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Abstract 
 

This paper proposes an axiomatic approach in a continuous-time framework for representing preference 
orderings with an infinite horizon in terms of time-additive separable (TAS) utility. To deal with divergent 
paths that emerge in endogenous growth models, we introduce several new axioms for preference orderings 
and exploit an integral representation of nonlinear functionals on -spaces to obtain TAS utility functions 
with constant discount rates. Moreover, it is demonstrated that preference orderings given by recursive utility 
functionals are representable by means of TAS utility functions.   
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1. Introduction 
 
In the analysis of intertemporal resource allocations involving dynamic optimization, time-additive 
separable (TAS) utility functions have been widely used because of their simplicity and tractability. 
It was Koopmans (1972b) who first axiomatized, in a discrete time framework, preference 
orderings with an infinite horizon that are representable by TAS utility functions. The Koopmans 
formulation is intuitively transparent and general enough and, thus, it has served as a foundation 
for many applications in intertemporal decision making.  

The approach Koopmans developed is as follows. Preference orderings with an infinite 
horizon are truncated to those with a finite horizon to represent those in terms of finitely additive 
separable utility functions, employing the axiomatization of Debreu (1960), Gorman (1968) and 
Koopmans (1972a) on the separability of utility functions; the finite sum of the instantaneous 
utility functions is then extended to the countably infinite sum of those by a certain kind of 
limiting argument. The advantage of this truncation method lies in the fact that constant discount 
rates are derivable in the existence argument of TAS utility functions.  

The choice space Koopmans adopted is a subset of  (the space of bounded sequences) 
with the sup norm. It precludes divergent paths that emerge in endogenous growth models. To  
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overcome this difficulty, Dolmas (1995) generalized Koopmans’s result to encompass divergent 
paths that “grow no faster than a fixed reference path,” and Bleichrodt et al. (2008) and Harvey 
(1986) obtained a TAS representation admitting more general unbounded paths under the 
finite-dimensional continuity of preference orderings, which is a weaker requirement than the sup 
norm continuity. These works exploit the same truncation method as that of Koopmans (1972b).  

It is quite natural to pursue the TAS representability in continuous time under the same 
axioms posed by Koopmans (1972b) in discrete time. In the literature, however, there is no “exact” 
counterpart in continuous time. One of the reasons is a difficulty in applying the truncation method 
of Koopmans and others because the choice space  (the space of essentially bounded 
functions) in continuous time is infinite dimensional, even if time horizons are fixed to be finite, 
and it lacks topological separability under the sup norm, which prevents one from employing the 
utility representation theorem of Debreu (1960) and Gorman (1968).1  

The purpose of this paper is to present an axiomatic approach in a continuous-time 
framework for representing preference orderings with an infinite horizon in terms of integral 
functionals. Some axioms imposed here are similar to those of Koopmans (1972b), but some are 
completely different. While we employ the variants of axioms that are akin to continuity, 
nontriviality and independence in decision theory under uncertainty along the lines of Savage 
(1972) and others, which are also imposed by Koopmans and adherents (Bleichorodt et. al. 2008, 
Dolmas 1995, Harvey 1986 and Koopmans 1972b) in intertemporal preferences without 
uncertainty, the technique presented in this paper greatly differs from that in the previous works.  

To deal with divergent paths that emerge in endogenous growth models and nonconvex 
growth problems with increasing returns, incorporating discount factors explicitly, we exploit 
integral representations of nonlinear functionals on -spaces investigated by Buttazzo and Dal 
Maso (1983) and applied to nonconvex variational problems by Sagara (2007). The choice space 
under consideration is an admissible subset of an -space. The reason for adopting an -space 
lies in its topological separability under the -norm for the sake of the existence of utility 
functions. By employing the Riesz representation theorem, Weibull (1985) obtained in continuous 
time a TAS representation of linear preferences on an -space in terms of a linear functional. Our 
technique is based on a generalized “nonlinear version” of the Riesz representation theorem.2  

Because we permit a freedom for the choice of measures (including the Lebesgue measure) 
on the time interval, divergent paths can be treated in a simple manner, and, hence, the -space 
with respect to the Lebesgue measure can be naturally included in an -space with respect to a 
given measure. The space under investigation is called a weighted -space. A space of this type 
was first introduced to economic growth theory by Chichilnisky (1977), who employed a weighted 
Sobolev space, to deal with unbounded paths and nonconvexities in an infinite horizon.  

An alternative approach to the TAS representation in continuous time was explored by 
Epstein (1987), who hypothesized a flexible rate of time preference to obtain a representation in 
terms of TAS and recursive utility functions by specifying the properties of a “generating function,” 
by which TAS and recursive utility functions are obtained as a solution of an ordinary differential 
equation (ODE). The technique is based on a continuous time analog of an “aggregator function” 
introduced by Koopmans (1960) and then elaborated by Lucas and Stokey (1984) in discrete time 
to formulate intertemporal utility with an infinite horizon. Epstein (1987) requires, however, the 
strong assumption that preference orderings are representable by continuously differentiable utility 
functions, which is absent in Koopmans (1972b).  
                                                           
1 Note that Koopmans (and Debreu 1960) already recognized this point. See Koopmans (1960, p.291, Footnote 5) and 
Koopmans (1972a, p.84, Footnote 7). 
2 Fonesca and Leoni (2007) is a useful textbook on integral representations of nonlinear functionals on -spaces. 
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The paper proceeds as follows. We show in Section 2 that if a preference ordering on an 
admissible subset of an -space satisfies strong continuity, disjoint independence, local 
sensitivity, local substitutability and disjoint additivity, then there exists a continuous TAS 
representation for the preference ordering such that it is an integral functional with a continuous 
integrand (instantaneous utility function) satisfying a certain kind of boundedness (Theorem 2.1). 
Consequently, a continuous TAS utility function with a constant discount rate can be obtained. 
Moreover, if the preference ordering satisfies the continuity with respect to the weak topology of 
the -space, then the integrand becomes a concave integrand even without assuming the 
convexity of the preference ordering (Theorem 2.3).  

