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The Exponential Compound Interest

is the Limit of the k-Stratum Interest

Koichi MIYAZAKI

Introduction

From thc mathematical viewpoint it scems to be the best here
o refer to the well-known mathematical formula®

. 1\» 1
llln(l'f-’—,) TS5y creeeirerereniresieriianens @D

H-vco

It may be worth while to interpret Eq. (1) in terms of the
compound interest. 1In short, Eq. (1) can be said to mean that, if
time is infinitesimally divisible so that the strictly ‘instantancous’
rate of interest can be considered, and is assumed to be constantly
jnst 1009% a year, the total compound rate of interest equals e—1
=2,718—1=171.8% per year,

It is onc of the aims of this paper to gencralize Eq. (1) to the
following equation

) ; 1
lim |1 <l+jhlb(/)dt):efob(')d', ..... N (2)

n—oo y=1

where? () denotes the (not necessarily constant) instantaneous
rate of interest defined on 0=¢<1. (If we put b(H)=1, Eq. (2) will
reduce to Eq. (1) above.) The term on the right-hand side of
Eq. (2) minus unity may be called as the exponential com pound

1) LEqg. (1) is said to be the first definition in the history of mathematics
of the base e of the exponential function e* [4, pp. 9, 189].

2) A formula which is similar to, but not quite the same as, Eq. (2) has
been already known. See, c.g., [3, p. 100].
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interest.

The instantancous rate of interest and its time-profile function
b(t) will be cexplained in Section 1 of this paper. In Scction 2,
the simple-sum interest is defined, and the relation between the
simple-sum interest and the compound interest will be illustrated
in the case of discretely divided periods. 'The compound interest
in the divided-time case gives an interpretation to the product on the
left-hand side of Eq. (2) above. In Section 3, Eq. (2) will be proved
(Theorem 1). In Scction 4, the new concept “the i-th interest
stratum’ will be introduced, and its explicit form will be derived
(Theorem 2). In Scction 3, the product on the left-hand side of
Eq. (2) will be expanded, and it will be shown that the (i-+1)-th
term of the expanded series converges to the term ([, 6(8dt) /i
for all i=1,2,...CTheorem 3), a result which virtually clarifics, so
to say, how liq. (2) holds. And Section 6 will dcfine the k-stratum
interest. A double-series convergence property of the k-stratum
interest to the exponential compound interest will be  clarified
(Theorem 4). Conclusion summarizes the main results obtained in

this paper.

1. The Instantaneous Rate of Interest

The most fundamental concept of this paper is the ‘instanta-
ncous’ rate of interest.  Let us thercfore consider it in this section.
An analogous usage of the word ‘instantancous’ may be casily
found, e¢. g, in the term, ® maximum instantancous wind speed.”
The wind speed w meters per second will equal wX60Xx60 meters
=3.6w kilometers per hour, The instantancous rate of interest is
just like the 3.6w km in the analogy (as distinct from the w
meters). It signifies how much the interest will amount to in one
year il the unit principal were to continuc to produce interest for
a year at the same (i e, constant) pace «s at the moment in

question,  Remark that the validity of the analogy is limited, since
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interest can be plowed back 10 the principal (sce Section 2, below).
Supposc that the instantancous rate of interest is constant at the
level 4y all through the year, and that any interest is not plowed
back to the initial unit principal. Then the total interest obtained
till the end of the year equals 0. If as Fig. I-A shows the rate
of interest is not constant through the year but is changed from b,
to bz, b2 1o bs, and bs to by, at the end of March, June, and Septem-
ber, respectively, the part of the interest obtained only in the
period from January through March, c. g., will equal b/4, that is,
one fourth of the yearly interest by in the above case where the

the instantaneous
rate of interest
(per year)

(Fig. 1-A)
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Fig, 1
(Bxamples of the Time Profile of the Instantancous Rate of Interest)
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rate is constant all through the ycar, provided that there is not
any plowing back. It represents the simple lincar (or constant-
paced) growth of the interest for 0<¢<1/4. In this case, the total
interest obtained till the end of the year (without any plowing
back) will cqual to (by/4)-F(b2/4) - (bs/4)-1-(bi/ ).

The time-schedule of the rate of interest may take various forms.
Il another example is taken in which the rate changes much more
gradually, the curve may be like Fig. -1,

The time-schedule of the instantaneous rate of interest is writien
as b(#), 0=i<b, where 4o is a positive constant, and assumed to be
onc year (say) throughout this paper, or fo,=1. As for the proper-
tics of b(#), we place the following
Assumplion b(?) is Ricmann-integrable, bounded from above, and

has a positive lower bound.

