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Abstract

An alternative proof of Aumann and Maschlers’ theorem on
the nucleolus of a Talmudic bankruptcy game is given directly

from the definition of the nucleolus.
1. Introduction

The purpose of this note is to give a direct proof of Aumann
and Maschlers’ interesting theorem on a bankruptcy problem based
on the Talmud [1]. This theorem states that the CG-consistent
solution to a bankruptcy problem, which is defined after a Tal-
mudic principle called by them the contested garment principle,
is precisely the nucleolus of a game associated with the bankruptcy
problem.

Their short and elegant proof makes use of theorems of
cooperative game theory, e. g., [2], [3], [4], some of them being not
so familiar to non-specialists. The proof is completed by showing
that the kernel of the associated game consists of a single point,
thereby establishing the identity of it and the nucleolus via the
theorem of Schmeidler [4].

In contrast, in the proof to be given below, we use only the
definition of the nucleolus [4], which makes the proof rather
lenghy, yet direct, quite elementary and more easily accessible

for non-specialists.
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We give only the definitions and results that are necessary
for our proof. For motivations and diséussions on them, refer to
Aumann and Maschler [1]. The proof is performed in a straight-
forward manner by first representing formally the CG-consistent
solution which Aumann and Maschler have described in their
theorem A, and then showing directly that no other solution can

satisfy the requirement of the nucleolus.
2. Definitions and the Theorem

A bankruptcy problem is a pair (E; d) where E is the estate
of a bankrupt, and d=(d,, ..., ds), 0=di<...=d,, is the debts to #n
creditors 1,...,7n, satisfying 0ZE<d:+...+d.=D. A solution to
(E; d) is an n-tuple x=(x4, ..., x») of real numbers with x1+...+x.
=EFE.

A solution x is called CG-consistent if for all i#j, (xi, x;)

satisfies
2i=(Xi;— (Xij—di)+— (Xi;—d)+)/24+ (Xij—d))+

and
%=X, —(Xij—di)+— (Xi;—d)+/24 (Xij—di)+,
where
Xij=xi+x;,
t+=max (¢, 0).

Aumann and Maschler [1] have shown that every bankruptey
problem has a unique CG-consistent solution.

In this note, a game is a function v that associates a nonnega-
tive real number v(S) with each subset S of N={1,...,#}. N is
the set of players, and S is called a coalition. It is assumed that
v(#)=0. A payoff vector is a vector x=(xi,..., %) with x1+...+
%.=v(N), where x; represents a payoff to player . An imputation
is a payoff vector x satisfying x;=v({z}) for all ielV.

A bankruptcy game associated with a bankruptcy problem
(E;d) is a game vy, defined by

V5:0(S)=(E—d(N—S))+ for each SCN,
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where
z(R)= Z}e 2

for any RC N and any vector z=(zy, ..., Za).

The nucleolus of a game v is an imputation x obtained as
follows [4]. For a given imputation y, let 6(y) be a vector in
R?*, the 2"-dimensional Euclidean space, the components of which
are the numbers v(S)—y(S) for all subsets S arranged in the
non-increasing order, i. e., 61(3)=0:(9)=...202(y). Then, an
imputation x is called the nucleolus of » if for any imputation
yFx,

040 (x) <0(»)
where
fo=min {£]60,(x) #0:,(»)}.
It is well known that every game v has a unique nucleolus [4].

The number v(S)—y(S) is called the excess of coalition S
with respect to y. Thus, the nucleolus has the meaning that it
minimizes the maximal excess among the coalitions.

A striking result about the nucleolus of the bankruptcy game
is that it is precisely the CG-consistent solution of the bankruptev
problem. Namely,

Theorem (Aumann and Maschler [1]). The CG-consistent
solution of a bankruptcy problem (E, d) is the nucleolus of the

game Vg

To prove this theorem from the definition of the nucleolus,
we need an explicit representation of the CG-consistent solution.
Let x be the CG-consistent solution. Then, following the con-
struction in Theorem A of Aumann and Maschler [1], x can be

given as follows:

Case (1) If 0 E<nd\/2, then
xi=E/n for all i=1,.., n.
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Case (ii) For k=0,1,2,...,n—2, if

(D— 3 (@=du))/2SES(D— 3 (di=dr)/2,
then
xi=di/2 for i=1,...,k+1
Xi=Cr+1 for i=k+2, o R,
where

Coa1=0r41/2+ (E—(D— /=il:;+1 (di—dv+1))/2) /(n—k—1).