It is well known that the use of TAS utility has been criticized by various authors. For 
example, Lucas and Stokey (1984, p.169) manifested their opinion that “time-additivity is neither 
a desirable nor an analytically necessary property to impose on preferences.” In Section 3, it is 
demonstrated that preference orderings given by recursive utility functionals along the lines of 
Epstein (1987a, 1987b), Epstein and Hynes (1983) and Uzawa (1968) are representable by means 
of TAS utility functions (Theorem 3.1), which is a variant of the result by Sagara (2007). This 
implies that our result serves to advocate the use of TAS utility.  
 
 
2. TAS Representation on -Spaces 
2.1. Preliminaries 

Let ( , ) be a Lebesgue measurable space, in which = [0, ) is the time interval with an 
infinite horizon and  is the -field of Lebesgue measurable subsets of . A measure  of the 
Lebesgue measurable space ( , ) is a Borel measure if ( ) <  for every compact subset 

 of . It is said to be complete if an arbitrary subset of a -null set belongs to . We assume 
in the sequel that  is a complete Borel measure that is absolutely continuous with respect to the 
Lebesgue measure. We use the phrase “a.e. ” to mean that the underlying measure is the 
Lebesgue measure; otherwise we employ “ -a.e. ”.  

Let ( , ) be a Borel measurable space with  the -field of Borel subsets of . For 
every real number 1 < , let ( , ; ) be the set of Lebesgue measurable functions   
from  to  such that | ( )| ( ) < , endowed with the -norm, where | |  
is the Euclidean norm of . Since  is countably generated, ( , ; ) is a separable 
Banach space (see Fonesca and Leoni 2007, Theorem 2.16). We use ( , ) when = 1 and  
simply denote ( ; ) when  is the Lebesgue measure of ( , ). By ( , ), we  
denote the space of locally integrable functions on  with respect to the measure .  

Let  be the characteristic function of ; that is, ( ) = 1 if  and ( ) = 0 
otherwise. If  is a trajectory in ( , ; ), then  denotes a trajectory in ( , ; ) 
taking its values ( ) for  and zero on . Thus, if  and  are trajectories in 
( , ; )  and = , then +  is a “patched” trajectory in ( , ; ) 

taking its values ( ) for  and ( ) for  and vanishing on ( ).  

2.2. Axioms for Preference Orderings 

In the sequel, a choice space  is a subset of ( , ; ) endowed with the relative (norm or 
weak) topology from ( , ; ). The range of a choice space  is a subset of  given by 
= { ( )| }, which is the set of possible values for . Given  and  with 

0 < ( ) < , we say that a trajectory  in ( , ; ) is locally constant.  

Nobusumi Sagara

5

02-Sagara_ 01-Suzuki  13/01/23  14:07  ページ 5



Definition 2.1.  A subset  of ( , ; ) is admissible if the following conditions are 
satisfied: (i) 0 ; (ii) ,  and =  imply + .  
 
Whenever  is an admissible set,  if and only if  for every . Hence, 

= { | } is contained in . An exemplary instance of an admissible set is a positive 
cone of ( , ; ) given by:  

 = { ( , ; )| 0}. (2.1) 

A preference ordering  is a complete transitive binary relation defined on the admissible set . 
A utility function for a pair ( , ) is a real-valued function  on  such that  if and 
only if ( ) ( ). We say that ( , ) admits a TAS representation if it has a utility function   
of the integral functional form: ( ) = ( , ( ))  for  with an × -measurable  
function : × ;  is called a TAS utility function.  

We introduce the following axioms on ( , ).  
 
Axiom 2.1 (Strong continuity).  For every , the upper contour set { | } and 
the lower contour set { | } are -norm closed in .  
 
Axiom 2.2 (Disjoint independence).  For every ,  with = ,  
implies + +  for every .  
 
Axiom 2.3 (Local sensitivity).  For every  with ( ) > 0, there exist  and  in  
such that .  
 
Axiom 2.4 (Local substitutability).  For every  and  with ( ) > 0, there exists 
some  such that .  
 
Axiom 2.5 (Disjoint additivity).  For every ,  and , , ,  satisfying =  
and = ,  and  imply that + + .  
 
Remarks on the Axioms 
 
Strictly speaking, it is impossible to compare directly the axioms imposed above with those of 
Koopmans (1972b) because the relevant spaces are mathematically different (  with the sup 
norm versus -space with the -norm). However, it might be informative to see the similarity 
in the axioms and where we depart from the Koopmans axioms.  

Strong continuity (Axiom 2.1) is a standard axiom in utility theory and it is imposed by 
Koopmans.  

Disjoint independence (Axiom 2.2) implies that for every , the preference ordering on  
 induces a preference ordering on  by restricting  to + for an arbitrarily fixed  

trajectory . It is a counterpart of the Koopmans axiom called complete independence and 
obviously a weaker axiom than:  
 
Axiom 2.2* (Independence).  For every , , ,  implies + +  whenever 
+ , + .  
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Axiom 2.2* (independence) is imposed by Weibull (1985) in continuous time.  
Local sensitivity (Axiom 2.3) rules out the situation where the induced preference ordering on 

 with ( ) > 0 is “degenerate” in that every trajectory in  is indifferent. It corresponds to 
the Koopmans axiom of sensitivity.  

Local substitutability (Axiom 2.4) might seem a somewhat strong requirement when maximal 
elements in  with respect to  exist, because it necessarily implies the existence of multiple 
maximal elements. In particular, if  is convex, then it excludes the strict convexity of ( , ), 
which guarantees a unique maximal element. Note that, together with strong continuity (Axiom 
2.1), there exists a maximal element in  provided that  is compact. In most economic 
applications, however, it is a common situation that a choice space in itself is not compact, but its 
feasible subset is compact. Because we do not assume the compactness of , local substitutability 
(Axiom 2.4) is not a strong restriction whenever maximal elements are nonexistent in , but 
“optimal” elements are existent in the feasible subset of . For instance, linear preference 
orderings in subsection 2.3 satisfy local substitutability (Axiom 2.4). This is not imposed by 
Koopmans (1972b).  