2. The “Simple-sum’ Interest and its Relation to the Com-
pound Interest

Mathematically, the simple-sum rate of interest for the period
HStLL is defined by

t2
b()dt.
Ly

Analogically, it represents the total distance of simply how far ‘the
wind’ proceeds from time # through £, In case of Fig. 1-A, if the
wealth-holder lends the principal through one year and withdraws
all the interests obtained at the end of March, June, September,
and December without any plowing back throughout the year, then
the total of those interests equals (01/4) - (0o/4) +(ba/4) (b /1), or
the simple-sum interest for the year. But if he lends the money and
plows back all (he interests obtained at the end of March, June,
and Scptember, then to how much will amount the total of the
interests, including interests on interests, interests on interests on

interests, cte.? The answer to this question can obviously be written
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=yt M-t Ry
b aa g |-y Dy Mg By B -1y B g
ANy My Mg By vevereeeenenieninne, T TRTPRON G B |
where m;=0,/4 (i=1,2,3,4).

But if he tries to maximize the final sum of moncy at the end
of the year, he will at least think of plowing back interests more
frequently than three times in the example, in order to end up
the year having a greater sum.

As a quite natural conscquence of our definition of the instanta-
neous rate ol interest over time, it might be taken for granted
that he is allowed to plow back at e¢ny moment of the year, so
that he will plow back as frequently as he can, since it is assumed
in this paper that the total cost of plowing back is assumed negli-
gible. However if the year is divided into periods, it is assumed
that he is not allowed to plow back at any other moments than

at the ends of the periods.

3. A Limit Representation of the FExponential Compound
Interest

The first of our main results of this paper is the following
Theorem 1 1f a year can be divided into as many time-segments
of equal length (. e, as large #) as is desired, the compound in-
terest which is obtained can be in as small a neighborhood as is
liked of, and indeed it converges to, exp (I;b([)d[), though it cannot
cxceed that amount,

Proof Let us denote by D, the case in which the year is divided
into # segments of the same length, 1/# ycar. Then, the unit
principal and the compound interest in D, will be written as

re/n

|"[ (1+m.,,), where nz,...:j b(t)dt.
v=1

(s=1)/n
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(Sce the example for the case #=4 in Scction 2 above.) Since

I b(tdt= z, m,,.,

v=1

we may write

" m? m?
Il exp niac by 4 —=i o 220
v=1 " 21 31
l<a.=7—~--- =1 }-—-- -—
v=1 l +m,...
Hn(l M)
v=

2 31 4
14 = T, ] e ereereerecaees 4)

mi, my, ms,
T g T R
”
I
Since b:=b()>0 for all 4, 05tL], we have b./nzm,, for all v=
1,2,00,2, #=1,2,-~. Let us rewrite b as b for simplicity. Then,
we have

angvfjl(l-.-_@gzy RO (,bﬁt),‘,.,-...)’
b/ )3 /n)? /)t n
(H RCLON A ,_‘”) {)

‘T'he right-hand side of this Eq. (8) minus unity will cqual

b/ny:  (b/n)> /)t "
(l-l-' 2,—-—+va3, -+ 41 + ) —1

(b/n) (b/n)3 - (I)/n)‘ ) )
Il‘l

ey <b/~>_ Loy N

j ( T3l )1

-(“%
szz_ N _bv»- N '
(1

liA

- W,")2 (”é'l')’ .>"_'. .................. (6)

But

(b/n): (b/n)‘ (b/n)‘
I TS
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g(b/n)’(l oy SO I +)

S/ exp (U/N). v 7))

For all large enough » such that exp (0/n)<2 and b*/n<l1, we

have

1+ Ch/n)? exp (b/n)< 1+ (2/n),
so that

Ll -1-Ch/n)? exp (b/n))"-! glin] -2/n))

N>

ZEXP 2h vt e 8)
Hence, by (1), (8), (6), (7), and (8),
0lim(a,—1)

FTERY Y

< Iin) W/ myesp (b/n)) exp2=0,

that is, limyea,=1, (Q. 1. 1))

Thus we have proved Lig. (2) in Introduction. cxp(j,lb(i)dt) is
the solution of the diflerential equation df/di=b(t) f(t) for f(0)=1I,
where f(#) denotes the amount of the principal at time f, 0S¢51,
and b(#) the rate of increase of the principal. Therefore, Theorem
1 can be interpreted to mean that the solution of df/dt=b(1)f(1)
(fO)=1) is the desired upper bound of the wealth-holder’s total
of principal and interest for D, at the end of the year: namely
that his total for D, is less than that if 7 is finite, but that it tends

to that as 27 goes to infinity.

4. The Interest Strata

Let us first define
Roo()=1, (s=0,1,2: 1)
Rui(s)= ginz.,RA, N0 YO (9)
(i=12,,5, s=1,2,..., 1)
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and R,:(0)=0, i=1,2,-,n for all 1Sn< |00, R,(s)=1, s=0,1,
2.+, # means that the total of the principal and interest is constant
il no direct interests are plowed back to the principal all through
the periods s=1,2,-+, 0. R.(s), c.g., significs the total of all the
direct interests produced on the unit principal through the periods
r=1, 2,5, Generally R.(s) signifies the total of all the direct
interests produced on Re, :2:(r) of the periods r=i—1 i s—1,
through the periods 4, i-1-1, ..., s.

