | ↓
90|↓
              188.70[C] = 461.85[K]↓
91
92
             圧力単位 (垂直軸)= (atm )↓
93
94
95
96
97
98
99
100 | ↓
101 | ↓
102
103
         ****
                                  P-x diagram
104
105
                       * : experimental(liquid)
106
                       o : experimental(vapour)
107
                           : calculated
                     108
       0.2504E+03 i
                                                                    o. i↓
109
110
       0.2421E+03 i
                                                                           i↓
111
        0.2337E+03
                                                                           i↓
        0.2254E+03
                                                                           i↓
112
113
        0.2170E+03
       0.2087E+03
115
       0.2003E+03
                             Χ
                                                                      ο.
       0.1920E+03
116
117
                                                                           i↓
       0.1836E+03
                                                                           i↓
       0.1753E+03
                                                                           i↓
118
                                                                           i↓
119
       0.1669E+03
       0.1586E+03
120
                                                                           i↓
121
       0.1502E+03
                                                                     ο.
       0.1419E+03
122
                                                                           i↓
123
       0.1335E+03
                                                                           i↓
    е
       0.1252E+03
124
125
    S
                                                                           i↓
       0.1169E+03
    S
                                                                           i↓
       0.1085E+03
126
                                                                           i↓
127
       0.1002E+03
                                                                    ο.
                                                                           i↓
       0.9181E+02
128
                                                                           i↓
129
        0.8347E+02
                                                                           i↓
```


ここで扱った水素 - トルエン系は等温気液平衡であり、461.85K、502.15K、542.15K、575.15K の 4 つの温度に対して、圧力・液組成・蒸気組成が、入力データとして用意されている。そのため、出力は温度ごとに行われている。これは他の系でも同様である。等圧気液平衡でも同様で、その場合は圧力ごとに出力される。上図で示しているのは、出力データの一つである fort.7.txt である。(全データを載せると多すぎるので、)ここでは全データではなく、461.85Kに対する出力データを掲載した。

上図からもわかる通り、fort.7.txt の構成は、(基データ) \rightarrow (実験値と推算値の比較) \rightarrow (平均絶対偏倚) \rightarrow (グラフ) である。温度(あるいは圧力) が 2 つ以上の場合は、この構成が温度(あるいは圧力) の数だけ繰り返されて出力される。

このファイルは、グラフから視覚的に推算値と実験値が合うかを見ることができる。また、平均絶対偏倚が表示されるので、どれほど推算性を持つかの一つの目安にもある。本研究室では、経験的に x, y 平均絶対偏倚が 0.03 を下回るなら、その温度において良好に推算できたと判断している。

3.2.4.3 bcomp.exe の出力結果(fort.8.txt の内容)

```
■ C:¥N_System¥kekka¥fort8.txt - 秀丸
 ファイル(E) 編集(E) 表示(Y) 検索(S) ウィンドウ(W) マクロ(M) その他(Q)
    成分番号: 1 H2 (コード番号:136)↓
成分番号: 2 toluene (コード番号:102)↓
                        H2-TÖLUENE
    3
    4
             JAMES J. SIMNICK, HERBERT M. SEBASTIAN, HO-MU, AND CHAO 1(91)-1↓
    5
6
7
      1
                                                      Enter:yes
                                                                    N:no↓
                   o.k. ?
    7 H2 ,toluene ,↓
8 exp_x188.70[C],exp_y188.70,P[atm ] at188.70[C]↓
9 0.0113, 0.6674, 20.0000↓
                                 29.9000↓
                    0.7678,
   10
         0.0187,
         0.0342,
                    0.8425,
                                 49.7000↓
   11
   12
13
         0.0704,
                    0.9064,
                                 99.8000↓
         0.1023,
                    0.9284,
                                149.9000↓
         0.1331,
   14
                    0.9374,
                                200.2000↓
      0.1645, 0.9430, 250.4000↓

0.1645, 0.9430, 250.4000↓

cal_x188.70[C],cal_y188.70,P[atm ] at188.70[C]↓

0.0000, 0.0000, 5.8545↓

0.0001, 0.0146, 5.9545↓

0.0002, 0.0285, 6.0545↓
   15
   16
   17
   18
   19
          0.0003,
                     0.0421,
                                    6.1545↓
                                    6.2545↓
   21
22
23
24
          0.0003,
                     0.0553,
                                    6.35451
          0.0004,
                     0.0681,
          0.0005,
                     0.0805,
                                    6.4545↓
                     0.0927,
          0.0006,
                                    6.5545↓
   25
26
27
28
          0.0105,
                     0.6343,
                                   18.0818↓
          0.0121,
                     0.6663,
                                   20.0000↓
          0.0203,
                     0.7681,
                                   29.9000↓
          0.0206,
                     0.7708,
                                   30.3091↓
    29
          0.0306,
                     0.8310,
                                   42.53644
          0.0363,
                      0.8527,
                                   49.7000↓
          0.0403,
    31
                      0.8647,
                                   54.7636↓
    32
          0.0498,
                      0.8864,
                                   66.9909 \downarrow
                                   79.2182↓
91.4455↓
          0.0590,
    33
                      0.9015,
    34
          0.0680,
                      0.9128,
          0.0741,
    35
                      0.9188,
                                   99.8000↓
    36
                      0.9214,
          0.0768,
                                  103.6727↓
    37
          0.0854,
                      0.9282,
                                  115.9000↓
          0.0938,
                      0.9338,
                                  128.1273↓
    38
    39
          0.1020,
                      0.9384,
                                  140.3545↓
                                 149.9000↓
152.5818↓
         0.1083,
                     0.9415,
0.9423,
   40 I
   41
          0.1100,
         Ŏ.1179,
                     0.9457,
                                 164.8091↓
   42
                     0.9487,
0.9513,
0.9534,
                                 177.0364↓
189.2636↓
200.2000↓
   43
         0.1255,
   44
          0.1330,
         Ŏ.1395,
   45
         0.1403,
   46
                     0.9537,
                                 201.4909 \downarrow
         0.1474,
   47
                     0.9557,
                                 213.7182↓
                     0.9576,
         Ŏ.1544,
   48
                                 225.9455↓
   49|
         0.1611,
                     0.9593,
                                 238.1727↓
   50
         0.1678, 0.9609, 250.4000↓
```

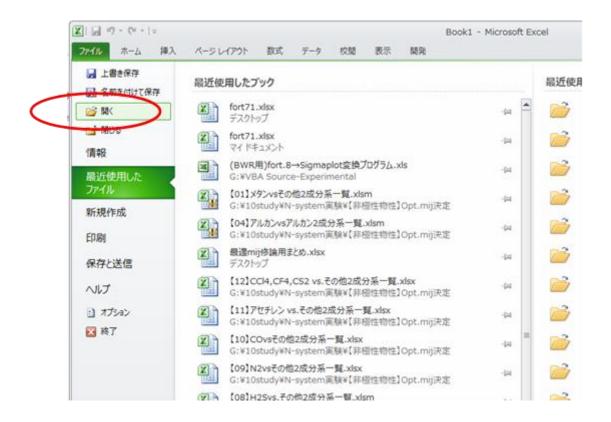
fort.8.txt は、(実験値) \rightarrow (推算値)という構成される。これも fort.7.txt 同様に、温度(あるいは圧力)が複数個ある場合は、温度(あるいは圧力)の数だけ繰り返され、出力される。 Excel や Sigma Plot などで後処理用ために出力されるファイルである。

3.2.4.4 出力ファイルの後処理の流れ

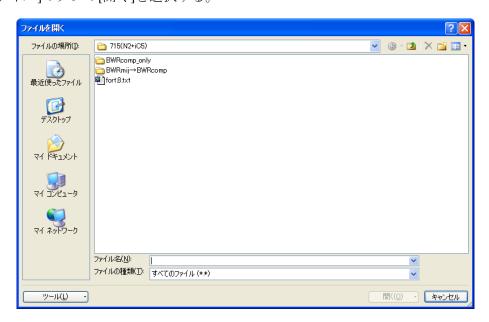
計算後のファイルは、次に示すように系ごとにフォルダ分けして、保存した。必ずしも 保存する必要は無いが、系ごとに分けて保存しておくと、たくさんの系について演算を行った時に、混乱を招きにくく、全体のまとめを行う際にも便利であるように思われる。

それぞれのフォルダの中身は以下の通りである。

上記のように、"fort.7.txt"、"fort.8.txt"、"fort.8.xls"、"Notebook.JNB"を基本とした。(何を残し、何を残さないかは、個人の嗜好であるように思われるが、この計算で値が変わることはないので、一度計算したものは面倒ではあるが、最低限"fort.7.txt"、"fort.8.txt"くらいは残しておいた方が良いように思われる。)


"fort.8.xls" は "fort.8.txt" を Excel で読み込み、Excel VBA (Excel 搭載のプログラミング言語) で処理して、グラフを書きやすいように処理したファイルである。

"Notebook.JNB"は、Sigma Plot というソフトウェアで"fort.8.xls"を読み込み、グラフ化したファイルである。


ここまでの操作が、一つの系について行われる操作である。以下にさらに詳しい方法を 載せた。

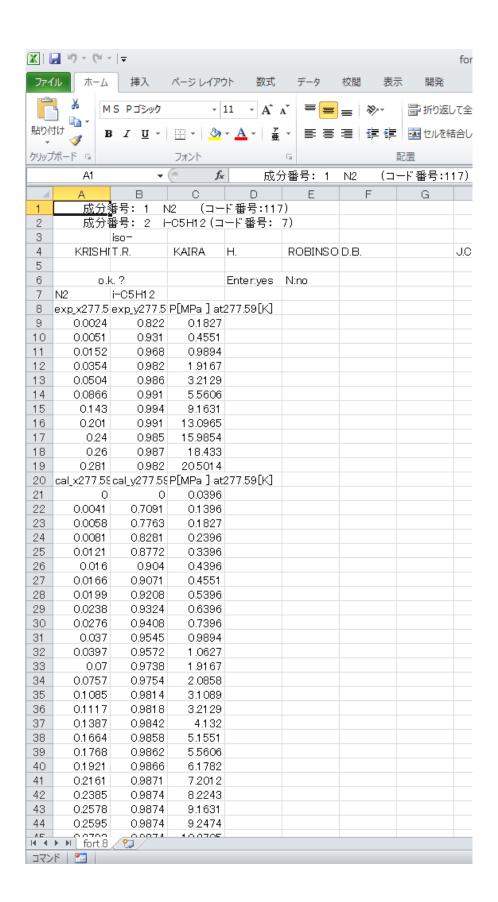
3.2.4.5 (fort.8.txt) \rightarrow (fort.8.xls)

テキストファイルは、単純に Excel にドラッグドロップしただけでは変換されない。以下にその方法を示す。

[ファイル]のタブの[開く]を選択する。

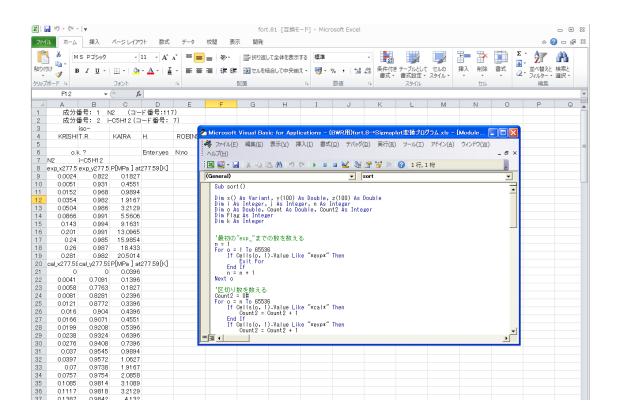
必ず、"ファイルの種類"を"すべてのファイル(**)"にする。そうでなければ、テキストファイルは表示されない。"fort.8.txt"を選択し、開く。

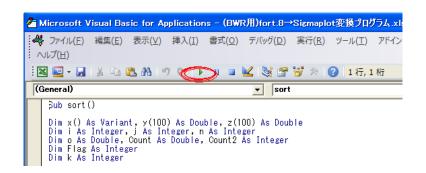
"カンマやタブの区切り文字によってフィールドに区切られたデータ"にチェックがついていることを確認する。



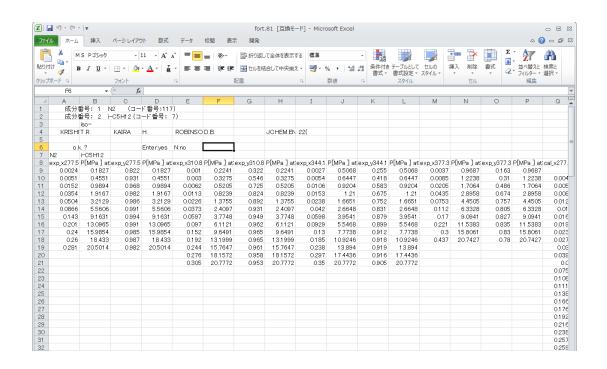
"カンマ"にチェックを入れる。

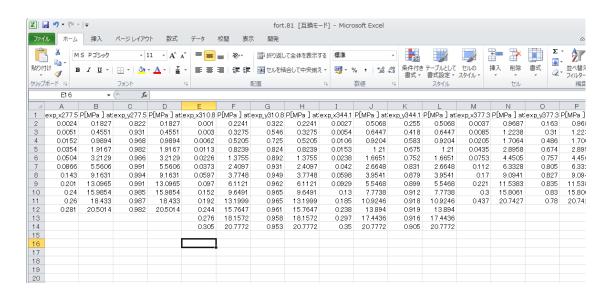
この画面は、そのままで良いので"完了"をクリックする。


次のように表示されていれば、ファイルの変換は完了である。保存する際は、"名前を付けて保存する"を選択し、"Excel97-2003 有効ファイル"にして"fort.8.xls"として保存する。


次に、"fort.8.xls" は開いたまま、"(BWR 用)fort.8→Sigmaplot 変換プログラム.xls"を開き、"ALT"+"F11"をクリックする。すると、次のような画面が開く。("(BWR 用)fort.8→Sigmaplot 変換プログラム.xls"は、ファイル操作を簡単にするために私が書いたプログラムであり、研究室として残すかは分からない。プログラムコードは Appendix に載せたので必要ならプログラムにおこせばよい。)

(これは ExcelVBA の画面である。)


開いている Window が、手前から "Microsoft Visual Basic for Applications"、"fort.8.xls" の順になるように並び替える。つまり、丁度、次の画面のような状態にする。


次に画面上部の再生ボタンをクリックする。

すると、このように並び変わる。(このプログラムは、SigmaPlot で読み込む際に操作が楽になるように、並び替えている。)

次に、上から7行を削除する。

ここまで出来たら、Excel での操作は終了である。ファイルは保存して閉じる。

次に、SigmaPlot を開く。(Excel でもグラフを書くことはできるが、2成分系までである。 3成分系の三角線図を書きたければ、SigmaPlot を使わざるを得ない。)

3.2.5 bmij.exe 使用法 (BWR 状態方程式による気液平衡関係を用いた異種分子間相互作用係数 m_{ii} の決定)

このプログラムは、"異種分子間相互作用係数である m_{ij} を気液平衡関係にフィッティングする形で決定する"という操作をプログラム化したものである。

基本的な操作法は、西海研究室資料に詳しく書かれているので、理解したうえでこの文章を読んでもらいたい。

このプログラムの使用において、注意すべき事が一つある。決定した最適 m_{ij} が本当に正しそうな値なのかを疑うことである。この最適 m_{ij} の決定には黄金分割法が使用されており、エネルギーでいえば最も安定な場所を探すような計算を行っている。計算を行う際に範囲と刻み幅を設定するのだが、初期値の選び方によっては不正な値に収束することが簡単に起こりえる。もしくは、値が全く収束しないということがよく起こる。

そこで、実際的に最適 m_{ii} をどう決めていけばよいのかをここでは述べていく。

3.2.5.1 収束しない場合、計算後に出力される平均絶対偏倚が明らかに大きい場合、最適 m_{ij} の値が全く予測できない場合などの最適 m_{ij} の決定法

適当な値を bcomp.exe に何度か、代入して m_{ij} の範囲を絞っていくのが簡単であるように思われる。視覚的にも分かりやすいためだ。この方法は、bmij.exe で決定した最も確からしい最適 m_{ij} が、十分に気液平衡関係を表現できているのかの最終確認にも使用することが出来る。bcomp.exe の使用法は、今までとほぼ一緒であるが、"通常計算"の所で、"N"を入力すると別メニューが開ける。ここから説明する。