Disjoint additivity (Axiom 2.5), which Koopmans did not postulate, essentially implies 
disjoint independence (Axiom 2.2). More precisely, disjoint additivity (Axiom 2.5) implies the 
following weaker form of disjoint independence:  
 
Axiom 2.2**.  For every ,  with = ,  implies + +

 for every .  
 
To demonstrate this claim, let , ,  and = . Suppose that . Define 

= +  and = + . Since = , =  and = = , 
by construction, we have  and . Disjoint additivity (Axiom 2.5) implies 

+ + , which is equivalent to + + , from which Axiom 
2.2** follows.  

A strengthened version of disjoint additivity (Axiom 2.5) is:  
 
Axiom 2.5*.  For every ,  and , , ,  satisfying =  and = , 

 and  imply + + .  
 
If Axiom 2.5* is imposed instead of disjoint additivity (Axiom 2.5), it implies each variant of 

the independence axiom: Axiom 2.2, Axioms 2.2* and 2.2**.  
Koopmans assumed the existence of maximal and minimal elements in  under the name of 

extreme programs, a superfluous axiom for our purpose. Other axioms that Koopmans required 
but are absent from this paper are monotonicity and stationarity.  

Because the monotonicity axiom Koopmans introduced is quite different from the standard 
monotonicity axiom in decision theory, we call it K-monotonicity, as in Dolmas (1995)  
 
Axiom 2.6 (K-monotonicity).  [ , ) + [ , ) [ , ) + [ , )  for every ,  with 
0 <  implies .  

 
To introduce the stationarity axiom in our framework, we need the following condition for an 

admissible set. For every  and , define the trajectory  by ( ) = ( + ) for 
. An admissible set  is time invariant if  implies  for every .  
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Axiom 2.7 (Stationarity).  Let  be a time-invariant admissible set. There exists  such 
that for every :  if and only if [ , ) + [ , ) [ , ) + [ , ).  

 
It is clear that under disjoint independence (Axiom 2.2), stationarity (Axiom 2.7) can be 

strengthened to:  
 
Axiom 2.7*.  For every ,  if and only if [ , ) + [ , ) [ , ) + [ , ) for 
every .  

 
Instead of K-monotonicity (Axiom 2.6) and stationarity (Axiom 2.7), we require an 

alternative axiom in subsection 4, locally constant indifference (Axiom 2.8), to derive a 
time-independent integrand in the TAS representation.  

2.3. TAS Representation I 

Theorem 2.1.  Suppose that the admissible set  is closed and connected in the -norm 
topology. If ( , ) satisfies Axioms 2.1 to 2.5, then it admits a continuous TAS representation 
 ( ) = ( , ( )) ( )  for  with the following properties:  

(i) ( , ) is continuous on  -a.e.  and ( , ) is Lebesgue measurable on 
 for every .3  

(ii) There exist some ( , ) and 0 such that  
 

| ( , )| ( ) + | | - . . . 4 
 
Here, ( , 0) = 0 -a.e.  and  is uniquely determined and independent of the  
representation of . Moreover, if  is another integrand with =  that satisfies the  
condition (ii) with ( , 0) = 0 -a.e. , then ( , ) = ( , ) -a.e. . Furthermore, 
if  is a finite measure, then  is Lebesgue integrable and  

 lim inf ( ) = 0. (2.2) 

The theorem also reveals that the function  plays the role of a discount factor and the 
finiteness of  implicitly entails eventually discounting the future. In particular, the condition 
(2.2) of the theorem implies that if  has a continuous Radon–Nikodym derivative , then  
lim ( ) = 0. For example, this is the case for the finite, complete, Borel measure  given  
by  

 ( ) = ( ) for  (2.3) 

with a positive, continuous, Lebesgue integrable function .  
Taking into account the fact that utility functions are unique up to a strictly increasing 

transformation, the theorem asserts that if  is another TAS utility function for ( , ) with an  
integrand  satisfying ( ) = ( , ( )) ( )  for  with ( , ) = 0 -a.e.   
(note that the unique weight function  is independent of the particular TAS representations  
and ), there exists a strictly increasing continuous function :  such that =  and 
(0) = 0.  

 

                                                           
3 A function : ×  satisfying the condition (i) is called a Carathéodory integrand. 
4 The condition (ii) is called the growth condition. 
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Corollary 2.1.  Suppose that  contains every locally constant trajectory and  is a finite 
measure. Then  is a positive affine transformation of  if and only if  is a positive affine 
transformation of  on × .  

 
The corollary states that the integrand  is not a positive affine transformation of  if and 

only if  is not positively affine. Therefore, in the TAS representation under Axioms 2.1 to 2.5, 
the integrand  is not necessarily unique up to a positive affine transformation.  

 
Finitely Additive Representation 

 
Let { , … , } be a partition of  with 3 such that each  has a positive  

measure. Define =  for each = 1,… , . Since each trajectory  is identified  
with a trajectory ( , … , ) in the product space  and each element  
( , … , )  is identified with its algebraic sum , it follows that  
= = , where  is the algebraic sum of , … , .  

 
Lemma 2.1.56  Suppose that the admissible set  is connected in the -norm topology. If 
( , )  satisfies Axioms 2.1 to 2.3, then there exists a continuous function  on  for 
= 1,… ,  such that  

( ) ( ). 

Proof. Let = {1,… , } and  be an arbitrary subset of . Since ( , ) satisfies disjoint 
independence (Axiom 2.2), it induces on the product space  a preference ordering  
such that for an arbitrarily fixed trajectory :  

( ) ( ) [ ( ) , ( ) ] [( ) , ( ) ]. 
We denote { } by . Thus, for every subset  of , the preference ordering  on  

 is independent of any ( ) . By local sensitivity (Axiom 2.3), there 
exist  and  in  such that  for each .  

Let pr  be the projection from  onto . Then  is a connected set as the image of 
the connected set  by the continuous mapping pr . Since a metric space is separable if and 
only if it has a countable base of open sets,  and  are separable metric spaces as a subset of 
the separable Banach space ( , ; ). Since each  is connected, we can apply the 
classical theorem of Debreu– Gorman (see Debreu 1960 and Gorman 1968) to obtain an additive 
separable utility function for ( , ).   