Let us rewrite R.(n) as simply R, and call it as the i-th in-
terest stratum for D,. ‘Then we have the (ollowing

Theorem 2

Ru= 3, (]i[ m,,c,>, e e, 40

ceCt,, i V=!

where I1,= (1, 2,0+, 1), and Cy,.i denotes the set of all combinations
cach of which consists of 7 different clements taken out of the set
I1,. The symbol ¢ can be written as (61, 2,00+, ¢), where iZe>c,
S>>zl i=1,2,..., 0,
Proof 1In this prool we put ni.,=m, and G0 = R;(r) for brevity.
[ is easy to verify

"

C/:.,.sfku.{(le. M yECH i), i=2,30 0 (1)
]

where it may be noted that the x—i+1 sets on the right-hand side
of (1) are disjoint cach other. It is well known that [[i.,(x-Fny)
=" N1, A0, where

A= _]illm.-,. e e (1)

c€CHy i?”
In order to prove (10), it will suflice to verify RiGe)=A:(u) for all
i=1,20 0 u=1,2,...,0n Let us ficst verily this equation for i=1,
u=1,2,...,1. By (12), we have i@ =m -+ 1-m,, and by Liq. (1),
we have RGO =m----t+m,.. Hence Ri@u)y=/A,G0), Tor u=1,2,...,n,

Mathematical induction in the following will show that R;() -
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A1) holds for all i=1,2,, 1, u=1,2,..., 2. Supposc this equation
holds for i=1,2,...,u, u=1,2,...,s—1. Then by (9), (11} and (12)

we have

i s ;
A(sH= 3 | Ilqu . . 1 ]l ey
eCl,.i?= u=i L= 7=
¢ ! [0250;{;,v|.i"1]

=) M o .]']. Mme, |= Z.m,./l;_.(u— D)

w=i € CH e, i1 I n=i

= Z R (u—1)=R;(s),

=i

for i=1,2,...,8, where ¢*=(c2.++, ¢;). Therefore Ri(i)=A;(1t) holds
for all i=1,2..,u, u=1,2...,s. It follows that the same cquation
holds for all i=1,2,....u, u=1,2,....n. Thus we have R,(n)=A;(a).
Q. 1.D)

5. The Convergence and the Limitl of the i-lh Interest Stratum
for D, as n Tends to Infinity

By the definition of mi,,, L. (2) in Introduction can be rewrit-

ten as

lim (] () =exp (O, e (2

Nt p=
So that, expanding the product [[7.,(1-+m..) on the left-hand side,
this Eq. (2) will become

1+l [y v 00t oor - 0000)
Hevin

Qg Bl 1 Dt e By B,
I D A W Byt e | M B,
B TN

T B, ne1 Hlan)

S RPN

by M Mgt
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-rvon

n k'! ("‘;b(t)(H) k]’

=] 'I-Ikim U;b(l)(lt-k —é— (J.;b(t)(lt)z—i-m

or, equivalently,

, .
) N bctyar)
l-|-Iim(2;13‘.-):l+lim2_‘,- L (13
w oo \i=1 ke f= i

where R, is defined by (9).

From liq. (13), we are motivated to prove the following

lim R,.= g—"f(.t)d ) SN O I )

2o i

Theorem 3

for all i, 1Si< |-,

As shown in Section 4, R,; can be intevpreted as fhe i-th in-
lerest stratum for the discrete division (D)) of the year into n
equal-length periods, so that Eq. (I14) mecans that the #~th interest
stratum for the division D, converges 1o (f;b(l)di)‘/i! as n—»o0, where
(fib(Ddt) /it can be interpreted as the J-th interest stratum in the
continuous case, as is already clarified in [1].

In order to prove Theorem 3, let us first verity the following

Lemma 1 Lt {an, 0=1,2, n}(n=1,2,+) denote a scquence
of finite sequences consisting of positive rates of interst fulfilling
the following conditions (i) and (1) : (i) Xi., ¢..=17 (const.) and
G lim,, ., (@2) /(n(@dD))=0, where {2 =max( ;g @, and alll)
=M g gy @yye  Gonsider the compound interest in the discrete
scheme with 2 periods whose periodwise rates of interest equal the
the terms @, 4, @, of the n-th sequence. Then, the i-th interest
stratum for such a scheme for # converges to 127/l as n—oo,