```
通常計算(画面ブロットなし/mij相関値/チェック計算なし)?
Enter:yes N:no F:終了

プロット表示 (y/n)

グラフ上に数値を描く (y/n)

出力単位 (Enter:原報単位/1:SI単位)

m12 (は相関値? (y/n)

チェック計算? (y/n)

すべての温度で? (y/n)
```

"プロット表示": y

"グラフ上に数値を描く": y

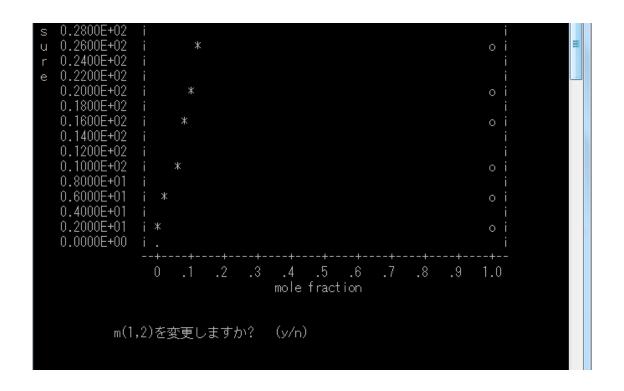
"出力単位": Enter

"m12 は相関値?": n

"チェック計算?":n

"すべての温度で?": y

と進む。(もし、温度数が多すぎて、画面が見きれてしまう場合には、一通り終わってから、 "fort.7.txt" を確認すればよい。)


ここで、m12に適当な値を代入してみる。例えば、0.954と代入した。

```
m12
0.954
max pressure scale in a figure (return:automatic 1:manual)

1 CH4
2 C20H42

m12
0.954

T= 40.00[C] = 313.15[K]
```


このように、何もプロットされていない場合は、代入した値が真の値と大きく異なることを示している。

ここで、"y" とすれば、新しく m12 に適当な値を代入することができる。これを何度か繰り返せば、真の値に近い値が得られるはずである。

実際にこれを何度か繰り返し、m12を"0.25"としたときに、次のような結果を得られた。

```
m12
0.25
                40.00[C] = 313.15[K]
            <---- x、y平均絶対偏倚= 0.2461E-02 計算点数: 24 ---->
<--- 成分 1 K値の絶対値平均偏倚: 5.28[%] 計算点数:12 --->

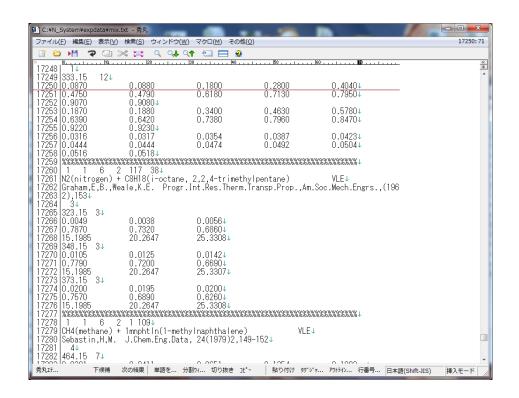
<--- 成分 2 K値の絶対値平均偏倚: 99.99[%] 計算点数:12 --->
        ****
                                            P-x diagram
                                                                                             ****
                           * : experimental(liquid)
                            o : experimental(vapour)
                            . : calculated
     0.6000E+02
                                                                                                  \times i
     0.5800E+02
     0.5600E+02
    0.5400E+02
0.5200E+02
0.5000E+02
     0.4800E+02
     0.4600E+02
     0.4400E+02
    0.4200E+02
    0.4000E+02
0.3800E+02
0.3600E+02
0.3400E+02
   0.3200E+02
0.3000E+02
0.2800E+02
    0.2600E+02
    0.2400E+02
e 0.2200E+02
0.2000E+02
0.1800E+02
0.1600E+02
     0.1400E+02
    0.1200E+02
0.1000E+02
0.8000E+01
     0.6000E+01
    0.4000E+01
0.2000E+01
0.0000E+00
                                                                                                  o i
                         0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 mole fraction
                m(1,2)を変更しますか?
                                                   (y/n)
```

これはおそらく最適値に近い値であろう。

ここで、bmij.exe に戻る。

```
- - X
bmij.exe
                                                                            =
 データファイルの選択(c:¥N_System¥expdata中)
1:mix.txt(混合物) 2:mydata.txt(ユーザーデータ)
実験データ番号(02)=
   0:実験データ("02") 取り扱い, -1:mij(T,x) 相関, -2:fin
            等温気液平衡
T(deg-C),P(atm),v(I/mol)
               系= 2 成分
番号= 1 CH4
                       C20H42 (コード番号= 76)
                    C(1)+C(20)
          S.PURI, J.P.KOHN, J.CHEM.ENG.DATA, 15, NO.3, (1970), C4
                        (y/n)
        *** mij 決定法 ***
           mij= 1:定数 2:f(T) 3:f(T,x)
         1:delta(x) 2:delta(x)+delta(y)
       Enter:通常 1:チェック
```

先ほど決定した、0.25を初期値として入力する。


すると比較的簡単に、確からしい"0.257236"が得られた。

3.2.6 生データの "mix.txt" への登録方法

"mix.txt" への登録法は、西海研究室資料にも書かれているが、大量のデータを入力する際にはその方法は不向きである。そこで、大量のデータを入力する方法をここで紹介する。

3.2.6.1 大量の生データを "mix.txt" への登録したい場合

まずは、"mix.txt"を"秀丸"などのソフトウェアを使って開く。

このような画面が開かれるはずだ。

中身を覗いてみると、規則正しく並べられているのが分かる。まず、"%%%%%%%" によって区切れられた領域が目に入る。この"%%%%%%%"と"%%%%%%%"の間 が一つの生データである。例えば、真ん中の以下の部分に着目する。