By virtue of Lemma 2.1, there exists a continuous utility function  for ( , ) with the 
form ( ) = ( ). Without loss of generality, one may assume that (0) = 0 for each 

.  

                                                           
5 Since the finitely additive representation on ( , ) depends on the choice of a partition of , it might not be unique 
up to a positive affine transformation. However, this does not cause a problem in obtaining the uniqueness of  and  in 
Theorem 2.1. 
6 The requirement 3 is not removable for a finitely additive separable representation. Koopmans (1972a) gave a 
counter example such that for = 2, there exists a preference ordering on a connected separable topological space 
satisfying (in our terminology) strong continuity (Axiom 2.1), disjoint independence (Axiom 2.2) and local sensitivity 
(Axiom 2.3) such that it cannot be represented by an additive separable utility function. 
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Lemma 2.2.  Suppose that the admissible set  is connected in the -norm topology. If 
( , ) satisfies Axioms 2.1 to 2.5, then  is disjointly additive on , that is, ,  and 

=  imply ( + ) = ( ) + ( ).  
 
Proof. Take any  and ,  with = . Let ,  be of positive measure  
such that  and  for some partition { , } of . Then  and   
are disjoint. By local substitutability (Axiom 2.4), there exist  and  in  such that 

 and . Define = + . Since  is admissible, we have . 
Note that =  and = . Thus, we have  and . By disjoint 
additivity (Axiom 2.5), we have + + . Define =  and =

 for each . Then  and  are decomposed into -tuples of pairwise disjoints  
sets { }  and { } , respectively, with =  for  and =  for .  
T h u s ,  w e  h a v e  = ( ,… , )  w i t h  = 0  f o r   a n d  

= ,… ,  and = 0 for . Therefore, ( ) = ( ) = 
,  ( ) = ( ) =  a n d  ( + ) = ( + ) = 

( ) + ( ), and, hence, ( + ) = ( ) + ( ).  
From this observation, we can derive the disjoint additivity of . To demonstrate this, let 

,  and = . Define = + . We then have  by the admissibility of 
, and + = + , by construction. Thus, ( + ) = ( + ) =
( ) + ( ) = ( ) + ( ).   

 
Proof of Theorem 2.1 
 
Define the functional : ( , ; ) × { } by  

( , ) = ( ) if ,
otherwise.  

By Lemmas 2.1 and 2.2,  satisfies the following properties:  
 ( , )  is upper semicontinuous on ( , ; )  with respect to the 

-norm topology;  
  is finitely additive on , that is, ,  and =  imply 

( , ) = ( , ) + ( , ) for every ( , ; );  
  is local on , that is, , ( , ; )  and =  imply 

( , ) = ( , );  
 (0, ) = 0 for every .  

 
Here, we show only the finite additivity of  because the other properties are evident. Suppose 
that  and  are disjoint. If , then the result follows immediately from Lemma 2.2. 
If , then  and  by the admissibility of , and, hence  or 

; for otherwise,  and  yield = +  by the 
admissibility of , which is a contradiction. Therefore, ( , ) + ( , ) = = ( ,
).  

Note also that  is nonatomic because of the nonatomicity of the Lebesgue measure with 
respect to which  is absolutely continuous and that the Borel measure  is -finite (see 
Halmos 1950, Sec.52(1)). Thus, ( , , ) is a -finite complete nonatomic measure space. 
Then, by the representation theorem of Buttazzo and Dal Maso (1983), there exists a normal 
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integrand7 ( ): × {+ } with the following properties:  
(a) There exist some ( , ) and 0 such that ( , ) ( ) + | |  

-a.e.  for every .  
(b) ( , ) = ( , ( )) ( ) for every ( , ; ) and .  

It is evident from (a) that  satisfies the condition (ii). From the construction of , we have  
( ) = ( , ( )) ( )  for , where  is the Radon–Nikodym derivative of  with  

respect to the Lebesgue measure. Because ( , 0) ( ) = 0 for every  by (b), we  
have ( , 0) = 0 -a.e. . Let  be an integrand of  that satisfies the condition (ii) with 
( , 0) = 0 -a.e. . We then have  

( , ) = ( , ( )) ( ) = ( , ( )) ( )  

= ( , ( )) ( ) = ( , ( )) ( )  

for every ( , ; ) and . Thus,  is another integrand that satisfies (b). The 
equality ( , ) = ( , ) -a.e.  readily follows from the theorem of Buttazzo and Dal 
Maso (1983).  

To demonstrate that  is a Carathédory integrand, it suffices to show that  is a real-valued 
normal integrand. To this end, define  

( , ) = ( ) if ,
otherwise.  

Since  satisfies the same conditions as , from the preceding argument it follows that there 
exists a normal integrand ( ): × {+ } with ( , 0) = 0 -a.e.  such 
that (a) and (b) are true for ( , ). By the uniqueness of the integrand of  in the above argument, 
we have ( , ) = ( , ) -a.e. , and hence,  is a normal integrand that does not take 
{± }. Thus, the condition (i) is established.  

To prove (2.2), suppose to the contrary that lim inf ( ) = > 0. Then, there exists 
some  such that inf ( )  for every , and hence, ( )  for every  

. Thus, we have ([ , )) = ( ) = , contradicting the fact that  is a finite  

measure.   
 
Proof of Corollary 2.1 
 
Suppose that ( ) = +  for  with > 0 and . Since = +  and 
(0) = (0) = 0, we have = 0. By virtue of  and ( ) = ( ) for every  

 and , we have ( , ) ( ) = ( , ) ( )  for every , from which  
it follows that ( , ) = ( , ) a.e.  for every .  

Conversely, let = +  with > 0 and . Then = + ( )  and  
(0) = ( ) = ( ), from which it follows that ( ) = + ( ) for every  
( ). Define ( ) = + ( ) for . We then obtain = .   

                                                           
7  An × -measurable function ( ): × {+ }  is a normal integrand if ( , )  is upper 
semicontinuous on  -a.e.  and ( , )  is measurable on  for every . Therefore,  is a 
Carathédory function if and only if both  and  are normal integrands (see Fonesca and Leoni 2007, Theorem 6.34). 
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2.4. Locally Constant Indifference of Preference Orderings 

Axiom 2.8 (Locally constant indifference).  For every  and ,  with 0 < ( ) =
( ) < ,  whenever , .  