In this case we have
xi=di/2, for i=k+2, ..., n.
To see this, put E=(D— X j-++:(d;j—di+2))/2 for each k to obtain
Ck+1§dk+z/2.

Case (iii) For k=n—2,n-3,...,1,0, if

(D+ 3 (di=du))/2SES(D+ 3 (d—du))/2,
then
x.-=d.-/2 for i=1, ...,k+l
xi=di—bs+1 for i=k+2,...,n,
where

n

beri=dis1/2+ ((D+ X2 (di—dr+1))/2— E} /(n—k—1).

J=k+1

In this case we have
xi=2di/2, for i=k+2,..., n.
To see this, put E=(D+X7-44+:(di—dr+2))/2 for each k to obtain
brs1=dri2/2.

Case (iv) If D—nd,/2<EZD, then
xi=di—(D—E)/n for all i=1, ..., n.

It will be convenient to note that the four cases are arranged
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in the increasing order of E from 0 to D.
3. Proofs

Initially, we state four easy lemmas. The bankruptcy game
Ve will be denoted simply by v.

Lemma 1. 1f ES(D—(ds—d.-1))/2, then
v({i})=0 for all i=1,..., n.

Proof. Note that D—d,=d.,-1. Then,
E<(D—d.)/2+d.1/2< D—d,
Hence, for all i,
0=v({{})=max (0, E— D+d;}
Smax {0, E— D+d,} =v({n})=0.

Lemma 2. 1f (D+(dw—da-1))/2<E, then
v(N—{i})=E—d; for all i=1,...,n.

Proof.
E=d./2+4(D—d,-1)/2=d..
Hence, E=d: for all i=1, ..., n, which implies
v(N— {i})=max (0, E—d:) =E—d;, for all i=1, ..., n.

Lemma 3. 1f

(D— 3 (d—dw))2<E,
j=k+1
then

v(N—{(i))=E—d: for all i=1,...,k+1.

Proof.
E=D/2— % (di—di:)/2

j=F+1

=(!é:ldi+ i dk+|)/222dk+1/2,

j=k+1
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because k<n—2. Hence, for all i=1,...,k+1,
E—diZE—di120,
which implies
v(N—{#}))=max {0, E—d:) =E—d; for all i=1,...,k+1.

Lemma 4. 1f

ES(D+ 3 (d=du),

then
v({i})=0 for all i=1,..., k+1.

Proof.

n

ESD/2+(D~ 5 di— 3 di)/2

J=h+1

=D-( 5 dit 3 di)/2

=k+1
gD——de/Z:D—dm,
because k=<n—2. Hence, for all i=1,...,k+1,
E—D+di£E—D+drna
which implies
v({i})=0 for all i=1, ..., k+1.

We now prove the theorem. Cases (i) and (iv) are proved
before cases (ii) and (iii). In all proofs, S will stand for a
nonempty, proper subset of N. The values v(S)—x(S) for S=¢
or N are always 0, so that they can be ignored.

Case () If 0SE<nd,/2, then
xi=E/n for all i=1,..., n.

Proof. We show that if SCN, SN then
v(S)—x(S)=v({D})—xi=—E/n for all i=1, ..., n.
Note that

E<nd,/2=(D— jgl (dy—d))/2= (D—(dn—dn-1))/2.
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It then follows from Lemma 1 that
v({#})=0 for all i=1, ..., n.
Then, if v(S8)=0, there is a j such that
v(S)—x(S=v({7})—x;=v((}})—x=—E/n
for all i=1,..,n. If v(S8)>0, then noting that x=d: for all
i=1,...,n, we have for some j,
v(S)—x(SH=<v(N— {1 —x(N—{j})=—d;+x
=—d;+E/n<—E/n
=—y; for all i=1,..., n.
Thus, the assertion is true. This also implies that x is an im-
putation.
Now, let y be any payoff vector with y#x. Then, for some
7, we must have y:<x:.. Hence,
v({i})—y:>v({i})—x:=—E/n for this i,

which implies that y is not the nucleolus.

