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Various metal-insulator-metal- (MIM-) type plasmonic waveguides and gratings are investigated numerically. Three gratings are
treated: one is formed by alternately stacking two kinds of MIM waveguides, another by periodic changes in the dielectric insulator
materials of an MIM waveguide, and the other by a periodic variation of the air core width in an MIM waveguide. The dispersion
property of each MIM waveguide of which the grating consists is analyzed using the implicit Yee-mesh-based beam-propagation
method. It is shown that the third one has a relatively large effective index modulation of the guided mode with a simple grating
structure, while maintaining a low propagation loss. Further examination is given to modifications of this grating structure. The
transmission characteristics are examined using the frequency-dependent implicit locally one-dimensional FDTD method. We
discuss how the modified grating structure affects the bandgap of the transmission characteristics.

1. Introduction

Recently, metal-insulator-metal- (MIM-) type plasmonic
waveguides have received considerable attention, since com-
pact optical circuits may be realized [1, 2]. The alternative
effective index modulation of an MIM waveguide leads to a
plasmonic waveguide Bragg grating that is one of the basic
building blocks for small size plasmonic circuits. Three grat-
ings have been mainly investigated: one is formed by alter-
nately stacking two kinds of MIM waveguides (Figure 1(a))
[3], another by periodic changes in the dielectric insulator
materials of an MIM waveguide (Figure 1(b)) [4], and the
other by a periodic variation of the air core width in an MIM
waveguide (Figure 1(c)) [5, 6]. We have numerically studied
the sidelobe suppression of the latter one [7]. It is found that
apodized and chirped gratings are quite effective in reducing
the sidelobes. In addition, we have proposed a plasmonic
microcavity offering a tunable resonance wavelength with
varying an air core width. Note, however, that the character-
istics of the above-mentioned three structures have not been
compared in terms of an effective index modulation that is
quite important to design gratings.

In this paper, we compare the basic characteristics of
several MIM waveguides of which gratings are composed.

The effective index versus core width of each MIM waveguide
is calculated using the imaginary-distance Yee-mesh-based
beam-propagation method (YM-BPM) [8]. It is shown
that the grating with a periodic variation of the air core
width (Figure 1(c)) yields a relatively large effective index
modulation of the guided mode in the grating section, while
maintaining a low propagation loss. We next examine the
transmission coefficient of several gratings, that is, concave
and convex gratings are calculated using the frequency-
dependent locally one-dimensional finite-difference time-
domain method (LOD-FDTD) [7, 9]. It is found that
the convex grating gives a wide bandgap in the trans-
mission coefficient because of a large index modulation.
In addition, a slight modification to the plasmonic grat-
ing is found to yield a large variation in the bandgap,
which is not easily obtainable using conventional dielectric
gratings.

This paper is organized as follows. Section 2 gives the
dispersion model of a metal and the brief explanations of the
numerical techniques based on the efficient implicit schemes.
Section 3 discusses the dispersion properties of each MIM
waveguide with respect to the core width. Section 4 inves-
tigates the transmission coefficient of several modified
gratings. Section 5 provides the concluding remarks.
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2. Numerical Methods

2.1. Dispersion Model. The metal dispersion treated here is
expressed by the following Drude model [5–7]:

εr(ω) = ε∞ +
ω2

D

jω
(
νD + jω

) , (1)

where ε∞ is the dielectric constant of the material at infinite
frequency, ω is the angular frequency, ωD is the electron
plasma frequency, and νD is the effective electron collision
frequency.

2.2. Implicit Imaginary-Distance YM-BPM. The BPM is
widely used to analyze optical waveguides. The BPM can
also produce eigenmode fields quite efficiently, with the
help of the imaginary-distance procedure. Note however that
the conventional BPM cannot simultaneously offer all the
electromagnetic fields, since it is based on the wave equation
of either an electric or magnetic field. To simultaneously
evaluate electric and magnetic field components, the YM-
BPM has been developed on the basis of the explicit scheme
[10]. The implicit scheme has also been introduced to the
YM-BPM for efficient unconditionally stable calculations
[8]. The use of Yee’s mesh also means that the obtained
eigenmode profile is readily used as an initial field in the
following FDTD analysis. Detailed derivation of the three-
dimensional YM-BPM can be found in [8], where the
operator splitting is adopted in the propagation direction.
Here, we present the resultant unsplit FD equations for
the transverse magnetic (TM) waves suitable to the two-
dimensional calculations as follows:
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Figure 1: Configurations of plasmonic gratings. (a) grating 1:
formed by alternately stacking two kinds of MIM waveguides, (b)
grating 2: formed by periodic changes in the dielectric insulator
materials of an MIM waveguide, and (c) grating 3: formed by a
periodic variation of the air core width in an MIM waveguide.

in which

c1 = εr,i−1/2

εr,i
,

c2 = εr,i+1/2

εr,i
+
εr,i+1/2

εr,i+1
,

c3 = εr,i+3/2

εr,i+1
.