 
Locally constant indifference (Axiom 2.8) is naturally satisfied for preference orderings 

defined by integral functionals with time-independent integrands. Consider, for simplicity, the 
preference ordering  on ( , ; ) defined by  

( ( )) ( ) ( ( )) ( ), 

wh e r e  :  i s  a  B o r e l  me asurab le  f unc t io n  sa t i s fy i ng  (0) = 0 .  S ince  
( ( )) ( ) = ( ) ( ) for every  and  with 0 < ( ) < , locally  

constant indifference is valid for ( ( , ; ), ).  
While this axiom is not used by Koopmans, his axioms of K-monotonicity (Axiom 2.6) and 

stationarity (Axiom 2.7) play an alternative role in deriving the independence of time indices for 
instantaneous utility functions with constant discount rates.  
 
Theorem 2.2.  Suppose that the admissible set  is closed and connected in the -norm 
topology and contains every locally constant trajectory. If ( , ) satisfies Axioms 2.1 to 2.5 and 
2.8, then the integrand  in Theorem 2.1 is autonomous on , that is,  is independent of 

 on .  
Proof. Let , {0} with  be arbitrary. Without loss of generality, we may assume 
that < . Choose > 0 sufficiently small such that the open interval ( ) = ( , + ) is 
contained in . Since  is nonatomic, there exists some ( ) > 0 with lim ( ) = 0 
such that ( ( )) = ( ( )( )) with ( )( ) = ( ( ), + ( )) . By locally  
constant indifference (Axiom 2.8), we have ( ) ( )( ) for every  and, hence,  

( ) ( , ) ( ) = ( ( )) = ( ( )) = ( )( )
( , ) ( ) for every . Note  

also that  is a regular measure because of its absolute continuity with respect to the Lebesgue 
measure (see Halmos 1950, Sec.52(9)). Thus, by the Lebesgue–Besicovitch differentiation 
theorem (see Fonesca and Leoni 2007, Theorem 1.158), we have:  

 ( , ) = lim
( ( )) ( ) ( , ) ( ) 

 = lim
( ( )( )) ( )( )

( , ) ( ) = ( , ). 

Therefore, ( , ) is constant a.e.  for an arbitrarily fixed .   
 
Relations to the Savage Theory 
 
The integral representation in Theorems 2.1 and 2.2 bears similarities to the Savage formulation 
for additive separable representations. Let  be an algebra of subsets of . The set of 
measurable functions :  with respect to  is denoted by . In Savage’s 
terminology,  is a set of states of the world,  is a set of consequences and  is a set of 
extitacts.  

The Savage axioms for ( , ) guarantee that there exists a unique nonatomic finitely 
additive probability measure  on  and a bounded function :  such that  
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( ( )) ( ) ( ( )) ( ). 

Here, the integrand  is unique up to a positive affine transformation (see Fishburn 1970, 
Chap.14). Since  contains -spaces, the Savage formulation fits for our framework by the 
restriction of the preference ordering to the relevant choice space.  

Ignoring the restriction that  is supposed to be finitely additive and  is limited to a finite 
set in the Savage formulation, the main differences in the representation between Savage and this 
paper are the following: (i)  is endogenously determined by axiomatization and represents a 
qualitative probability on  in the Savage model, while it is exogenously given in our model; (ii) 

 does not involve a discount factor in the Savage model because it lacks the absolute continuity 
with respect to the Lebesgue measure, while given , a discount factor is uniquely determined in 
our model; (iii) the continuity of the preference ordering is not guaranteed under the Savage 
axioms; (iv) the growth condition on the integrand is derived in our model, which plays an 
especially crucial role in proving the existence of optimal paths in growth models without 
convexity assumptions (see Chichilnisky 1977 and Sagara 2001, 2007); (v) the integrand  is 
unique in the Savage model.  

It should be mentioned that integral representations of this type are investigated in more 
general settings by Vind (2003, Chap.11 and 12 by Grodal). Unlike Savage (1972), Grodal and 
Vind treat the case where  is a -algebra and  is a metric space, but the measure  is given 
arbitrarily. Under continuity, independence and translation invariance, they appear to succeed in 
obtaining a TAS representation for ( , ) with exponential discounting.  

One of the significant differences with this paper is a topological setting for the choice space. 
They endow  with the order topology with respect to . When restricting  to a subset of 
( , , ), their continuity requirement for ( , ) is more stringent than ours in that they 

assume that the order topology on  is coarser than the -norm topology. The uniqueness of 
the integrand and constant discountrate also seem unclear in their framework.  

2.5. Convexity of Preference Orderings 

In this subsection, we assume that the admissible set  is endowed with the weak topology of 
( , ; ).  

 
Axiom 2.1* (Weak continuity).  For every , the upper contour set { | } and 
the lower contour set { | } are weakly closed in .  

 
Weak continuity (Axiom 2.1*) is a stricter requirement on preference orderings than strong 

continuity (Axiom 2.1).  
 
Axiom 2.9 (Convexity).  For every , the upper contour set { | } is convex.  
 

Note that if  is convex, then it is connected both in the norm topology and in the weak 
topology of ( , , ).  
 
Theorem 2.3.  Suppose that the admissible set  is convex, and closed in the weak topology of 

. If ( , ) satisfies Axioms 2.1* and 2.2 to 2.5, then it satisfies Axiom 2.9 and the integrand 
( , ) in Theorem 2.1 is concave -a.e. .  
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Proof. Weak continuity (Axiom 2.1*) implies that the utility function  for ( , ) constructed 
in Lemma 2.1 is weakly continuous. Thus, the functional  defined in the proof of Theorem 2.1 
is weakly upper semicontinuous on ( , ; ). The representation theorem of Buttazzo and 
Dal Maso (1983) guarantees the concavity of the integrand ( , ) on , from which convexity 
(Axiom 2.9) follows.   