Case (2v) If D—ndi/2<ELD, then
xi=di—(D—E)/n for all i=1,...,n.

Proof. We show that if SCN, SxN then
v(S)—2(S)=v(N—{i})—2(N—- (i} )=—(D—E)/n
for all i=1,...,n. Note that

EzD-ndi/2=(D+ 3 (di—d)/22 (D+(dr—du-1))/2.

It then follows from Lemma 2 that
v(N—-{i})=E—d; for all i=1,...,n.
If »(S)>0, then noting that x:=d; for all i=1,...,n, we have for
some j,
() —x(S)=v(N— {j)D—x(N—{j}D=—d;+x
=—(D—-E)/n=—d;+x:
=o(N—{5})) —x(N—{i}) for all i=1,...,n.
If »(S8)=0, then for some j we have
v(8)—x(S)=v({j)—x;
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=—d;+(D—-E)/n<—(D—E)/n
=o(N— {i})—x(N—{i}) for all i=1,...,n.
Thus, the assertion is true and x is an imputation.
Now, let y be any payoff vector with y#x. Then, for some
7, we must have y.>x:.. Hence,
v(N— (@)D —y(N— (i) )>v(N— {i} ) —x(N— (i}) for this i,

which implies that y is not the nucleolus.

Case (ii) For £=0,1,2,...,n—2, if

(D- 5 W@—du)2SES(D- 5 (d=du)/2,
then
xi=di/2 for i=1,...,k+1
Xi=Cups1 for i=k+2, ..., n,
where

cen=dins/2+ (E~(D~ 5 (di=din))/2)/(n—k~1)
Proof. Assume first that k<n—3. Then, ES(D—(ds—d»-1))/2.
Hence, by Lemma 1, _
v({i})=0 for all i=1,..., n.
Also, by Lemma 3, ‘ '
o(N—{i))=E—d: for all i=1,...,k+1.
We show that for each i=1, ..., k, if S satisfies :
S#{1), SN—{1), S#(2), SN—{2), ..., S# (i}, and SEN— {1},
then ) ' : ‘
v(S)—x(S)Zv(N— (i+1}))—x(N— {i+1})
=v({i+1))—xin
=—di+1/2 (1)
Recall that x:<d;/2<d; for all i=1,2,...,s. Then, for any such
S, we have:
v(S)>0 implies Ihi11#1, 2, ..., 7 such that
v(S)—2(S) Zv(N— {hin1}) ) —2(N— {his})
= —dhor + Xhi S — Xhieys
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and
v(S)=0 implies Ijis1#1,2,...,7 such that
v(S)—x(S)=v({ji+1)) — %),
=—Xjiuy.
But, by Lemmas 3 and 1, we have
v(N—(i+1))—x(N— (i+1})=—dit1+%xin1
=—d,~+1/2=——x.~+12—th
and
v({i+1}) —xi41=0—2xip1=—di+1/2= — xj;.,.
Hence, (1) holds.
We next show that if S satisfies
S+{1}, S#N-{1},...,S#{k+1}, S#N—{k+1)},
then
() —x(SH =o({7)—xC{7)
=—Cp1= —dis1/2 for all j=k+2,...,n—1,n (2)
This is because we have:
v(S)=0 implies v(S)—x(S)=v({j})—=x;
=—x1=_6k+l§_dk+l/2
and
v(S)>0 implies v(S)—x(S)Zv(N-{j})—2(N—{j})
=—di+2; S — %< —dys1/2.
Combining (1) and (2), and noting that :
v((1}))—x=—di/2=0(N— (1)) —2(N— (1}), .
we conclude that the first # greatest values of 9(S)—x(S) can be
arranged in the non-increasing order as
—di/2= —d2/2= .. 2 —dps1/2= —Chp1=... = —Crs1 (3)
which also implies that x is an imputation.
Now, let y be any payoff vector with y#x, and let
fo=min {ily; #x:}.
Then, if 76<k+1, it follows from (1) that
v(N— {io) ) —y(N— (30} )> —diy/2
or