```
1 1 6 2 117 38↓
N2(nitrogen) + C8H18(i-octane, 2,2,4-trimethylpentane) VLE↓
Graham,E,B.,Weale,K.E. Progr.Int.Res.Therm.Transp.Prop.,Am.Soc.Mech.Engrs.,(196
2),153↓
3↓
323.15 3↓
                               0.0056 \downarrow
               0.0038
0.0049
               0.7320
20.2647
                               0.68601
0.7870
15.1985
348.15 3↓
                               25.33084
0.0105
                               0.0142 \downarrow
               0.0125
               0.7200
0.7790
                               0.6690 \downarrow
15.1985
373.15 3↓
                               25.3307↓
               20.2647
0.0200
               0.0195
                               0.02004
0.7570
               0.6890
                               0.6260↓
                               25.3308¥
                20.2647
|15.1985
```

もう少し詳しく解説すると、次のようになっている。

- (1 行目) 気液平衡の種類 単位系 成分数 物質番号 物質番号
- (2 行目) 文献名
- (3行目) 著者名
- (4 行目) 温度数 (等温気液平衡ならば。等圧気液平衡なら圧力数)
- (5 行目) 温度 (その温度における) データ数
- (6行目)液相組成x(データ数分だけ)
- (7行目) 気相組成 y (データ数分だけ)
- (8行目) 圧力p(データ数分だけ)

~温度数分だけ(6行目)から(8行目)の繰り返し~

内容さえしっかり理解していれば、直接、テキストファイルに書き込むのが最も時間のかからない方法であるだろう。直接、書き加える場合、常にバックアップを取る事と最新の注意を払う必要がある。このファイルが N-System の生命線である事を忘れずに。

"Tab key"を使うと簡単に綺麗に行間を空ける事が出来る。また、"Enter key"で行数を判断しているので、例えば 2 行目が長くなりすぎて 3 行目に突入していても "Enter key"により改行されていなければ、2 行目の続きとして判断される。

第4章 結果と考察

4.1 成分ファミリーの分類

西海が開発したプログラム N_s ystem を用いて、無極性物質を中心とした 2 成分系における最適 m_{ij} を決定し、 V_{ci}/V_{cj} をx軸、最適 m_{ij} をy軸としてプロットした。すると、以下に示す結果を得た。

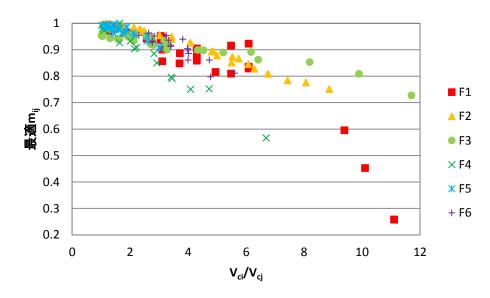


図 4.1 最適 m_{ij} と V_{ci}/V_{cj} の関係

プロットした結果から、化学成分ごとに組分けを行い、分類されたこれらの組を成分ファミリーと呼ぶことにする。分類された成分ファミリーの結果を以下に示す。

alkane CO_2 N_2 CO CH₄ alkene C_2H_2 arene H₂S cycloalkane CH₄ 1 F1 F3 F4 × alkane alkene F1 F2 F3 F4 F5 cycloalkane CO₂ C_2H_2 F3 F3 F3 F6 H₂S N_2

表 4.1 成分ファミリーの結果

本研究では、プロットした結果から図 4.2 に示すように、F1, F5, F6 で似た傾向を確認できたため、これらを 1 つの成分ファミリーとして扱い、合計 4 つの成分ファミリーにまとめることを検討した。

F6

F4

F5

F4

X

X

F5

F4

X

CO

arene

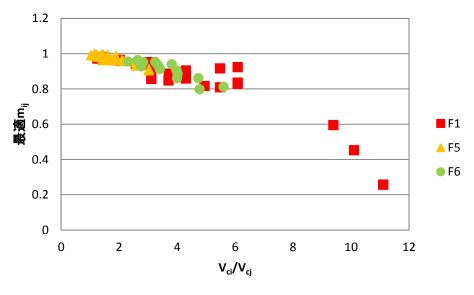


図 4.2 F1, F5, F6 における似た傾向

なお、今回まとめる上で、図 4.2 における右下の 3 点は除外している。

4.2 相関式の立式

今回、全ての成分ファミリーにおいて、Hudson-McCoubrey の理論に基づく相関式によって相関した。

 N_S ystem で決定した最適 m_{ij} と相関式から求めた計算 m_{ij} の偏倚が最小になるように、ソルバーを使って、合計 4 つの成分ファミリーそれぞれに相関係数を決め、相関式を立てた。以下に本研究で使用した相関式の形と、決定した相関係数を示す。

$$m_{ij} = 64 \left[\left\{ k_1 \left(\frac{V_{ci}}{V_{cj}} \right) \right\}^{\frac{1}{6}} + \left\{ k_1 \left(\frac{V_{ci}}{V_{cj}} \right) \right\}^{-\frac{1}{6}} \right]^{-6} + k_2$$
(4.1)

表 4.2 相関係数のまとめ

	F2	F3	F4	F1+F5+F6
k ₁	0.686132	0.576	1.676804	0.736109
k ₂	-0.00372	-0.0408	0.023615	-0.01669

4.2.1 Hudson-McCoubrey の理論に沿って相関できたか

以下に、決定した合計4つの成分ファミリーの相関式を載せた。

今回の研究において、Hudson-McCoubreyの理論に沿って1種類の相関式でまとめることが可能であるのかが、焦点となっている。

そのため、4 つの相関式と同一グラフ上に、Hudson-McCoubrey の理論の式を載せることで、理論に沿って相関できたのかを確認した。

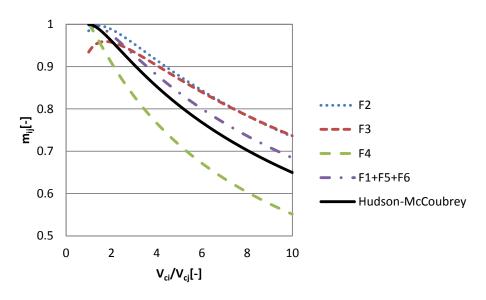


図 4.3 決定した相関式のまとめ

図 4.3 から判断して、F4 の相関式が多少ずれているものの、全体としては、理論の式と同じ形で相関式が描けているため、Hudson-McCoubrey の理論に沿って相関できたと言える。

4.2.2 F1, F5, F6 をまとめることは可能か

F1, F5, F6 を 1 つの成分ファミリーとして扱うことが可能であるのかを判断するため、最適 m_{ij} と相関式を比較して、1 つにまとめた相関式が、しっかりと F1, F5, F6 の系を表すことができているのかを確認した。以下に比較図を示す。

最適m_{ii}と相関式_F1+F5+F6の比較

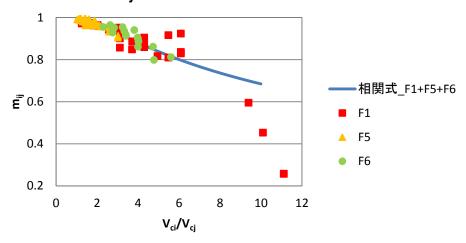


図 4.4 F1, F5, F6 における最適mij と相関式の比較

右下の3点を取り外して、さらに詳しく見てみると以下のようになった。

最適m_{ij}と相関式_F1+F5+F6の比較

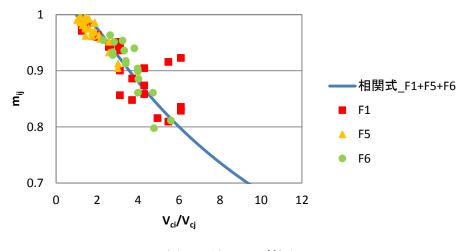


図 4.5 詳しい比較図

図 4.5 から判断して、F1 の系において 2 点ほど大きくずれているが、その他の系はほぼ 相関式上にあるため、しっかりと相関できていると考えられる。

先ほども述べたが、F1, F5, F6 をまとめる上で、図 4.2 における右下の 3 点を除外したが、それらは、2 次関数型の相関式で表した。以下に相関式の形を示す。

$$m_{ij} = k_3 + k_4 \left(\frac{V_{ci}}{V_{cj}}\right) + k_5 \left(\frac{V_{ci}}{V_{cj}}\right)^2$$
 (4.2)

4.3 気液平衡関係の逆算

相関式から求めた異種分子間相互作用パラメータ m_{ij} を使って、気液平衡関係の逆算を行った。

逆算して得られた計算値と実験値を比較することで、相関式の妥当性を検討した。

4.3.1 合計 6 つの相関式による気液平衡関係の逆算

まずここでは、F1, F5, F6 をまとめる前の表 4.1 に従って、6 つの相関式によって求めた m_{ij} を使い、気液平衡関係の逆算を行った結果を示す。

表 4.3 F1 における気液平衡逆算の結果

	System	文献番号	V_{ci}/V_{cj}	Opt. m _{ij} [-]	Cal. m _{ij} [-]	温度 T[K]	x, y平均絶対偏倚	評価
CH4	C2H4	65	1.252525	0.970902	0.976	127.25		
						158.25		
						219.25		
		358	1 050505	0.070504		253.25	6.29E-02	
	_	358	1.252525	0.979524				
	C2H6	21	1.494949	0.980476	0.975	130.37	8.56E-02	
						144.26	5.48E-02	
						158.15	3.00E-02	
						172.04		
						186.11	1.38E-02	
						192.39		
	2.00					199.92		
	C3H6	698	1.828283	0.961328	0.968	130		
						140		
						150 160		
						170		
						180		
						190		

表 4.4 F1 における気液平衡逆算の結果 (続き)

C3H8	1	2.020202	0.960212	0.962	258.15	1.92E-02	
					283.15	1.99E-02	
					303.15	1.82E-02	A
					318.15	1.26E-02	
					338.15	1.13E-02	
-	2	2.020202	0.96382	0.962	157.55	2.05E-02	
					174.25	2.71E-02	
					194.85	1.89E-02	Α
					213.15	1.50E-02	••
					226.45	2.11E-02	
					241.45	2.26E-02	
_	26	2.020202	0.961591	0.962	144.26	5.93E-02	
					172.04	1.44E-02	В
					199.82	1.60E-02	
					227.59	1.87E-02	
_	338	2.020202	0.962705				
C4H10	6						
	_	0.53555	0.04004=	0.010	4====	224	D
- 041140	7	2.575758	0.942017	0.940	177.55	3.01E-02	В
i-C4H10	10	2.656566	0.946605	0.937	310.95	1.69E-02	
					344.25	1.67E-02	A ⁺
					377.55	3.66E-03	
C5H12	11	3.141414	0.936049	0.917	310.95	2.04E-02	
					344.25	2.07E-02	
					377.55	2.19E-02	Α
					410.95	1.13E-02	
					444.25	1.50E-02	
i-C5H12	24	3.111111	0.945755	0.918	344.26	3.23E-02	
					377.59	3.04E-02	В
					410.93	3.63E-02	
-	724	3.111111	0.943394	0.918	344.26	3.77E-02	
					360.93	2.08E-02	
					377.59	2.03E-02	
					394.26	2.00E-02	В
					410.93	1.97E-02	В
					427.59	2.79E-02	
					444.26	1.35E-02	
					449.82	1.66E-02	
neoC5H12	83	3.060606	0.951328				
_	113	3.060606	0.937558				
_	114	3.060606	0.937983				
	756	3.060606	0.942442	0.920	298.15	1.92E-02	
	730	3.000000	0.072442	0.520	298.15	1.91E-02	
					344.26	2.89E-02	В
					377.59	2.48E-02	
					410.93	4.99E-02	
3m-C5	84	3.707071	0.847852	0.893	298.15	1.03E-01	
3111 -00	84	3.707071	0.04/802	0.893			
					323.15	9.25E-02	D
					348.15	7.33E-02	
					373.15	4.86E-02	
	00-						
_	367						
_	367						
_	367						

表 4.5 F1 における気液平衡逆算の結果 (続き)

C6H14	28	3.717172	0.886049	0.892	298.15	2.53E-02	
					323.15	2.14E-02	
					348.15	1.66E-02	Α
					373.15	1.29E-02	
 					423.15	1.35E-02	
cyl-C6	99	3.111111	0.85618				
-	357	3.111111	0.900213	0.938	294.26	5.03E-02	
					310.31	4.62E-02	
					344.26	2.92E-02	
					377.59	2.51E-02	В
					410.93	1.82E-02	
					444.26	1.76E-02	
 0.7114.0		4.00000	0.050400		444.20	1./0E=02	
C7H16	42	4.30303	0.858409				
	105	4.30303	0.904377				
	103	4.30303	0.804377				
-	746	4.30303	0.873688	0.868	199.82	8.13E-02	
					210.93	7.23E-02	
					222.04	6.22E-02	
					233.15	5.49E-02	
					244.26	4.61E-02	
					255.37	4.25E-02	
					277.59	3.08E-02	С
					310.93	3.03E-02	_
					344.26	2.94E-02	
					377.59	2.45E-02	
					410.93	2.40E-02	
					444.26	2.02E-02	
					477.59	1.66E-02	
					510.93	3.91E-02	
 22114		4040405	0.045000	0.040			
C8H18	30	4.949495	0.815623	0.843	298.15	2.56E-02	
					323.15	1.92E-02	
					348.15	1.73E-02	A
					373.15	1.18E-02	
					423.15	5.55E-03	
C9H2O	339	5.484848	0.915491				
031120	000	0.404040	0.010401				
_	700	5.484848	0.80923	0.824	223.15	1.35E-01	
	700	J.7J7U70	0.00020	3.024	248.15	7.57E-02	
					273.15	3.89E-02	
					298.15	3.78E-02	С
					323.15	3.65E-02	Ŭ
					348.15	3.37E-02	
						9.08E-03	
					3/3.13	9.00L 03	
					373.15 423.15	6.99E-03	

表 4.6 F1 における気液平衡逆算の結果 (続き)

3X 4.0 F1 (C.4	, • , .	1100 1 100		.,,,			
C10H22	29	6.090909	0.835491				
_	43	6.090909	0.922836				
	70	0.000000	0.022000				
-	109						
-	747	6.090909	0.828541	0.802	310.93	3.49E-02	
					344.26	3.39E-02	
					377.59	3.48E-02	
					410.93	3.76E-02	
					444.26	3.77E-02	
					477.59	4.19E-02	
					510.93	4.19E 02 4.30E-02	
					423.15	6.01E-03	
					510.95	5.59E-02	С
					542.75	6.61E-02	
					563.25	3.61E-02	
					583.05	2.50E-02	
					277.59	3.22E-02	
					310.93	2.64E-02	
					410.93	3.96E-02	
					477.59	4.36E-02	
					510.93	3.22E-02	
					277.59	3.44E-02	
					244.26	1.03E-01	
C16H34	145	9.393939	0.594935	0.708	315	5.65E-04	
0101101	110	0.00000	0.00 1000	0.700	355	1.10E-03	
							Α
					395	2.92E-03	7.1
					435	1.35E-02	
	070				475	5.59E-02	
	273						
	274						
C18H38	135	10.10101	0.452381	0.691	308.15	4.39E-04	
					323.15	1.40E-04	
					343.15	4.06E-04	, +
					363.15	8.23E-04	
					373.15	6.47E-04	
					423.15	3.21E-03	
C20H42	100				720.10	3.21L -U3	
C20H42	126	11 11111	0.057000				
	140	11.11111	0.257236				
-	755	11.11111	0.257236	0.668	313.15	2.26E-02	
					323.15	2.69E-04	
					373.15	7.20E-04	
					393.15	8.56E-04	
					413.15	9.85E-04	

表 4.7 F2 における気液平衡逆算の結果

1	C2H6	СЗН8	14	1.351351	0.996764	0.995789	255.35	1.31E-02	
	02110	03110	14	1.331331	0.930704	0.993769			
- 731 1.351351 0.996 0.995789 255.37 1.37E-02 365.35 1.17E-02 375.35 1.35E-03 1.17E-02 375.35 1.3E-03 1.17E-02 375.35 1.3E-03 1.3E-02 375.35 1.3E-03 1.3E-02 375.35 1.3E-03 1.3E-02 375.35 1.3E-03 1.3									A +
- 731 1.351351 0.996 0.995789 255.37 1.32E-02									Α
							344.25	1.10E-02	
Campaigness									
Section Sect		-	731	1.351351	0.996	0.995789	255.37	1.32E-02	
C4H10									A +
C4H10									Α
C4H10									
C4H10									
		C4H10	25	1 722973	0.982	0.9940018			
		0 11110	23	1.722070	0.002	0.0010010			Α
Cehi		-	300	1.722973	0.982	0.9940018			
CAH10							4.76E+01	2.29E-02	R
C4H10									ь
C5H12 340 2.101351 0.975 0.9852425 277.59 2.36E-02 344.68 1.916-02 A 311.66 2.92E-03 310.93 1.53E-02 344.66 1.92E-02 A 377.59 8.86E-03 377.59 8.86E-03 410.93 1.50E-02 A 44.26 1.21E-02 A 44.26 1.21E-02 A 44.26 1.36E-02 A 44.26 1									
SH12 340 2.101351 0.975 0.9852425 277.59 2.36E-02 344.26 1.52E-02 344.26 1.53E-02		i-C4H10	68	1.777027	0.99	0.9929616			