Theorem 2.3 is curious in that even if convexity (Axiom 2.9) is not assumed explicitly, weak 
continuity (Axiom 2.1*) necessarily implies convexity (Axiom 2.9), which is a consequence of 
strengthening the continuity requirement for the preference ordering. Convexity (Axiom 2.9), a 
geometric property, is obtainable from a topological property, weak continuity (Axiom 2.1*).  

 
Linear Preference 
 
Suppose that the admissible set  is given by (2.1). Let  be a continuous linear functional on 
( , ; ) with , 0 for every  and , = 0 if and only if = 0, where 
,  denotes the duality between ( , ; ) and its dual space ( ( , ; )) .  

Suppose that  is expressed by the restriction of  to , that is,  

, , . 
It is evident that ( , ) satisfies weak continuity (Axiom 2.1*), disjoint independence (Axiom 
2.2) and disjoint additivity (Axiom 2.5).  

Since 0 implies , > 0, for every  with a positive measure, it follows that 
, > 0  by choosing  satisfying ( ) > 0  on  with ( ) > 0 . Thus, ( , ) 

satisfies local sensitivity (Axiom 2.3) because of 0 .  
To show local substitutability (Axiom 2.4), take any  and  with a positive 

measure. Let  be such that ( ) > 0 on . We then have , > 0. Consider the 
continuous increasing function on [0, ) defined by , . Then, there exists some 

0  such that , = , . Since  is a positive cone and , we have 
. This demonstrates local substitutability (Axiom 2.4).8  

Therefore, by Theorem 2.1 (more precisely, ( ) = ,  works for the construction in the 
proof of Theorem 2.1), there exists a Carathéodory integrand : ×  such that  
, = ( , ( )) ( ) for every .  

On the other hand, the Riesz representation theorem implies that there exists a  
unique ( , ; )  wi th + = 1  such that  , = ( ), ( ) ( )  for  
eve r y ,  whe re  ( ), ( )  i s  t he  inne r  p rod uc t  o f  .  Thus ,  we  hav e  

( , ( )) ( ) = ( ), ( ) ( )  for every , where  is the Radon–Nikodym  
derivative of  with respect to the Lebesgue measure, and, hence, ( , ( )) = ( ), ( )  a.e. 

 for every . By the uniqueness of , we obtain ( , ) = , ( )  a.e.  
for every , and, hence, ( , 0) = 0 a.e. , where  is the nonnegative orthant of 

.  

2.6. Selection of a Relevant Function Space 

Theorems 2.1 to 2.3 are true for any choice of a complete Borel measure of the Lebesgue 
measurable space, ( , ), that is absolutely continuous with respect to the Lebesgue measure. In  
particular, the measure, , defined by (2.3), has the stated properties. Trajectories in  

                                                           
8 For the axiomatization of linear preferences on a convex cone in , see Weibull (1985). 
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( , ; ) admit unboundedness under the norm of ( ; ), but the growth rate of the  
paths is bounded by a function . This type of  space is called a weighted -space with a 
weight function, . Because there is some degree of freedom for the choice of , one can obtain a 
TAS utility function with an exponential discount rate in Theorems 2.1 to 2.3 by choosing 

( ) = exp ( ) with > 0.  
As shown in the example below, in practice the choice of weight functions depends on the 

particular applications under investigation. If one wishes to treat an -space as broadly as 
possible, it is desirable to choose a weight function as small as possible because 0   
implies that ( , ; ) ( , ; ).  

We denote by ( ; ) the set of essentially bounded functions on  to  with 
respect to the Lebesgue measure. If  is a finite measure that is absolutely continuous with 
respect to the Lebesgue measure, then the following inclusion  

( ; ) ( , ; ) ( , ; ) ( , ; ) 

is true for every 1 < . Instead of the ess. sup norm topology of ( ; ), it is, thus, 
legitimate to endow ( ; ) with the relative -norm topology from ( , ; ). It is 
thereby possible to deal with a subset of ( ; ) as an admissible set in ( , ; ).  

Although ( , ; ) with the ess. sup norm is nonseparable, by equipping ( ; ) 
with the -norm topology, it follows from the separability of ( , ; ) that ( ; ) 
becomes a separable Banach space. This is the reason why Theorems 2.1 to 2.3 are true in 

( ; ). Note that the restriction 1 <  is required here for ( , ; ) to apply 
the Debreu– Gorman theorem and the representation theorem of Buttazzo and Dal Maso (1983).  

 
One Sector Optimal Growth with Nonconvex Technologies 
 
We specify a relevant function space for standard one-sector optimal growth models. Let 

: ×  be a production function and ( ) [0,1] be a rate of depreciation of capital 
stock at . A path of consumption is a Lebesgue measurable function :  generated 
by the ODE given by  

 ( ) = , ( ) ( ) ( ) ( )  a. e. and (0) = , (2.4) 

where : , a locally absolutely continuous function, is a path of the capital stock. Define 
the set-valued mapping : × 2  by  

( , ) = { | ( ) ( , ) ( ) }. 
Given capital stock 0 at time , the set of feasible consumption is denoted by ( , ). 
Thus, every solution to (2.4) corresponds to a solution to the differential inclusion  

 ( ) ( , ( )) a. e. and (0) = . (2.5) 

Suppose that the following conditions are satisfied.  
(i)  is continuous on × , ( , ) is increasing and ( , 0) = 0 for every .  
(ii) There exists a continuous function :  and > 0 such that  

( , ) ( ) + for every ( , ) ×  
and  

exp ( ) < . 
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The Peano existence theorem (Hartman 1982, Theorem II.2.1) shows that any solution to 
( ) = ( , ( )) with (0) =  on [0, ) can be extended to [0, ), which we denote by 
( | ). In the terminology of capital theory, ( | )is a “pure accumulation path.” Since ( , ) 

is increasing, this solution is unique (Hartman 1982, Corollary III.6.3). It follows that if 
( ) ( , ( )) with (0) = , then ( ) ( | ) (see Hartman 1982, Theorem III.4.1). Let 
( ) = max { ( | ), ( ) + ( | ) }. It follows that ( ) ( , ( ))  a.e.  implies 

max { | ( )|, | ( )|} ( ) a.e. .  
Define the weight function, , by  

( ) =  ( ( ) )
1 + ( ) . 