o({i} ) —9io> —dio/2.
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Hence, y cannot be the nucleolus. If 7% =k+2, then due to
assumption that k<n—3, there is another jo=k+2 such that
Yio<Zxi, implies ¥j,> %i,
and
Yio>Xip implies ¥j,<%i,
Hence, we must have either
v( [io} ) —%io>> —Chrs1y
or
v({jo} ) —9jo> —Cus1,
which implies that y is not the nucleolus.
When k=n—2, we have
x;=d.~/2 i=1,2,...,n——1,
Xn=Cn=dn-1/2
and (3) now becomes
—di/22—dz/22...—du-1/2=—Ch.

the

Note that i<z by definition. Hence, it follows from (1) that

either
v({éo} ) —yiy> —diy/2
or
V(N = {io} ) —y(N— {io} ) > —dio/2,. -

which implies thaty is not the nucleolus. This completes the proof.

Case (iii) For k=n—-2,n-3,...,1,0, if
2

”n "
J=k+2

(d,—dh+=)>/zg5gco+ Y (di—die))/2,

. DF 2
then
x;=d;/2 for i=l, ...,k+1
xi=di—buss1 for i=k+2,...,m,

bosr=dss1/2+ (D+ ,il (dj—dis))/2—E) /(n—k—1).

Proof. The proof is similar to case (ii). Assume first that

k=n—3. Then, E=(D+(d.—d.,-1))/2. Hence, by Lemma 2,
v(N—(i})=E—d; for all i=1,...,n.
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Also, by Lemma 4,
v({i}) =0 for all =1, ..., k+1.
We show that for each i=1,...,k, if S satisfies
S# (1}, S#N—(1}, S= (2}, S#N—{2},...,S# (i}, and S#=N—{i},
then
v(S) —x2(S)Zv(N— {(i+1})—x(N— {i+1))
=o({i+1})—xin1
=—di/2 an
Recall that di/2<x:<d: for all i=1,2,...,n. Then, for any such
S, we have:
v(8)>0 implies hi+1#1,2,...,¢ such that
v(8) —x(S) =v(N— {hin1}) —2(N— {his1})
= —dpyy+ i
=—dn/2 if hin<k+1
=—bpp i B Zk+2
and
v(S8)=0 implies Jji+1#1,2,...,¢ such that
v(8) —x2(S) Zv({jin)) — x5,
= = Xjin
But, by lemmas 2 and 4, we have
o(N— (i+1})) —x(N— (i+1}) = —dis1+ Xis1
=“di+1/22—di+2/22---
Z —di1/2Z = basy,
and
v({i4+1})—%i1=0—xi41 = —dis1/22 — Xji. ).
Hence, (1") holds.
We next show that if S satisfies
S+ {1), S#N— (1}, ..., S# (k+1}, S=N—(k-+1],
then
v(S)—x2(S) <v(N— {7})—x(N— {5})
=—bi1 £ —di1/2 for all j=k+2,...,n—1,n. (2)
This is because we have:
v(8)>0 implies v(S) —2(S)=<v(N—{j})—2(N—{5})
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=—di+x;i=—br1 < —dr1/2.
and
v(S)=0 implies v(S)—x(S)=v({j})—=x;
=—x=—dj+x;
=—bes1 < —drs+1/2
Combining (1”) and (2"), and noting that
v({1))—xm=—di/2=v(N— {1} ) —x(N— {1}),
we conclude that the first #n greatest values of v(5)—x(S) can be
arranged in the non-increasing order as
—d /22 —ds/2= ... 2 —dis1/22Z —brs1=...= —bi11 3
which also implies that x is an imputation. The rest of the proof

is almost the same to that of case (ii), so is omitted.
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