C5H12 340 2.101351 0.975 0.9852425 277.59 2.36E-02 310.93 1.53E-02 344.26 1.62E-02 377.59 8.86E-03 377.59 8.86E-03 444.26 1.21E-02 444.25 1.23E-02 444.26 1.27E-02									A
C5H12 340 2.101351 0.975 0.9852425 277.59 2.36E-02 310.93 1.53E-02 377.59 8.86E-03 410.93 1.50E-02 444.26 1.21E-02 449.82 2.38E-02 449.82 449.82 2.38E-02 449.82 449.82 2.38E-02 449.82 449.82 2.38E-02 449.82 4									
A 310.93		0.5111.5		0.40.55		0.0055.55			
Company Comp		C5H12	340	2.101351	0.975	0.9852425			
Company Comp									
C6H14									A^{+}
C6H14 341 2.486486 0.971 0.9727057 338.71 1.66E-02 394.26 1.36E-02 449.82 2.82E-02									
C6H14 341 2.486486 0.971 0.9727057 338.71 1.66E-02 A 49.82 2.82E-02 A 49.82E 2.82E-02 A									
C8H18 343 3,310811 0,926 0,9419427 273,15 1,141E-02 449,82 2,82E-02 4 49,82 2,8315 1,15E-02 313,15 1,25E-02 4 48,815 1,25E-02 4 48,915 1,25E-02 1		C6H14	341	2 486486	0.971	0 9727057			
Carrier Carr		001111	011	2.100100	0.071	0.0727007			Α
C8H18 343 3.310811 0.926 0.9419427 273.15 1.41E-02 298.15 1.16E-02 313.15 1.25E-02 323.15 1.55E-02 348.15 1.42E-02 348.15 1.42E-02 348.15 1.42E-02 373.15 1.73E-02 C10H22 38 4.074324 0.927 0.9125644 310.95 2.18E-02 444.25 2.33E-02 510.85 1.83E-02 444.25 2.31E-02 377.59 2.36E-02 410.93 1.76E-02 444.26 2.43E-02 477.59 1.60E-02 444.26 2.43E-02 477.59 1.80E-02 2.71E-02 377.59 2.36E-02 477.59 1.80E-02 477.59 1.80E-02 323.15 2.16E-02 323.15 2.16E-02 323.15 3.16E-02 323.15 3.16E-02 475 5.69E-02									
C10H22 38 4.074324 0.927 0.9125644 310.95 1.73E-02 373.15 1.73E-02 377.55 2.72E-02 377.59 1.61E-02 377.59 1.61E-02 377.59 2.36E-02 377.59 2.36E-02 377.59 2.36E-02 377.59 2.36E-02 377.59 2.36E-02 377.59 3.60E-02 3.60E-02 377.59 3.60E-02 3.60E-		C8H18	343	3.310811	0.926	0.9419427			
C10H22 38 4.074324 0.927 0.9125644 310.95 2.18E-02 373.15 1.55E-02 444.25 2.33E-02 444.25 2.33E-02 510.85 1.83E-02 510.85 1.83									
C10H22 38 4.074324 0.927 0.9125644 310.95 2.18E-02 373.15 1.73E-02 373.15 1.73E-02 373.15 1.73E-02 377.55 2.72E-02 444.25 2.33E-02 444.25 2.33E-02 510.85 1.83E-02 310.93 1.96E-02 310.93 1.96E-02 344.26 2.71E-02 377.59 2.36E-02 444.26 2.71E-02 377.59 2.36E-02 444.26 2.43E-02 445.26 2.73.15 2.19E-02 2.73.15 2.19E-02 2.73.15 2.19E-02 2.73.15 2.19E-02 2.73.15 2.19E-02 2.73.15 2.19E-02 323.15 4.05E-02 323.15 4.05E-02 323.15 4.05E-02 323.15 4.05E-02 323.15 4.05E-02 323.15 4.05E-02									Δ
C10H22 38 4.074324 0.927 0.9125644 310.95 2.18E-02 377.55 2.72E-02 444.25 2.33E-02 444.25 2.33E-02 510.85 1.83E-02 510.85 1.83E-02 7.16-02 310.93 1.96E-02 310.93 1.96E-02 377.59 2.36E-02 4410.93 1.76E-02 510.93 1.97E-02 510.							323.15	1.55E-02	А
C10H22 38 4.074324 0.927 0.9125644 310.95 2.18E-02 377.55 2.72E-02 4444.25 2.33E-02 510.85 1.83E-02 510.85 1.83E-02 510.85 1.83E-02 510.85 1.83E-02 7.759 1.61E-02 7.759 1.61E-02 7.759 1.61E-02 7.759 2.36E-02 7.759 2.									
C12H26 91 4.817568 0.893 0.8846208 373.15 2.97E-02 4.09E-02 323.15 2.99E-02 323.15 3.71E-03 3.99E-03 323.15 3.71E-03 323.15 3.		2/2/22	-						
- 344 4.074324 0.926 0.9125644 277.59 1.61E-02 1.61E-02 310.93 1.96E-02 377.59 2.36E-02 410.93 1.76E-02 444.26 2.43E-02 477.59 1.80E-02 477.59 1.80E-02 477.59 1.80E-02 477.59 1.80E-02 477.59 1.80E-02 477.59 2.36E-02 477.59 2.36E-02 477.59 1.80E-02 510.93 1.97E-02 510.93		C10H22	38	4.074324	0.927	0.9125644			
- 344 4.074324 0.926 0.9125644 277.59 1.61E-02 310.93 1.96E-02 344.26 2.71E-02 377.59 2.36E-02 440.93 1.76E-02 444.26 2.43E-02 477.59 1.80E-02 477.59 1.80E-02 477.59 1.80E-02 477.59 1.80E-02 510.93 1.97E-02									A
- 344 4.074324 0.926 0.9125644 277.59 1.61E-02 310.93 1.96E-02 344.26 2.71E-02 377.59 2.36E-02 410.93 1.76E-02 440.93 1.76E-02 477.59 1.80E-02 477.59 1.80E-02 477.59 1.80E-02 510.93 1.97E-02 510.93 1.97E-03									
C12H26 91 4.817568 0.893 0.8846208 373.15 2.16E-02 4.9402		_	3/1/1	4 074324	N 926	0.9125644			
C12H26 91 4.817568 0.893 0.8846208 373.15 2.16E-02 477.59 1.80E-02			344	7.074324	0.520	0.0120044			
C12H26 91 4.817568 0.893 0.8846208 373.15 2.16E-02									
A									۸
C12H26 91 4.817568 0.893 0.8846208 373.15 2.16E-02 323.15 4.05E-02 B 273.15 2.19E-02 C16H34 146 6.283784 0.828 0.834877 315 2.87E-03 395 3.48E-03 435 1.41E-02 475 5.69E-02 C18H38 136 6.756757 0.809 0.8199108 308.15 1.28E-02 343.15 3.08E-05 343.15 3.08E-05 363.15 1.11E-03 373.15 1.56E-03									A
C12H26 91 4.817568 0.893 0.8846208 373.15 2.16E-02 323.15 4.05E-02 B 273.15 2.19E-02 C16H34 146 6.283784 0.828 0.834877 315 2.87E-03 355 1.23E-03 4.95E-02 4									
C12H26 91 4.817568 0.893 0.8846208 373.15 2.16E-02 323.15 4.05E-02 273.15 2.19E-02 C16H34 146 6.283784 0.828 0.834877 315 2.87E-03 355 1.23E-03 395 3.48E-03 435 1.41E-02 475 5.69E-02 C18H38 136 6.756757 0.809 0.8199108 308.15 1.28E-02 343.15 3.08E-05 343.15 3.08E-05 363.15 1.11E-03 373.15 1.56E-03									
C16H34		0.101/22		404		0.00/			
C16H34		C12H26	91	4.817568	0.893	0.8846208			ъ
C16H34									В
C18H38		016404	140	6 202704	0.000	0.024077			
C18H38		G16H34	146	0.283/84	0.828	0.834877			
C18H38									А
C18H38									А
C18H38 136 6.756757 0.809 0.8199108 308.15 1.28E-02 323.15 3.71E-03 343.15 3.08E-05 363.15 1.11E-03 373.15 1.56E-03									
323.15 3.71E-03 343.15 3.08E-05 363.15 1.11E-03 373.15 1.56E-03		C10H20	126	6 756757	0.000	0.0100100			
343.15 3.08E-05 A ⁺ 363.15 1.11E-03 373.15 1.56E-03		0101130	130	0.750757	0.009	0.0188108			
363.15 1.11E-03 373.15 1.56E-03									
373.15 1.56E-03									A^{+}
									L

表 4.8 F2 における気液平衡逆算の結果 (続き)

	C20H42	128	7.432432		0.8001007	333.15	3.96E-02	В
	-	141	7.432432	0.95	0.8001007	323.15	1.49E-02	
		171	7.402402	0.33	0.0001007	343.15	3.68E-03	
						373.15	5.12E-04	A^{+}
						393.15	1.16E-03	
						413.15	1.63E-03	
	_	759	7.432432	0.784	0.8001007	323.15	1.49E-02	
		700	71102102		0.000.007	343.15	3.68E-03	
						373.15	5.12E-04	
						393.15	1.16E-03	A^{+}
						413.15	1.63E-03	
						333.15	3.96E-02	
C3H8	C4H10	345	1.275	1	0.9948724	333.15	5.24E-03	
00110	0 11110	0.10	1.270		0.00 10721	343.15	7.91E-03	
						353.15	9.47E-03	
						363.15	1.36E-02	
						373.15	1.44E-02	. +
						383.15	1.51E-02	A^{+}
						393.15	1.72E-02	1
						403.15	1.54E-02	1
						413.15	1.59E-02	
						423.15	2.73E-03	
	i-C4H10	708	1.315	0.996	0.9954596	266.54	1.44E-02	
						299.75	3.27E-02	
						338.64	2.29E-02	Α
						366.44	2.76E-02	
						394.24	1.46E-02	
	C5H12	16	1.555	0.984	0.9958969	344.25	1.87E-02	
						360.95	1.84E-02	
						377.55	1.44E-02	
						394.25	1.72E-02	A^{+}
						410.95	1.73E-02	A
						427.55	9.35E-03	
						444.25	1.97E-02	
						460.95	2.48E-02	
	C7H16	264	2.13	0.944	0.9843739	313.15	1.05E-01	D
						303.15	6.87E-02	
	-	346	2.13	0.985	0.9843739	333.15	2.86E-03	
						353.15	6.34E-03	
						373.15	8.73E-03	
						393.15	1.01E-02	
						413.15	6.39E-03	
						433.15	6.95E-03	Α
						453.15	1.22E-02	
						473.15 493.15	2.64E-02 3.27E-02	
						513.15	3.36E-02	
						533.15	3.03E-02	1
	C10H22	45	3.015	0 056	0.9531352	310.93	9.02E-03	
	0101122	43	0.010	0.000	3.0001002			
						377.59 444.26	6.00E-03 9.34E-03	A^{+}
						510.93	9.34E-03 8.00E-03	
	0101100	107		0.070	0.0701410			
	C18H38	137	5	0.878	0.8781419	308.15	1.74E-02	
						323.15	X	
						343.15	5.87E-03	A^{+}
						363.15	6.08E-03	l
						373.15	6.31E-03	
						423.15	7.26E-03	

	C20H42	142	5.5	0.851	0.8606515	323.15	2.07E-02	
	G20H42	142	5.5	0.831	0.8600313			
						343.15 373.15	1.01E-03 4.60E-03	A^{+}
						393.15	5.01E-03	••
						413.15	4.67E-03	
C4H10	i-C4H10	709	1.031373	0.997	0.9862834	273.15	7.78E-02	D
	C5H12	347	1.219608	0.992	0.9936427	298.15	2.01E-02	Α
	_	710	1.219608	0.992	0.9936427	298.15	1.98E-02	Α
	C7H16	349	1.670588	0.992	0.9947412	355.37	2.17E-02	
	371110	043	1.070000	0.002	0.0047412	372.04	2.65E-02	
						388.71	1.75E-02	
						405.37	1.12E-02	
						422.04	8.77E-03	
						438.71	6.58E-03	A^{+}
						455.37	8.30E-03	
						472.04	1.15E-02	
						488.71	1.49E-02	
						505.37	2.08E-02	
						522.04 538.71	1.49E-02 1.50E-03	
	C10H22	46	2.364706	0.974	0.9771432	310.93	1.64E-02	
	CTOHZZ	40	2.304700	0.974	0.9771432			
						377.59 444.26	1.19E-02 6.68E-03	A^{+}
						510.93	1.22E-02	
	_	737	2.364706	0.975	0.9771432	310.93	1.63E-02	
		707	2.004700	0.070	0.5771402	344.26	1.97E-02	
						377.59	1.18E-02	
						410.93	5.76E-03	A^{+}
						444.26	6.30E-03	
						477.59	5.34E-03	
						510.93	1.20E-02	
C6H14	C7H16	352	1.157609	0.999	0.9919411	303.15	3.84E-02	В
						323.15	4.17E-02	
	-	714	1.157609	0.999	0.9919411	303.15	3.45E-02	В
	0.10110.1	100	0.507474	0.004	0.074.004.4	323.15	4.17E-02	
	C16H34	122	2.527174	0.964	0.9713014	293.15	7.34E-02	С
						313.15 333.15	4.77E-02	
C2H4	C2H6	64	1.193548	0.996	0.992855	208.55	3.04E-02 2.46E-02	
02П4	CZH0	04	1.193546	0.990	0.992655	231.65	4.10E-02	
						253.15	1.80E-02	В
						273.15	5.24E-02	
	C4H10	63	2.056452	0.946	0.9863685	322.05	2.99E-02	
						366.45	3.97E-02	В
						388.75	3.30E-02	
	-	359	2.056452		0.9863685	322.04	2.90E-02	В
						366.48	3.65E-02	Б
	C7H16	89	3.435484	0.95	0.9368931	473.15	1.58E-02	
						413.15	3.11E-02	В
						353.15	4.26E-02	
						293.15	1.91E-02	
	-	362	3.435484	0.94	0.9368931	216.48	2.25E-02	
						233.15	1.72E-02	
						249.82 266.48	1.42E-02 1.95E-02	
						283.15	1.95E-02 2.09E-02	
						299.82	1.49E-02	
						316.48	1.62E-02	
						333.15	1.67E-02	
						349.82	1.71E-02	
						366.48	2.10E-02	A^+
						383.15	1.81E-02	
						399.82	1.74E-02	
						416.48	1.20E-02	
						433.15 449.82	1.12E-02 7.39E-03	
						449.82	7.39E-03 5.59E-03	
						483.15	8.26E-03	
								i
						499.82	9.75E-03	