Note that  is determined exclusively by the production technology. Since  is positive, 
continuous and Lebesgue integrable on , the measure  defined by (2.3) is a complete, 
nonatomic, finite, regular Borel measure. By condition (ii), we have  

( ) ( ) exp ( ) <  

and, hence, ( , ) ( , ). Note also that  belongs to ( , ) in view of  
. Therefore, every locally absolutely continuous function :  that is a solution to 

(2.5) is such that  and  are in ( , ). For every solution ( , ) to (2.4), we have  

| ( )| ( ( ) + ( ) ) + ( ) ( ) + | ( )| 3 ( ) a. e. , 
and, hence, ( , ). This suggests that the suitable selection for the admissible set is a  
subset of ( , ).  
 
 
3. TAS Representation of Recursive Utility 
3.1. Recursive Preference Orderings 

In this section we investigate the TAS representability of a general form of recursive utility 
functionals that permits nonexponential variable discount factors. An essential feature of recursive 
utility is that the rate of time preference is endogenized in its structure. Recursive utility was 
formulated by Koopmans (1960) in a discrete time framework. It was Uzawa (1968) who extended 
the Koopmans discrete time concept of recursive utility to continuous time. Epstein (1987) 
axiomatized a “generating function,” by which recursive utility functionals are obtained as a 
solution of an ODE. The existence of optimal paths in convex growth models with recursive utility 
was investigated by Becker et al. (1989) and the existence of those in nonconvex growth 
modelswith recursive utility by Sagara (2001).  

Let  be a Lebesgue integrable continuous function on  with positive values and define  
the measure  by (2.3). Suppose that the choice space  is a subset of ( , ; ) with  
1 < , but the admissibility of  is no longer required in the sequel. An integral functional 
 is given by a recursive utility functional of the form:  

 ( ) = , ( ) , , ( ) for . (3.1) 

Here,  and  are × -measurable functions on ×  and  is a Lebesgue 
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measurable function on × . A recursive preference ordering  on  is defined by:  

 ( ) ( ). ( 3 . 2 ) 

The integral functional form of recursive utility (3.1) is very general. A typical case in 
economic applications appears when  and  are autonomous and ( , ) = exp ( ), which 
is the case studied by Epstein (1987a, 1987b). If, moreover, 1, the case is reduced to 
Epstein and Hynes (1983). Uzawa (1968) investigated the case for ( , ) = exp ( ) and 

( , ) = ( ( )) with an increasing function . Because dynamic inconsistency stems from 
nonexponential discounting, as emphasized by Strotz (1955), the recursive utility (3.1) can easily 
incorporate the dynamically inconsistent behaviors of decision makers.  

3.2. TAS Representation II 

Assumption 3.1.   
(i) ( , ) is continuous on  and ( , ) is Lebesgue measurable on  for every 

.  
(ii) There exist some ( , ) and > 0 such that  

 
| ( , )| ( ) + | | for every ( , ) × . 

 
(iii) ( , ) is continuous on  a.e.  and ( , ) is Lebesgue measurable on  

for every .  
(iv) ( , ) is continuous on  a.e.  and ( , ) is Lebesgue measurable on  

for every .  
(v) There exists some ( , ) such that  

 
| ( , )| ( ) a. e. for every  

 
and  

, ( ) ( ) a. e. . 

(vi) ( , ) ( , ) 0 a.e.  for every ( , ) × .  
As proved in Lemma 3.1, the recursive utility functional  is upper semicontinuous on  in 

the -norm topology under Assumption 3.1. Moreover, ( , )  defined by (3.2) satisfies 
disjoint independence (Axiom 2.2) and disjoint additivity (Axiom 2.5) whenever  is admissible.  

 
Assumption 3.2.   

(i) ( , ) 0 a.e.  for every .  
(ii) ( , ) 0  a.e.  for every  and ( , )  is decreasing on  a.e. 

.  
(iii) ( , ) ( , ) is concave on ×  a.e. .  
(iv) ( , ) is concave on  a.e. .  

 
As demonstrated in Theorem 3.2,  is concave on  under Assumption 3.2 whenever  is 

convex. Thus, ( , ) satisfies convexity (Axiom 2.8).  
 
Theorem 3.1.  Let :  be a recursive utility functional defined by (3.1). If  is closed in 
the -norm topology and Assumption 3.1 is satisfied, then there exists an × -measurable  
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function : × { } satisfying ( ) = ( , ( )) ( )  for  with the  
following properties:  

(i) ( , )  is upper semicontinuous on  a.e.  and ( , )  is Lebesgue 
measurable on  for every .  

(ii) There exist some ( , ) and 0 such that  
 

( , ) ( ) + | | . . . 
 

Moreover, if  is another integrand with =  that satisfies condition (ii) with  
( , 0) = 0 a.e. , then ( , ) = ( , ) a.e. . Furthermore, if  is closed in the  

weak topology of  and convex, and Assumption 3.2 is satisfied, then ( , ) is a concave 
integrand a.e. .  

 
Contrary to Theorem 2.1, local sensitivity (Axiom 2.3) and local substitutability (Axiom 2.4) 

need not be fulfilled for the recursive preference ordering (3.2) to obtain a TAS representation by 
means of Theorem 3.1. This observation suggests that only strong continuity (Axiom 2.1), disjoint 
independence (Axiom 2.2) and disjoint additivity (Axiom 2.5) are possibly sufficient for obtaining 
a TAS representation in Theorem 2.1.  

Theorem 3.1 demonstrates that recursive utility representations can be reduced to TAS utility 
representations and leads to the significant implication from the point of view of applications that 
in dynamic optimization problems, simple econometric tests cannot distinguish the shape of the  
discount function ( , ( , ( )) ) of a decision maker, that is, whether the decision  
maker’s discount function depends on the whole history of trajectories or not. It is well known 
from Strotz (1955) that time-varying discount factors may lead to time-inconsistent optimal 
decisions. Thus, it is impossible to determine if the decision maker is a dynamically consistent or a 
dynamically inconsistent optimizer.  
 