(5)

In the above equations, k0,n0, and εr , respectively, represent
the free-space wavenumber, the reference refractive index,
and the relative permittivity that is determined with (1) at
a specific ω. As is observed, (2) gives a tridiagonal system
of linear equations that are efficiently solved by the Thomas
algorithm. Once El+1

x is obtained, Hl+1
y is explicitly calculated

by (3).
To perform the eigenmode analysis, we apply the

imaginary-distance procedure to the above YM-BPM [8],
where the real propagation axis z is changed into the
imaginary axis jτ. This means that the phase variation of the
propagating field turns into the amplification of the eigen-
mode field. The effective index gradually converges using the
technique for renewing the reference refractive index n0.

2.3. Frequency-Dependent Implicit LOD-FDTD Method. For
the time-domain analysis of a metal in optical wavelengths,
we have to utilize the frequency-dependent FDTD [11]. Note
that the spatial sampling widths should be quite small for
the analysis of a surface plasmon wave localized around the
metal-dielectric interface. This gives rise to a small time step
due to the Courant-Friedich-Levy (CFL) condition of the
traditional explicit FDTD, resulting in long computational
time. To efficiently perform the time-domain analysis, we
have developed the frequency-dependent implicit LOD-
FDTD [12, 13] that is free from the CFL condition [14]. In
addition, to simply take into account the convolution inte-
gral, we have adopted the trapezoidal recursive convolution
(TRC) technique requiring a single convolution [15, 16],
which leads to almost the same accuracy as the piecewise
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linear RC (PLRC) counterpart requiring two convolution
integrals [17]. We here present the basic equation (TM
waves) of the frequency-dependent LOD-FDTD based on the
TRC technique for the Drude model as follows [7, 9]:

E′x = Enx , (6a)
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for the second step, where E′ and H′ represent the inter-
mediate fields, and c is the speed of light in a vacuum. The
parameters used above are expressed as follows:
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in which δ = x or z. Note that the normalized expression
of field components is used. The equations for the TRC-
LOD-FDTD are simpler than those for the PLRC-LOD-
FDTD [13]. In the first step, we substitute (6c) into (6b)
and implicitly solve the resultant equation using the Thomas
algorithm. Then, (6c) is explicitly solved. In the second
step, the equations are calculated in the same way as
in the first step. It should be noted that the frequency-
dependent implementation of the LOD-FDTD is much
simpler than that of the frequency-dependent alternating-
direction implicit (ADI) FDTD.

3. Dispersion Properties of MIM Waveguides

It is important to calculate the effective indexes of waveguides
of which the grating is composed, since the alternative
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Figure 2: Effective index of the MIM waveguide.

effective index modulation predominates grating character-
istics. Therefore, we first calculate the dispersion property
of various MIM waveguides with respect to the core width.
To obtain the effective index, we use the YM-BPM with the
imaginary-distance procedure.

Three plasmonic gratings treated here are as follows (see
Figure 1): one is formed by alternately stacking two kinds
of MIM waveguides (grating 1) [3], another by periodic
changes in the dielectric insulator materials of an MIM
waveguide (grating 2) [4], and the other by a periodic
variation of the dielectric insulator width in an MIM
waveguide (grating 3) [5, 6]. For grating 1, ωD = 15 eV
and νD = 0.01 eV are used for ε1, and ωD = 9 eV and
νD = 0.001 eV are for ε2, where ε∞ = 1 is commonly adopted
(metals are not specified) [3]. For grating 2, the permittivity
of Ag is determined with ε∞ = 3.7, ωD = 9.1 eV, and
νD = 0.018 eV (in consistent with the experimental results),
and those of SiO2 and PSiO2 are 1.462 and 1.232, respectively
[4]. For grating 3, the Ag permittivity is the same as that used
for grating 2.

Figure 2 shows the effective index of the MIM waveguide
of which each grating is composed, as a function of core
width W at a wavelength of λ = 1.55μm. In Figure 2, the
results of ε1-air-ε1 and ε2-air-ε2 are presented for grating
1, those of Ag-SiO2-Ag and Ag-PSiO2-Ag are for grating 2,
and the result of Ag-air-Ag is for grating 3. It is interesting to
note that the effective index becomes large as the core width
W is decreased. This contrasts to the case of a conventional
dielectric waveguide, where the effective index becomes small
as the core width is decreased.

Now, we pay attention to the effective index difference
Δne, when the two MIM waveguides are used to form
gratings. For grating 1, Δne is calculated to be 0.138 at
W = 0.05μm and 0.078 at W = 0.1μm from the results
in Figure 2. For grating 2, Δne is to be 0.329 at W = 0.05μm
and 0.278 at W = 0.1μm. For grating 3, Δne is evaluated
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to be 0.172 with a combination of W1 = 0.05μm and
W2 = 0.1μm. As a result, a large Δne can be obtained for
grating 2, although three materials (Ag, SiO2, and PSiO2) are
required. In contrast, for grating 3, a relatively large Δne is
obtainable with a simple grating structure (Ag-air-Ag). The
propagation losses for the latter two cases are calculated in
Figure 3. It is seen that the propagation loss for Ag-air-Ag
is smaller than that for Ag-PSiO2-Ag. Therefore, we choose
the Ag-air-Ag waveguide (grating 3) because of a relatively
large Δne and a low propagation loss, and investigate various
modified gratings in the following analysis.