表 4.9 F2 における気液平衡逆算の結果 (続き)

	C10H22	93	4.862903	0.895	0.8831729	292.65 283.65	3.68E-02 3.38E-02	В
	010100	00	F 75	0.000	0.0501005			
	C12H26	90	5.75	0.866	0.8521905	283.15	2.55E-02	
						298.15	4.48E-02	C
						323.15	5.11E-02	
	C18H38	138	8.064516	0.776	0.7825493	348.15 308.15	3.88E-02 5.74E-03	
	0101100	130	0.004310	0.770	0.7023433			
						323.15 343.15	1.17E-03 8.16E-04	
						363.15	1.28E-03	A^{+}
						373.15	1.32E-03	
						423.15	3.91E-03	
	C20H42	143	8.870968	0.751	0.7613898	323.15	7.37E-03	
	G20H42	143	0.070900	0.731	0.7013696			
						343.15 373.15	1.41E-03 7.63E-04	A^{+}
								11
						393.15 413.15	1.13E-03 1.44E-03	
C3H6	C2H6	9	1.222973	0.995	0.9936427	260.95	1.63E-02	
03110	OZITO	,	1.222373	0.555	0.3330427	277.55	1.51E-02	
						310.95	6.75E-03	A^{+}
						344.25	5.64E-03	
	C3H8	15	1.104972	0.994	0.9896975	260.95	2.68E-02	
						277.55	2.70E-02	
						310.95	2.33E-02	C
						344.25	8.90E-02	
						360.95	1.24E-01	
	_	732	1.104972	0.994	0.9896975	223.75	6.88E-02	
						228.65	3.48E-02	
						233.45	1.70E-02	C
						239.35	1.99E-02	
	C18H38	139	5.524862	0.873	0.8599676	308.15	9.98E-03	
						323.15	1.43E-02	
						343.15	1.26E-02	A^{+}
						363.15	9.94E-03	Α
						373.15	9.13E-03	
						423.15	8.18E-03	
	C20H42	144	6.077348	0.845	0.8413116	323.15	5.39E-03	
						343.15	1.01E-02	
						373.15	8.89E-03	A^{+}
						393.15	7.49E-03	
						423.15	7.30E-03	
	1-C4H8	66	1.325967	0.994	0.9955796	294.25	1.18E-02	
						344.25	5.40E-03	Α
						399.85	2.99E-02	A
						410.95	1.25E-02	
cyl-C6	C6H14	87	1.194805	0.997	0.9962227	343.15	6.91E-02	C
	C12H26	92	2.314935	0.976	0.9636952	288.3	1.16E-01	
						298.02	1.10E-01	D
						312.48	1.01E-01	
	C16H34	123	3.019481	0.954	0.9314537	298.02	2.89E-01	
						305.04	2.85E-01	D
						312.48	2.92E-01	

表 4.10 F3 における気液平衡逆算の結果

CO2	CH4	12	1.053191	0.954	0.9383724	199.85	1.24E-01	1
						209.25	2.68E-02	l
						219.25	4.16E-02	D
						223.75	1.62E-02	В
						241.45	1.47E-02	l
						259.85	1.26E-02	l
		101	4.050404	0.004	0.0000704	271.55	5.30E-03	
	_	104	1.053191	0.961	0.9383724	233.15	2.71E-02	l
						253.15	2.31E-02	Α
						273.15	9.58E-03	ł
						283.15	4.27E-03	
	C2H6	22	1.574468	0.94	0.9583575	288.71	3.13E-02	l
						266.48	6.02E-02	С
						244.26	7.57E-02	l
						222.04	5.24E-02	
	-	106	1.574468	0.942	0.9583575	252.95	8.04E-02	D
	-	107	1.574468	0.94	0.9583575	283.15	1.35E-01	D
						255.35	1.22E-01	
	C3H8	4	2.12766	0.953	0.9557226	273.15	2.41E-02	ł
						253.15	3.04E-02	В
						233.15	6.73E-02	<u> </u>
	-	5	2.12766	0.934	0.9557226	294.25	1.65E-02	ł
						310.95	1.88E-02	Α
						327.55	1.99E-02	A
						344.25	1.78E-02	
	C4H10	3	2.712766	0.925	0.9428263	310.95	2.02E-02	Α
	_	44	2.712766	0.921	0.9428263	344.25	1.96E-02	Α
	_	70	2.712766	0.93	0.9428263	273.15	1.01E-02	Α
	i-C4H10	59	2.797872	0.917	0.9403617	310.93	2.21E-02	
	041110	39	2.797072	0.517	0.9403017	344.26		l
						377.59	2.93E-02 2.87E-02	Α
								ł
		71	2 707072	0.928	0.0402617	394.26	2.93E-02	A
	-		2.797872		0.9403617	273.15	1.50E-02	A
	C5H12	354	3.308511	0.915	0.9251585	277.65	1.02E-02	l
						311.04	1.88E-02	Α
						344.15	2.00E-02	l
						377.59	2.37E-02	—
	i-C5H12	730	3.276596	0.914	0.9260946	277.59	1.02E-02	l
						310.93	1.77E-02	Α
						344.32	2.36E-02	l
						377.65	2.49E-02	<u> </u>
	cyl-C6	56	3.276596	0.9	0.9260946	473.15	1.37E-02	l
						493.15	2.25E-02	Α
						513.15	1.98E-02	i -
						533.15	1.39E-02	Ь—
	= -	155	3.276596	0.904	0.9260946	273.15	1.13E-01	ł
						283.15	1.06E-01	D
						298.15	1.08E-01	_
						303.15	1.06E-01	<u> </u>
	C7H16	713	4.531915	0.898	0.8857125	310.65	1.56E-02	i
						352.59	2.26E-02	В
						394.26	2.14E-02	
						477.21	5.61E-02	
	C8H18	97	5.212766	0.889	0.863965	353.15	2.58E-02	
						313.15	2.00E-02	В
						393.15	4.19E-02	<u></u>
	C10H22	17	6.414894	0.862	0.8276257	277.55	2.48E-02	
					/	310.95	1.92E-02	ł
						344.25	2.29E-02	ł
						377.55	2.14E-02	Α.
						410.95	2.03E-02	Α
						444.25	1.82E-02	ł
								ı
						477.55	2.06E-02	

表 4.11 F3 における気液平衡逆算の結果 (続き)

	012420	125	0 101400	0.853	0.7702006	212.15	4.625-02	
	C13H28	125	8.191489	0.833	0.7792906	313.15 333.15	4.63E-02 7.95E-02	C
	C16H34	127	9.893617	0.809	0.7389311	313.15	×	
		1				333.15	1.47E-01	D
						353.15	6.52E-02	
	C20H42	124	11.70213	0.727	0.7012233	323.15	8.44E-02	
						348.15	1.20E-02	В
						373.15	8.89E-03	<u> </u>
	C2H4	72	1.319149	0.977	0.9529646	253.15	8.26E-02	D
						231.15	8.50E-02	
	C3H6	67	1.925532	0.955	0.9582664	273.15	1.79E-02	В
						229.15	5.28E-02	—
	-	73	1.925532	0.95	0.9582664	273.15	1.48E-02	В
	1.04110	7.4	0.550101	0.040	0.0400070	252.95	4.95E-02	_
00110	1-C4H8	74	2.553191	0.949	_	273.15	2.63E-02	A
C2H2	C2H6	751	1.309735	0.943	0.952615	277.59	8.39E-02	
						288.71 235.93	2.14E-02 1.54E-01	D
						255.37	1.35E-01	
	C6H14	78	3.256637	0.924	0.9267166	263.15	1.74E-01	
						258.15	1.69E-01	D
						253.15	1.88E-01	
	C8H18	79	4.336283	0.899	0.8918869	273.15	5.30E-02	
						266.15	8.16E-02	D
						258.15	1.09E-01	
						253.15	1.19E-01	<u> </u>
	C2H4	61	1.097345	0.973	0.9420125	277.59	1.91E-02	Α
						288.71	1.82E-02	
	C3H6	86	1.60177	0.941	0.9586447	333.15	6.06E-02	_
						318.15	8.55E-02	D
	0114	0.7	4.040000	2.25.4	0.0050750	303.15	7.16E-02	
H2S	CH4	37	1.013306	0.954	0.9350759	277.55	2.87E-02	A
						310.95 344.25	2.40E-02 1.08E-02	A
	C3H8	36	2.047083	0.948	0.9569013	243.15	5.00E-02	
	Corns	- 00	2.047000	0.040	0.0000010	273.15	1.21E-02	C
						288.15	5.28E-02	
	C4H10	110	2.610031	0.947	0.9454542	324.82	1.85E-02	
						380.37	3.92E-02	В
						394.26	2.94E-02	ь
						408.15	2.16E-02	
	i-C4H10	738	2.691914	0.947	0.9433617	277.65	4.70E-02	
						310.93	3.10E-02	В
						344.37	2.99E-02	
	051110		0.100011	2 2 2 4	0.0004050	377.59	3.78E-02	
	C5H12	20	3.183214	0.934	0.9291856	277.55	4.31E-02	
						310.95	2.38E-02	
						344.25 377.55	2.04E-02 1.62E-02	В
						410.95	2.25E-02	
						444.25	4.98E-02	
	C10H22	32	6.171955	0.891	0.834656	277.55	8.14E-02	
						310.95	7.36E-02	
						344.25	4.90E-02	С
						377.55	2.84E-02	_
						410.95	2.58E-02	
	00110	20	1.05001	0.050	0.0500000	444.25	2.50E-02	
	C3H6	60	1.85261	0.956	0.9588636	243.15	1.18E-01	D
						273.15 288.15	6.28E-02 6.19E-02	J
	CO2	35	1.039362	0.951	0.9375819	273.15	5.07E-02	
	002	33	1.000002	0.501	0.0070019	246.35	2.61E-02	В
						221.15	2.92E-02	_
	-	101	1.039362	0.958	0.9375819	293.15	1.93E-02	
		.01		3.000		313.15	1.49E-02	Α.
						333.15	1.17E-02	A
the state of the s								

表 4.12 F4 における気液平衡逆算の結果

N2	CH4	34	1.098779	0.973	0.9927147	155.35	2.55E-02	
						133.15	3.03E-02	ъ
						122.05	3.94E-02	В
						99.85	4.81E-02	
	C2H6	13	1.642619	0.926	0.9419352	194.26	4.44E-02	
						172.04	4.08E-02	В
						149.82	4.17E-02	В
						138.71	4.68E-02	
	_	23	1.642619	1	0.9419352	171.43	6.34E-02	
						122.04	5.72E-02	С
	C3H8	319	2.219756	0.908	0.8901428	119.82	7.60E-02	
						124.82	7.54E-02	
						126.37	8.55E-02	
						126.82	8.17E-02	
						143.15	7.60E-02	
						173.15	4.98E-02	
						198.15	3.04E-02	
						223.15	2.43E-02	
						229.82	2.09E-02	
						248.15	1.38E-02	C
						259.82	2.95E-02	
						273.15	1.56E-02	
						289.15	2.28E-02	
						298.15	3.48E-02	
						298.15	2.67E-02	
						323.15	4.03E-02	
						333.15	4.26E-02	
						343.15	2.08E-02	
						353.15	1.12E-02	
	C4H10	8	2.830189	0.885	0.8420695	310.95	2.74E-02	
						344.25	5.65E-02	В
						377.25	6.24E-02	
						410.95	9.11E-03	
	i-C4H10	320	2.918979	0.85	0.835521	255.37	1.20E-02	
						283.21	1.13E-02	
						310.87	2.59E-02	
						338.65	3.55E-02	Α
						338.71	2.77E-02	
						366.32	2.05E-02	
						394.26	6.96E-03	
	051140		0.45455		0.7005405	394.26	2.84E-02	
	C5H12	716	3.45172	0.791	0.7995189	277.43	1.60E-02	
						310.71	7.12E-03	A
						344.26	9.47E-03	
						377.59	2.54E-02	
	i-C5H12	715	3.418424	0.796	0.8014466	277.59	1.20E-02	
						310.82	9.25E-03	A^{+}
						344.15	9.66E-03	
						377.37	2.11E-02	
	C6H14	323	4.084351	0.75	0.7617476	310.93	2.43E-02	
						344.26	2.00E-02	
						377.55	3.20E-02	C
						410.95	6.08E-02	
						444.25	7.28E-02	

表 4.13 F4 における気液平衡逆算の結果 (続き)

	C7H16	324	4.72808	0.752	0.7275052	305.35	3.58E-02	
						352.55	3.23E-02	
						376.35	5.21E-02	
						399.85	8.34E-02	
						413.15	6.68E-02	D
						452.95	6.19E-02	ט
						453.15	3.67E-02	
						455.35	5.62E-02	
						472.15	7.84E-02	
						497.15	7.42E-02	
	C10H22	326	6.692564	0.566	0.6454094	310.95	3.67E-02	
						344.25	2.24E-02	В
						377.55	1.55E-02	
						411.85	1.43E-02	
	C2H4	703	1.376249	0.97	0.9665604	200	3.04E-02	В
						260	1.27E-02	ь
	C3H6	706	2.008879	0.933	0.9082416	260	3.51E-02	В
						290	3.00E-02	D
CO	CH4	717	1.063373	0.98	0.9962729	91.56	8.15E-02	
						97.17	6.11E-02	
						105.22	3.75E-02	C
						114.48	4.44E-02	
						123.9	3.40E-02	
	C2H6	718	1.589689	0.979	0.9466335	173.15	6.70E-02	
						223.15	4.58E-02	С
						248.15	4.19E-02	
						273.15	1.31E-02	
	C3H8	719	2.148228	0.904	0.8960873	148.15	2.98E-02	
						173.15	2.72E-02	
						198.15	1.45E-02	
						223.15	1.49E-02	В
						248.15	2.47E-02	ь
						273.15	3.24E-02	
						298.15	3.15E-02	
						323.15	5.59E-02	
	N2	720	1.033296	0 002	0.9988877	83.82	8.78E-02	D

表 4.14 F5 における気液平衡逆算の結果

	00110	100	1 750757	0.007055	0.075	000.45	0.705.00	
benzene	C2H6	108	1.756757	0.967955	0.975	323.15	2.76E-02	
						373.15	2.91E-02	В
						423.15	3.18E-02	
						498.15	1.03E-02	
	-	380	1.756757	0.961712	0.975	298.15	3.23E-02	В
	C3H8	51	1.3	0.981328				
	_	732	1.3	0.980901	0.990	310.93	4.07E-02	
						344.26	2.26E-02	
						377.59	1.70E-02	ъ
						410.93	2.04E-02	В
						444.26	1.50E-02	
						477.59	1.19E-02	