Continuity of the Recursive Utility 
 
Lemma 3.1.  If Assumption 3.1 is satisfied, then  is upper semicontinuous on  in the 

-norm topology.  
 
Proof. The argument is based on Sagara (2007). It is easy to verify that by the growth conditions 
(ii) and (v) of Assumption 3.1, we have:  

 ( , ( )) , ( , ( )) ( ( ) + | ( )| ) ( ) (3.3) 

for every  a.e.  and the right-hand side of the inequality (3.3) is Lebesgue 
integrable over  for every . Thus,  is well defined. Define the Nemytskii operator  
: ( , ; ) ( , ) by ( )( ) = ( , ( )). By  condition (ii) of Assumption 3.1,  

there exist some ( , ) and > 0 such that |( )( )| ( ) + | ( )|  for every  
, ;  and . Thus, ,  is well defined for every  

( , ; ). Since  is nonatomic because of the nonatomicity of the Lebesgue measure and  
 is a Carathéodory function, it follows that  is bounded and continuous (see Krasnosel’skii 

1964, Theorem 2.1).  
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Define the function  on × ( , ; ) by  

( , ) = , ( , ( )) . 

We show that  is a Carathéodory function, that is, ( , ) is continuous on ( , ; ) a.e.  
 and ( , ) is Lebesgue measurable on  for every ( , ; ). Note first  

that  is a Carathéodory function by condition (iii) of Assumption 3.1 and, hence, it is jointly 
measurable on ×  (see Fonesca and Leoni 2007, Theorem 6.34). Thus, the measurability of  
( , ) for every ( , ; ) is immediate. Let { } be a convergent sequence in  
( , ; ) to some . Then, { } has a subsequence (which we do not relabel) such that  
( ) ( ) -a.e. . Since the Lebesgue measure is absolutely continuous with respect  

to  by the positivity of , we have ( ) ( ) a.e. . Since | ( , ( ))| ( )  
a.e.  for each  and ( , ( )) ( , ( )) a.e.  by conditions (iv) and (v) of 
Assumption 3.1, we have:  

lim ( , ( )) = ( , ( )) for every  

by the Lebesgue dominated convergence theorem. Therefore, we have:  

lim , ( , ( )) = , ( , ( )) a. e. . 

Therefore, ( , ) is continuous a.e. .  
Define the operator, : ( ), by  

( )( ) = ( , ( )) , ( , ( )) . 

By (3.3),  is integrable over  for every  and by condition (vi) of Assumption 3.1, 
0 for every . Let { } be a convergent sequence in to some . Since 

 in ( , ), the sequence { } has a subsequence (which we do not relabel) such  
that ( )( ) ( )( ) -a.e. , and hence, ( )( ) ( )( ) a.e. . Since  
( )( ) = ( )( ) ( , )  for each  and ( )( ) ( )( )  a.e. , Fatou’s 
lemma implies:  

lim sup ( ) lim sup( )( ) = ( )( ) = ( ). 

Therefore,  is upper semicontinuous on .   
 
Concavity of the Recursive Utility 
 
Lemma 3.2.  Suppose that  is convex. If Assumption 3.2 is satisfied, then  is concave on .  
 
Proof. Let ,  and [0,1] be arbitrary. Define the functions on  by ( ) = 

( , ( ))  and ( ) = ( , ( )) . It follows from Assumption 3.2 that:  
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( , ( ) + (1 ) ( )) , ( , ( ) + (1 ) ( ))  

( , ( ) + (1 ) ( )) ( , ( ) + (1 ) ( )) 
( , ( )) ( , ( )) + (1 ) ( , ( )) ( , ( )), 

 
a.e. , where the second line uses conditions (i), (ii) and (iv) of Assumption 3.2 and the third 
line employs condition (iii) of Assumption 3.2. Therefore, integrating this inequality yields 
( + (1 ) ) ( ) + (1 ) ( ).   

 
Proof of Theorem 3.1 
 
Define : ( , ; ) × { } by:  

( , ) = [ ( , ( )) ( , ( , ( )) )] if ,
otherwise.

 

Since ( , ) is upper semicontinuous on the closed set  in the -norm topology by  
Lemma 3.1, it follows that ( , ) is upper semicontinuous on ( , ; ) by  
construction. Note that  is countably additive and local, and satisfies (0, ) = 0 for every 

. Thus,  satisfies the conditions of the representation theorem by Buttazzo and Dal Maso 
(1983) (see also the proof of Theorem 2.1). Therefore, there exists a normal integrand ( ): ×

{+ } with the following properties:  
 

(a) There exist some ( , ) and 0 such that  
 

( , ) ( ) + | | -a. e. for every . 
 

(b) ( , ) = ( , ( )) ( ) for every ( , ; ) and .  
 

Thus, conditions (i) and (ii) of the theorem are established. The condition (b) implies that  
( ) = ( , ( )) ( )  for every . The argument for the uniqueness of the integrand  

is same as the proof of Theorem 2.1.  
Since ( , ) is concave and upper semicontinuous on the Banach space ( , ; )  

by Lemmas 3.1 and 3.2, it is also weakly upper semicontinuous on ( , ; ) (see Fonesca  
and Leoni 2007, Proposition 4.26). From the representation theorem by Buttazzo and Dal Maso 
(1983), it follows that ( , ) is concave on  a.e. .   
 
 
4. Concluding Remarks 
 
In this paper, a TAS representation of preference orderings with an infinite horizon in continuous 
time has been formulated under a different system of axioms to that of Koopmans (1972b). In 
particular, this paper has not imposed the continuous time analogue of his axioms, K-monotonicity 
(Axiom 2.6) and stationarity (Axiom 2.7), which jointly imply the time-invariance of preference 
orderings and play an important role in determining discount rates endogenously in the Koopmans 
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argument.  
The unique discount function derived in this paper is not determined axiomatically, but just as 

a consequence of the absolute continuity of the underlying measure. Thus, it is desirable to obtain 
a corresponding TAS representation in continuous time, hopefully under the same topological 
setting on a choice space (  with the ess. sup norm), which might make a direct comparison 
possible between the axioms in continuous time and those in discrete time.  
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