4. Characteristics of Modified
Plasmonic Gratings

Using the frequency-dependent LOD-FDTD, we investigate
four plasmonic gratings consisting of the Ag-air-Ag MIM
waveguide with the input core width W1 being fixed. The
reference grating (concave type) is shown in Figure 4(a), the
parameters of which are W1 = 0.1μm, W2 = 0.15μm, Lp =
0.660μm, and Ls = 0.292μm. The number of the grating
period is 14. The normalized transmission coefficient for
concave type is presented in Figure 5(a), which is indicated
by the black solid line. Note that the Bragg condition is
expressed by k[ne1(Lp − Ls) + ne2Ls] = (2m + 1)π. For this
grating, the effective indexes are found to be ne1 = 1.20204
and ne2 = 1.139 in Figure 2. Then, the Bragg wavelength is
calculated to be �1.55μm from the above condition, which
almost agrees with the center wavelength of the transmission
coefficient for concave type.

Next, we examine another grating with W3 = 0.05μm
shown in Figure 4(b) (convex type). For this grating, the
effective index for W3 is ne3 = 1.37428, leading to a Bragg
wavelength of�1.69 μm (recall that the effective index for the
MIM waveguide becomes large, as the core width is reduced).
The red solid line in Figure 5(a) represents the coefficient for
convex type, in which the bandgap is found to be much wider
than that for concave type. This is due to the fact that the
bandgap becomes wide as the contrast between the effective

x

z
Lp Ag

W1 W2 · · · Air

Ls
Ag

(a)

W1 W3 · · ·

(b)

W1 W4 · · ·

(c)

W1 W5 · · ·

(d)

Figure 4: Various plasmonic gratings. (a) concave type, (b) convex
type, (c) flat-concave type, and (d) flat-convex type.

indexes of alternating layers is increased [4]. In this case, the
index contrast for convex type is 0.172, while that for concave
type is 0.063, leading to the wide bandgap for convex type.
As a result, the convex type plasmonic grating can yield a
wide bandgap, compared with the concave type where a large
effective index modulation cannot be obtained for a large W
as shown in Figure 2.

We further modify the gratings, in which the one side
of the metals for concave type is replaced with a flat
metal, as shown in Figure 4(c) (flat-concave type). For this
type, the effective index of the W4(= 0.125μm) section is
1.165, resulting in a Bragg wavelength of �1.56. This Bragg
wavelength is close to that without the modification (�1.55
for concave type). It is therefore expected that the bandgap of
the transmission coefficient for flat-concave type is reduced
with the Bragg wavelength being almost fixed. The black
dotted line in Figure 5(b) is the coefficient for flat-concave
type. As expected, the bandgap becomes narrower than that
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Figure 5: Normalized transmission coefficient.

for concave type, while maintaining the Bragg wavelength.
This is almost true for flat-convex type (the one side of the
metals for convex type is taken flat as shown in Figure 4(d)),
in which the coefficient is approximately centered in that for
convex type (see Figure 5(c)). It should be noted that even
the slight modification to the plasmonic grating structure
shown above leads to a large variation in the bandgap,
which is not easily obtainable from conventional dielectric
gratings.

Finally, we point out the efficiency of the LOD-FDTD. In
the above analysis, we have used a time step of 0.102 fs ten
times as large as that determined from the CFL condition
of the explicit FDTD. As a result, the computational time
of the LOD-FDTD is successfully reduced to 30% of the
explicit counterpart, where a PC with Core2Quad processor
(2.66 GHz) is used. The LOD-FDTD is suitable for the
analysis of plasmonic devices in which quite small sampling
widths should be required.

5. Conclusion

We have investigated the dispersion characteristics of several
MIM waveguides and examined the transmission coefficient
of several modified gratings. First, we briefly present the
numerical techniques, that is, the implicit YM-BPM for
the eigenmode analysis and the frequency-dependent LOD-
FDTD for the time-domain analysis. Next, we calculate
the effective index of each MIM waveguide. A simple
MIM waveguide made of Ag-air-Ag is found to provide a
relatively large effective index modulation, maintaining a low
propagation loss. We further calculate the characteristics of
concave and convex gratings. The convex grating is shown to
yield a wide bandgap of the transmission coefficient. Finally,
we modify the grating structures to study the effect on the
transmission coefficient. A slight modification to the grating
leads to a significant change in the transmission coefficient.
Applications to three-dimensional gratings are now under
consideration.
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