	C5H12	329				177.00	1.102 02	
	031112		1 100154	0.000504				
	_	337	1.196154	0.989524				
			4 40 5 1 5 1	0.05				
		368	1.196154	0.989524				
	-	710	1.196154	0.987983	0.992	255.37	4.59E-02	В
						289.15	3.44E-02	,
	-	771	1.196154	0.988409				
	C6H14	48	1.415385	0.989524	0.987	303.15	5.74E-02	
						313.15	5.12E-02	-
						323.15	4.01E-02	
						333.15	3.73E-02	
	_	229	1			000.10	0.702 02	
			1					
	_	313			2 2 2 7	000.45	5.405.00	
	_	737			0.987	298.15	5.12E-02	
						328.25	3.18E-02	
						333.15	4.94E-02	C
						340.69	×	
						350.5	3.98E-02	
	C7H16	232						
	_	314						
	-	738			0.980	333.15	9.45E-02	D
	C8H18	224						
	_	315	1.884615	0.984935	0.970	328.15	1.85E-01	
		510		2.231000	3.073	328.25	×	_
						338.15	1.63E-01	D
						348.15	1.48E-01	
	cyl-C6	226				040.10	1.702-01	
	Cyl-Co							
		773						
	_	817	1.184615	0.986004	0.992	403.15	1.35E-01	
						413.15	1.70E-01	D
						423.15	1.55E-01	
	C2H4	252						
	_	775	2.096774	0.963146	0.960	513.15	4.11E-02	
		,,,		5.555.10	5.530	523.15	3.27E-02	В
						533.15	2.02E-02	
						000.10	2.021 02	

1	<u> </u>							
	C3H6	762	1.436464	0.974854				
	-	776	1.436464	0.962017				
		777	1 406464	0.077005				
	-	777	1.436464	0.977295	0.001	400.15	0.055.00	
	toluene	53	1.230769	0.993394	0.991	433.15	3.85E-02	
						473.15 513.15	3.08E-02 2.04E-02	В
						553.15	4.65E-02	
	_	236				000.10	4.00L 0Z	
	m-xylene	814	1.446154	0.978146	0.987	393.15	6.75E-02	С
	iii xylerie	820			0.967	333.13	0.73L 02	C
		820	1.446154	0.994246				
toluene	C2H6	764	2.162162	0.956606	0.957	313.1	2.46E-02	
tolatific	OZI 10	704	2.102102	0.00000	0.007	393.1	1.82E-02	В
						473.1	3.53E-02	
	C3H8	55	1.6	0.975511	0.981	323.15	2.42E-02	
	55110	33	1.0	2.07.0011	0.001	348.15	1.75E-02	Б
						393.15	3.16E-02	В
						402.15	1.82E-02	
	_	767	1.6	0.974802	0.981	394	1.90E-02	
						473.2	2.25E-02	Α
	C5H12	49	1.028939	0.990213	0.991	293.15	1.67E-02	
						303.15	1.34E-02	Α
						313.15	1.09E-02	
	C10H22	383	1.884375	0.985623				
	-	760	1.884375	0.985623	0.991	373.5	1.12E-01	
						383.6	9.37E-02	D
						393.7	6.60E-02	
	C2H4	94	2.580645	0.951591				
	-	778	2.580645	0.932442	0.991	323.15	7.02E-03	
						373.15	4.36E-03	A^{+}
						423.15	1.19E-02	
	m-xylene	759	1.175	0.994935	0.991	373.6	4.58E-02	
						383.6	4.06E-02	В
						393.7	2.74E-02	
	tetralin	774	1.403125	0.994146	0.988	573	3.27E-01	
						608.2	1.29E-01	D
						632.9	×	
	07114.5			0.055.44		672.3	4.45E-02	
o-xylene	C7H16	377	1.154472	0.992442	0.992	348.15	1.69E-02	A
		382	1.154472	0.992017	0.992	348.1	1.94E-02	
						358.1	1.75E-02	Α
manual are a	02110	700	1.00	0.070010	0.070	368.3	1.42E-02	
m-xylene	C3H8	768	1.88	0.970213	0.970	313.3	5.88E-03	Α
						393.7 473.2	1.83E-02 3.34E-02	13
	C10H22	384				7/0.2	0.04L 0Z	
	-	761	1.603723	0.992017	0.981	373.5	1.28E-01	
		701	1.000720	0.002017	0.001	383.5	1.29E-01	D
						393.7	9.21E-02	
	C2H4	96	3.032258	0.912442	0.913	223.15	1.74E-02	
	02114	30	0.002200	0.012442	0.913		1.66E-02	
						252.65 293.15	5.83E-03	7.1
p-xylene	C7H16	234				233.13	3.03∟ -03	
p xyleffe	- O/H10		1.126984	0.993131	0.002	240 15	2.21E- 02	A
othylbon zono	C2H4				0.992	348.15 195.95	2.21E-02 7.81E-02	Α
ethylbenzene	C2H4	95	3.016129	0.904382	0.914	233.15	7.81E-02 3.14E-02	С
						233.15	6.64E-03	C
						200.10	0.04L 03	

表 4.15 F6 における気液平衡逆算の結果

benzene	C2H2	82	2.300885	0.954509	0.962	283.15	2.17E-02	
						293.15	2.18E-02	В
						303.15	2.64E-02	
	1100		0.000504	0.0001.10		313.15	3.08E-02	
	H2S		2.639594	0.963146	0.000	222.45	2225 22	
	CO2	57	2.765957	0.927983	0.939	303.15	2.60E-02	
						313.15	2.43E-02	В
						323.15 333.15	3.01E-02	
		369	2.765957	0.933131	0.939	298.15	3.65E-02 1.41E-02	
		309	2.703937	0.933131	0.939	313.15	1.97E-02	A
	_	370	2.765957	0.929787	0.939	313.2	2.59E-02	A
toluene	C2H2	80	2.831858	0.951328	0.936	253.15	9.29E-02	
tolucito	OZITZ	00	2.001000	0.501020	0.000	258.15	7.65E-02	
						263.15	6.10E-02	D
						268.15	4.29E-02	
						273.15	2.96E-02	
	H2S	822	3.248731	0.953394	0.914	310.95	8.23E-02	
						352.55	5.64E-02	D
						394.25	5.10E-02	
						477.55	3.38E-02	
	CO2	355	3.404255	0.912442				
		697	3.404255	0.917295	0.908	311.26	3.44E-02	
		097	3.404233	0.917293	0.906	352.59	3.40E-02	
						393.71	1.84E-02	В
						477.04	2.21E-02	
m-xylene	G2H2	81	3.327434	0.935754	0.912	253.15	1.28E-01	
///	52.12		0.027.101	0.000,01	5.5.2	263.15	8.71E-02	
						273.15	8.00E-02	17
						283.15	6.48E-02	
	H2S	826	3.817259	0.939787	0.887	310.9	1.63E-01	
						352.6	9.54E-02	D
						394.3	5.43E-02	
						477.6	4.42E-02	
	CO2	827	4	0.860902	0.881	462.15	8.43E-03	
						502.15	7.55E-03	A^{+}
						543.35	7.85E-03	
						582.55	1.55E-02	
	_	830	4	0.898672	0.881	310	5.61E-02	
						338.7	6.34E-02	С
						394.3 477.6	3.15E-02 1.58E-02	
p-xylene	CO2	828	4.021277	0.885491	0.880	353.2	2.68E-02	
p xylerie	002	020	4.021277	0.003431	0.000	373.4	1.54E-02	Α
						393.2	1.93E-02	
ethylbenzene	CO2	821	3.978723	0.90382	0.881	308	5.00E-02	
,						318	8.44E-02	
						328	4.28E-02	
diphenylmethane	CO2	829	5.606383	0.811328	0.825	462.75	1.00E-03	
						542.55	3.31E-03	
						623.35	8.19E-03	
						703.75	2.47E-02	
tetralin	CO2	161	4.776596	0.797558	0.847	461.95	1.35E-02	
						543.55	1.32E-02	Α
						623.55	1.24E-02	
						664.65	1.24E-02	
1-methylnaphthalene	CO2	818	4.734043	0.860854	0.849	308.2	2.67E-01	
						318.2	2.76E-01	D
						328.2	×	

F1 においては、 CH_4 -3-methylpentane 系を除けば、F2 においては、cyclohexane を含む系を除けば、非常に良く気液平衡関係を表していると言える。

F3 においては、逆算による結果の悪い系がいくつか存在し、特に C_2H_2 を含む系については見直しが必要である。

F4 においては、全体的にまずまずの結果は得られたが、 N_2 - C_7H_{16} 系に関しては、結果が悪かった。

F5 においても、まずまずの結果は得られたが、 C_8H_{18} を含む系、 $C_{10}H_{22}$ を含む系と炭素数が多い系では、あまり結果が良くなかった。

F6 においては、 C_2H_2 を含む系、 H_2S を含む系に関して気液平衡関係を表せていなかった。

4.3.2 F1, F5, F6 に関して、個別のとき、まとめたときの気液平衡逆算の比較

4.3.1 では、それぞれ個別の相関式から求めた異種分子間相互作用パラメータ m_{ij} を使って、気液平衡関係の逆算を行ったが、以下では F1, F5, F6 を 1 つの成分ファミリーとして、まとめた相関式から求めた m_{ij} を使って、気液平衡関係の逆算を行った結果を示す。

表 4.16 F1 における気液平衡逆算の結果

;	System	文献番号	V_{ci}/V_{cj}	Opt. m _{ij} [–]	Cal. m _{ij} [-]	温度 T[K]	x, y平均絶対偏倚	評個
CH4	C2H4	65	1.252525	0.970902	0.983	127.25	9.06E-02	
						158.25	3.96E-02	
						219.25	4.72E-02	
						253.25	7.53E-02	
	-	358	1.252525	0.979524	0.983	150	1.23E-02	-
						160	1.14E-02	
						170	8.78E-03	
						180	7.12E-03	
	C2H6	21	1.494949	0.980476	0.983	190 130.37	7.18E-03 6.73E-03	1
	GZH0	21	1.494949	0.980476	0.963	144.26	8.00E-03	
						158.15	5.78E-03	
						172.04	6.02E-03	
						186.11	5.57E-03	-
						192.39	3.86E-03	
						199.92	8.26E-03	
	C3H6	698	1.828283	0.961328	0.976	130	5.98E-02	
						140	5.13E-02	
						150	4.49E-02	
						160	2.98E-02	В
						170	2.42E-02	
						180	2.04E-02	
						190	1.88E-02	
	C3H8	1	2.020202	0.960212	0.970	258.15	3.57E-02	
						283.15	2.56E-02	
						303.15	1.61E-02	
						318.15	9.43E-03	
						338.15	8.03E-03	
	-	2	2.020202	0.96382	0.970	157.55	4.95E-02	
						174.25	1.52E-02	
						194.85	1.38E-02	
						213.15 226.45	1.13E-02 2.81E-02	
						241.45	1.92E-02	
	_	26	2.020202	0.961591	0.970	144.26	1.36E-02	
		20	2.020202	0.501051	0.570	172.04	3.31E-02	
						199.82	2.28E-02	
						227.59	1.73E-02	
	_	338	2.020202	0.962705	0.970	130.37	2.56E-02	
						144.26	2.68E-02	
						158.15	2.32E-02	
						172.04	1.77E-02	
						187.43	1.52E-02	
						190.93	7.86E-03	
						192.26	1.46E-02	
						195.15	1.34E-02	
	0.414.0	_			0.05-	213.71	1.90E-02	_
	C4H10	6			0.950	377.55	1.92E-02	
			0.575750	0.040017	0.050	410.95	3.30E-02	
	<u> </u>	7	2.575758	0.942017	0.950	177.55	3.50E-02	_
	i-C4H10	10	2.656566	0.946605	0.947	310.95	1.64E-02	
						344.25	1.61E-02	
						377.55	5.58E-03	

表 4.17 F1 における気液平衡逆算の結果 (続き)

	C5H12	11	3.141414	0.936049	0.927	310.95	2.03E-02	
						344.25	2.08E-02	
						377.55	2.21E-02	
						410.95	1.16E-02	
						444.25	1.49E-02	_
	i-C5H12	24	3.111111	0.945755	0.928	344.26	3.26E-02	_
						377.59	3.08E-02	-
		704	0.44444	0.040004	0.000	410.93	3.65E-02	
	_	724	3.111111	0.943394	0.928	344.26	3.77E-02	
						360.93	2.09E-02 2.04E-02	
						377.59 394.26	2.01E-02	
						410.93	1.98E-02	
						427.59	2.79E-02	
						444.26	1.36E-02	
						449.82	1.66E-02	
	neoC5H12	83	3.060606	0.951328	0.930	344.26	2.90E-02	
						377.59	2.49E-02	-
						410.93	4.99E-02	
	-	113	3.060606	0.937558	0.930	298.15	1.93E-02	A
	-	114	3.060606	0.937983	0.930	298.15	1.92E-02	Α
	-	756	3.060606	0.942442	0.930	298.15	1.93E-02	
						298.15	1.92E-02	
						344.26	2.91E-02	
						377.59	2.50E-02	
						410.93	4.99E-02	
	3m-C5	84	3.707071	0.847852	0.903	298.15	1.00E-01	
						323.15	9.08E-02	
						348.15	7.20E-02	
						373.15	4.77E-02	
	-	367			0.903	298.15	2.43E-02	
						323.15	2.13E-02	
						348.15	1.50E-02	
	001144	00	0.717170	0.000040	0.000	373.15	1.33E-02	
	C6H14	28	3.717172	0.886049	0.903	298.15	2.14E-02	-
						323.15	1.81E-02	
						348.15 373.15	1.39E-02 1.09E-02	-
						423.15	1.38E-02	
	cyl-C6	99	3.111111	0.85618	0.928	338.71	2.72E-02	_
		357	3.111111	0.900213	0.928	294.26	4.97E-02	_
		337	3.111111	0.900213	0.926	310.31	4.45E-02	
						344.26	2.88E-02	
						377.59	2.48E-02	
						410.93	1.81E-02	
						444.26	1.76E-02	
	C7H16	42	4.30303	0.858409	0.879	199.82	8.96E-02	
						210.93	6.91E-02	
						222.04	5.81E-02	
						233.15	5.14E-02	
						244.26	4.36E-02	
						255.37	4.10E-02	
	-	105	4.30303	0.904377	0.879	310.93	3.85E-02	
						410.93	2.29E-02	
						477.59	2.07E-02	
		740	4 20000	0.070000	0.070	510.93	4.78E-02	
		746	4.30303	0.873688	0.879	199.82 210.93	8.97E-02	
						210.93 222.04	6.90E-02 5.80E-02	
						233.15	5.80E-02 5.15E-02	
						244.26	4.35E-02	
						255.37	4.10E-02	
						277.59	2.90E-02	
						310.93	3.03E-02	
						344.26	3.00E-02	
						377.59	2.56E-02	
						410.93	2.54E-02	
						444.26	2.21E-02	
						477.59	1.84E-02	
						510.93	3.85E-02	

表 4.18 F1 における気液平衡逆算の結果 (続き)

C8F	H18 30	4.949495	0.815623	0.854	298.15	2.54E-02	
					323.15	1.90E-02	
					348.15	1.71E-02	
					373.15	1.17E-02	
					423.15	5.46E-03	
C91-	120 339	5.484848	0.915491	0.835	223.15	1.33E-01	
					248.15	8.61E-02	
					273.15	3.72E-02	1
					298.15	2.84E-02	
					323.15	2.42E-02	
					348.15	2.71E-02	
					373.15	1.22E-02	1
					423.15	7.75E-03	1
-	700	5.484848	0.80923	0.835	223.15	1.51E-01	
					248.15	8.88E-02	
					273.15	4.21E-02	1
					298.15	3.88E-02	
					323.15	3.61E-02	
					348.15	3.31E-02	
					373.15	1.30E-02	1
					423.15	5.90E-03	1
C10	DH22 29	6.090909	0.835491	0.814	310.95	3.15E-02	
010	20	0.00000	0.000431	0.014	344.25	2.57E-02	
					377.55	2.83E-02	
					410.95	2.75E-02	
					444.25	2.66E-02	_
					477.55	3.79E-02	
					510.95	3.25E-02	1
_	43	6.090909	0.922836	0.814	277.59	5.44E-02	
	40	0.00000	0.322000	0.014	310.93	2.65E-02	1
					410.93	3.11E-02	
					477.59	3.51E-02	-
					510.93	2.57E-02	
_	109			0.814	244.26	1.37E-01	
	100			0.011	277.59	5.94E-02	D
_	747	6.090909	0.828541	0.814	310.93	3.10E-02	1
	747	0.030303	0.020341	0.014	344.26	2.72E-02	
					377.59	2.70E-02	1
					410.93	3.01E-02	
					444.26	3.04E-02	
					477.59	3.47E-02	
					510.93	3.64E-02	1
					423.15	4.55E-03	
					510.95	4.70E-02	1
					542.75	5.71E-02	С
					563.25	2.01E-02	
					583.05	3.49E-02	
					277.59	5.43E-02	1
					310.93	2.65E-02	
					410.93	3.11E-02	1
					477.59	3.51E-02	
					477.59	3.51E-02	

表 4.19 F5 における気液平衡逆算の結果

benzene	C2H6	108	1.756757	0.967955	0.978	323.15	3.00E-02	
						373.15	3.03E-02	В
						423.15	3.23E-02	
						498.15	1.06E-02	
	-	380	1.756757	0.961712	0.978	298.15	3.63E-02	-
	C3H8	51	1.3	0.981328	0.983	344.25	1.11E-02	
						410.85	1.77E-02	Α
						477.55	1.15E-02	
	_	732	1.3	0.980901	0.983	310.93	2.33E-02	
						344.26 377.59	1.36E-02 1.22E-02	
						410.93	1.61E-02	
						444.26	1.14E-02	
						477.59	9.38E-03	
	C5H12	329			0.983	P=0.1014E+00[MPa]	2.96E-02	Α
		337	1.196154	0.989524	0.982	255.37	8.67E-02	
		007	1.100101	0.000021	0.002	289.15	8.05E-02	D
	_	368	1.196154	0.989524	0.982	255.37	8.67E-02	_
						289.15	8.05E-02	D
	_	710	1.196154	0.987983	0.982	255.37	8.45E-02	D
						289.15	6.08E-02	D
	-	771	1.196154	0.988409	0.982	255.35	8.82E-02	D
						289.15	6.08E-02	D
	C6H14	48	1.415385	0.989524	0.983	303.15	9.97E-02	
						313.15	9.55E-02	D
						323.15	8.42E-02	Ъ
						333.15	7.99E-02	
	-	229			0.983	P=0.1000E+01[atm]	8.96E-02	D
	-	313			0.983	P=0.7600E+03[mmHg]	7.84E-02	D
	-	737			0.983	298.15	1.14E-01	
						328.25	7.76E-02	_
						333.15	1.05E-01	D
						340.69	3.71E-02	-
	C7H16	232				350.5 P=0.1000E+01[atm]	3.54E-02	
	- O/H10	314		-		348.15		
		738				333.15		
	C8H18	224			0.974	P=0.7600E+03[mmHg]	9.79E-02	D
	-	315	1.884615	0.984935	0.974	328.15	1.30E-01	ע
		313	1.004013	0.904930	0.574	328.25	9.03E-02	
						338.15	9.03E=02 1.11E=01	
						348.15	9.70E-02	
	cyl-C6	226			0.982	P=0.7600E+03[mmHg]	5.04E-02	С
	-	773			0.982	303.15	6.86E-02	
		770			0.002	313.15	7.83E-02	D
	_	817	1.184615	0.986004	0.982	403.15	4.36E-02	
						413.15	3.93E-02	
						423.15	3.76E-02	
	C2H4	252			0.968	P=0.8000E+02[atm]	×	
						P=0.6000E+02[atm]	×	В
						P=0.4000E+02[atm]	4.81E-02	
	-	775	2.096774	0.963146	0.968	513.15	4.11E-02	
						523.15	3.27E-02	В
						533.15	2.02E-02	

表 4.20 F5 における気液平衡逆算の結果 (続き)

	C3H6	762	1.436464	0.974854	0.983	453.15	3.99E-01	
	00110	702	1.100101	0.07 100 1	0.000	473.15	2.35E-01	
						523.15	5.62E-02	D
						533.15	3.85E-02	
						543.15	2.12E-02	
	_	776	1.436464	0.962017	0.983	453.15	3.92E-02	
						473.15	2.98E-02	
						523.15	1.28E-02	Α
						533.15	5.92E-03	
						543.15	7.62E-03	
	-	777	1.436464	0.977295	0.983	298.15	1.42E-02	Α
	toluene	53	1.230769	0.993394	0.983	433.15	7.86E-02	
						473.15	5.38E-02	D
						513.15	8.15E-02	Ъ
						553.15	1.34E-01	
	-	236			0.983	P=0.1000E+01[atm]	1.13E-01	D
	m-xylene	814	1.446154	0.978146	0.983	393.15	5.79E-02	C
	-	820	1.446154	0.994246	0.983	298.15	1.07E-01	
						310.15	7.33E-02	D
						323.15	7.04E-02	
toluene	C2H6	764	2.162162	0.956606	0.965	313.1	3.23E-02	
						393.1	2.08E-02	В
						473.2	3.04E-02	
	C3H8	55	1.6	0.975511	0.981	323.15	2.31E-02	
						348.15	1.67E-02	В
						393.15	3.13E-02	В
						402.15	1.82E-02	
	_	767	1.6	0.974802	0.981	394	1.86E-02	A
						473.2	2.23E-02	A
	C5H12	49	1.028939	0.990213	0.977	293.15	9.09E-02	
						303.15	8.12E-02	D
						313.15	7.46E-02	
	C10H22	383	1.884375	0.985623	0.974	373.5	8.47E-02	
						383.6	6.69E-02	D
						393.7	4.16E-02	
	-	760	1.884375	0.985623	0.974	373.5	8.47E-02	
						383.6	6.69E-02	D
						393.7	4.16E-02	
	C2H4	94	2.580645	0.951591	0.950	283.65	3.40E-02	В
						292.65	2.74E-02	Б
	-	778	2.580645	0.932442	0.950	323.15	2.20E-02	
						373.15	9.95E-03	Α
						423.15	8.11E-03	1
	m-xylene	759	1.175	0.994935	0.982	373.6	1.68E-01	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,	,			383.6	1.40E-01	D
						393.7	1.26E-01	
	tetralin	774	1.403125	0.994146	0.983	573	4.27E-01	
	Courain	774		3.001170	0.000	608.2	1.31E-01	_
						632.9	X	D
						672.3	4.45E-02	1

表 4.21 F5 における気液平衡逆算の結果 (続き)

						1		
o-xylene	C7H16	377	1.154472	0.992442	0.981	348.15	1.03E-01	D
	-	382	1.154472	0.992017	0.981	348.1	8.93E-02	
						358.1	9.07E-02	D
						368.3	8.21E-02	
m-xylene	C3H8	768	1.88	0.970213	0.975	313.3	1.18E-02	
						393.7	1.96E-02	В
						473.2	3.25E-02	
	C10H22	384						
-	-	761	1.603723	0.992017	0.981	373.5	1.32E-01	
						383.6	1.32E-01	D
						393.7	9.60E-02	
	C2H4	96	3.032258	0.912442	0.931	223.15	8.74E-02	
						252.65	4.65E-02	C
						293.15	2.34E-02	
p-xylene	C7H16	234				P=0.1000E+01[atm]	9.08E-02	D
	_	379	1.126984	0.993131	0.980	348.15	1.26E-01	D
ethylbenzene	C2H4	95	3.016129	0.904382	0.932	195.95	1.71E-01	
						233.15	5.24E-02	D
						293.15	2.14E-02	

表 4.22 F6 における気液平衡逆算の結果

			4017					
benzene	C2H2	82	2.300885	0.954509	0.960	283.15	1.79E-02	
						293.15	2.02E-02	
						303.15	2.53E-02	
						313.15	3.01E-02	
	H2S		2.639594	0.963146	0.947			
	CO2	57	2.765957	0.927983	0.942	303.15	3.25E-02	
						313.15	2.98E-02	В
						323.15	3.50E-02	
						333.15	4.06E-02	
	_	369	2.765957	0.933131	0.942	298.15	2.03E-02	
						313.15	2.22E-02	Α
	_	370	2.765957	0.929787	0.942	313.2	2.97E-02	
toluene	C2H2	80		0.951328	0.939	253.15	7.78E-02	
coldono	OZITE	00	2.001000	0.001020	0.000	258.15	6.10E-02	
						263.15	4.81E-02	С
						268.15	3.20E-02	-
						273.15	2.02E-02	
	H2S	822	3.248731	0.953394	0.922	310.95	6.18E-02	
	1120	022	0.240701	0.500054	0.322	352.55	4.39E-02	1
						394.25	4.22E-02	
						477.55	2.96E-02	
	CO2	355	3.404255	0.912442	0.916	311.26	2.08E-02	
	002	333	3.404233	0.912442	0.910			-
						352.59	2.93E-02	
						393.71	1.63E-02	
		697	2.404255	0.017205	0.016	477.04	2.26E-02	
		697	3.404255	0.917295	0.916	311.26	1.96E-02	-
						352.59	2.96E-02	
						393.71	1.99E-02	
	00110	0.4	0.007404	0.005754	0.010	477.04	2.42E-02	
m-xylene	C2H2	81	3.327434	0.935754	0.919	253.15	9.39E-02	
						263.15	6.38E-02	1 1)
						273.15	5.90E-02	
	1100	000	0.047050	0.000707	0.000	283.15	5.10E-02	
	H2S	826	3.817259	0.939787	0.899	310.9	1.28E-01	
						352.6	6.57E-02	
						394.3	5.09E-02	
						477.6	4.59E-02	
	CO2	827	4	0.860902	0.891	462.15	1.25E-02	
						502.05	1.01E-02	
						543.35	9.22E-03	
						582.55	1.58E-02	
	-	830	4	0.898672	0.891	301.9	3.44E-02	
						338.7	5.56E-02	В
						394.3	2.37E-02	
						477.6	1.36E-02	
p-xylene	CO2	828	4.021277	0.885491	0.890	353.2	1.65E-02	
						373.4	1.93E-02	Α
						393.2	2.56E-02	
ethylbenzene	CO2	821	3.978723	0.90382	0.892	308	5.35E-02	
						318	5.45E-02	C
						328	2.25E-02	
diphenylmethane	CO2	829	5.606383	0.811328	0.830	462.75	6.46E-03	
						542.55	7.01E-03	
						623.35	1.05E-02	
						703.75	2.41E-02	
tetralin	CO2	161	4.776596	0.797558	0.861	461.95	1.94E-02	
		101		3	0.00.	543.55	1.64E-02	1
						623.35	1.38E-02	
						664.65	1.34E-02	-
1-methylnaphthalene	CO2	818	4.734043	0.860854	0.862	308.2	2.67E-01	
т поступарничаете	0.02	310	1.704040	3.000004	0.002	318.2	2.76E-01	

以上の結果を踏まえて、逆算による計算値と実験値の偏倚をグラフ化した。

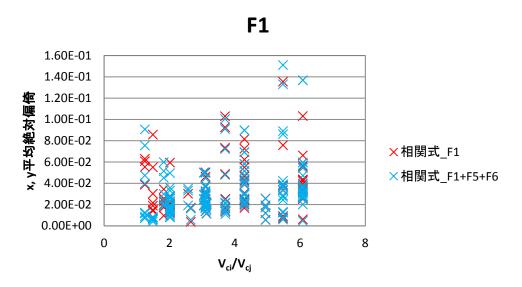


図 4.6 F1 における逆算による計算値と実験値の偏倚

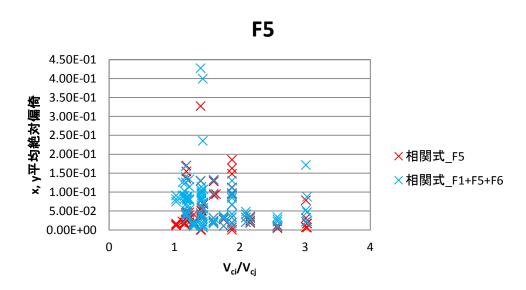


図 4.7 F5 における逆算による計算値と実験値の偏倚

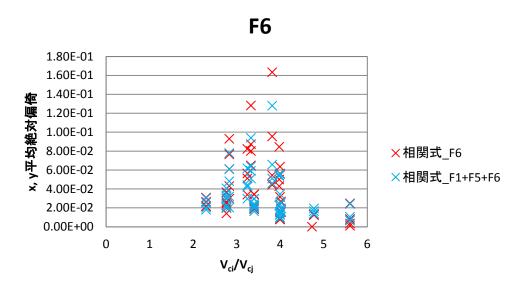


図 4.8 F6 における逆算による計算値と実験値の偏倚

気液平衡関係を、相関式によって推算することができたのかを確認するため、 $F1/CH_4-C_2H_6$ 系の 199.92K における気液平衡逆算を図示する。

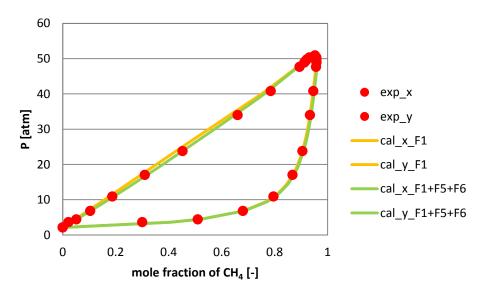


図 4.9 CH₄-C₂H₆ 系の気液平衡逆算

第5章 結言

異種分子間相互作用パラメータ m_{ij} を化学成分の違いにより、4 つの成分ファミリーに分類することができた。

Hudson-McCoubrey の理論に基づき、相関式を立式できた。

相関式を12本から4本にまとめることができた。

相関式を2種類から1種類にすることができた。

気液平衡関係の逆算による、F1, F5, F6 をまとめることが可能であるかの評価は、F1 はほぼ同じ結果、F5 は一部の系で、まとめると悪い結果、逆に F6 は一部の系で、まとめると良い結果になった。

以上より F1, F5, F6 をまとめることは、一部で改善の余地はあるが、基準値: 0.15 を満たしている系がほとんどであるため、可能であると言える。

参考文献

- 1) Nishiumi, H. and S. Saito., J. Chem. Eng. Japan., 10, 176,(1977)
- 2) Nishiumi, H. and S. Saito., J. Chem. Eng. Japan., **8**, 356,(1975)
- 3) Reed, T. M., J. Phys. Chem., 59, 425, (1955)
- 4) Hudson, G. H. and J. McCoubery., Trans. Faraday Soc., **56**, 761, (1960)
- 5) Rowlinson, J. S. and F. L. Swinton, "Liquids and Liquid Mixtures", Butterworths Monographa in Chemistry, London (1982)

謝辞

本研究を遂行するにあたり、終始ご指導下さいました、西海英雄教授に敬意を表すとともに、心から御礼申し上げます。

また、本研究をまとめるにあたりご協力いただいた法政大学サステイナビリティ研究員の吾郷健一氏、特任教育技術員の郝秀花氏に心から御礼申し上げます。そして、数々の助言と激励をくださった修士2年の荒井茉衣氏、泉雅和氏、大鹿修平氏、佐々木謙氏、学部4年の岩倉明美氏、江口雄基氏、太田誠之輔氏、中村優祐氏、今井健人氏、北村研太氏、小西啓太氏、富樫卓也氏、西川弘将氏、半崎就太氏、松永祐輝氏、村野公健氏に深く感謝いたします。

記号

```
B_0, A_0, C_0, D_0, E_0, b, a, d, \alpha, c, \gamma, e, f, g, h = fifteen coefficients for normal fluids in Eq. (2.13)
B = \text{second virial coefficient } [\text{cm}^3/\text{mol}]
C = \text{third virial coefficient } [\text{cm}^6/\text{mol}^2]
m_{ii} = binary interaction parameter between component i and j defined by Eq. (2.20) [-]
n = \text{number of moles of a system [mole]}
N = \text{number of component [-]}
P = \text{pressure [MPa, atm, psi, bar, Torr]}
R = \text{gas constant [J/Kmol]}
s_1^*, s_3^* = reduces polar parameters in Eq. (2.15)
s_1, s_2, s_3 =polar parameters defined by Eq. (2.14)
T = \text{temperature } [K]
T_c = critical temperature [K]
V_c = critical molar volume [cm<sup>3</sup>/mol]
x = liquid mole fraction [-]
y = \text{vapor mole fraction [-]}
\rho = \text{molar density } [\text{mol/cm}^3]
\Psi_A, \Psi_E = polar parameters defined by Eq. (2.13) [-]
\Psi_{A}*, \Psi_{E}* = reduced polar parameters defined by Eq. (2.15) [-]
\Psi_s = quantity defined by Eq. (2.14)
\omega = Pitzer's acentric factor
<Subscript>
i, j = \text{component}
```