Proof Suppose i=1. Then, by the definition of the Ist interest
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stratum in the discrete scheme, the simple sum of @y, @y, and
@.» cquals the st intervest stratum. This proves Lemma 1 in the
casc of i=Il. Supposc i=2. In order to prove Lemma 1, it is

necessary and sufficient to show

]ill] Z A ye, (l"cg"'anﬂ—_—lﬁ‘i/i!, ....--.--.........(ll-))
nHe® el i
since the sum on the left-hand side of (15) denotes the i-th interest
stratum in the discrete case. Ior convenience, let us here define

E, by In,=%"1_, a,,n=1,2,.... Then, (£,)" can be expanded into

(I:‘..)"=g};(’_(i!,/(g.! &LlgD))akl ali-aly
where G={g=(g1, g+, 8.) 1 - &4 g.=1i, & is zcro or a positive
integer, all 1,2,+-,2}. Now define the set W as W= (w=_(w, -,
w) IS8, iz zwz 2wz, w22, w - wpeew, =i},
and G@w) for cach element of the set W as follows: GQ)={g: g
G, g=(gnys &hay**s &ho) = (10, 0,-++,0) for some permutation (1,2,:++, 1)
— (I, hayeer, DY Also, define Go={g:4.=0 or 1 for all »=1,2,.-,
n, g+-tg.=i). Then, we have C=GoU(U@wewy GQ)). It is

casy to verify that $¢G(w), or the number of elements of the set
GQw) for a fixed w, is not greater than (';)f!=n!/(n—f)!, where
f is the dimension of the w. lLet us dcﬁn'c ES = Fgecuen @/
gl gNal ad3-a% for all we W, If geG(w) and we W, then,
by the definition of GGw), we have gill--gl=gptgu,l. Hence we
have

BOS 3 G GEntan ) (@)

#EGw

SBCQOED ()

S/ (n—=IDGED (@)

< (a2

#W is not greater than ¥ since w,<i for all »=1,2,---, f and fSi—

1. Therelore by defining 7%= 3 (ceCn.,. ) i} @ue, ncy**tne, we have
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TOSEY =E=TV+ 5 EQS T+ nl it ()

max,
we

min

where f=maxqewy f. Since '1*"2( )1‘((1(") » we have

TOSE S ’1“""(1 + (: nl it (@) /(’,’ )i! («,ﬂ:;,{)")) veren(16)
! .

By Eq. (16), Assumption (ii) of Lemma 1, and f<i—1, we have
limy—. (/D) =10 so that limy-.s TO=E, (Q,1.D.)
Proof of Theorem 3

Theorem 3 can be verified almost directly from Lemma 1.
Indeed when we put «.,=m,, in Lemma 1, Assumptions (i) and
(1) are fulfilled as shown in the following. Iirst, we have X7,
=00 [ b(t)dt= [,b(D)dt=S (const.) so that (i) is satisficd.
Sceond, since M. 2 minge 1y/msesumb@)/n, we have a,(,:f,), =minQsgegn)

Mg 2minages (/) ming -vymgesomb(E), and by Assumption there
exists b, such that 5, >0 and b()=b, for all 1,041, so that we

have @ 2 minagegmbi/n=b/n, and similarly, we have a8 <b,/n.
Hence limyo((@82) 7 (n(a$2)) Slimpwbl /(nbi) =0 for all i=1,2,-

Thus, applying Lemma | to this case, we have limy-.o. 2,:=S7/1! for
all i=1,2,-. (Q. E.D.)

6. The k-Stratum Interest for D, as a Double Sequence and
its Convergence to the Exponential Compound Interest

Now let us define the k-stratum interest for D, by %i., R.,
and denote it by By, Similarly the k-stratum intevest in the contin-
uous case is defined to signify 34, S7/il. Theorem 3 says that the
k-stratum interest for 1, converges to the k-stratum interest in the
continuous casc as 27 tends to o0, Since limg-.w )4, S/il=¢5—1,

it follows that
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lim (im B,)=Cxp S)—1Y ... RN EY)

k- o

That the left-hand side of Eq. (17) can be rewritten rigorously as
limg, .o B34 is ensured by the following
Theorem 4 1f we extend the definition of B,y by B.,=08,. for all

kznt1, we have

lim Bu=CxpS)-—-l .. v (18)
ka1 vco

Lemma 2 B, converges as k—oo uniformly with respect to n.
Proof The proof of Lemma 2 uses the following Theorem A-1 [4,
Th. 39, p. 1535]: Let a double sequence (8.} fulfill the conditions
that (i) 181S8 for all n,i=1,2:, where §s are positive constants,
and that (i) lmg.»X 5., 8i converges. Then, limg.w ) 4., S.: con-
verges uniformly with respect to n. We can apply Theorem A-l
by putting 8., =R,; and defining 3.,=0 for all izn+1. By (10) and
(16) in the proof of Lemma 1, R, <S/i! for all n=1,2,--, fulfilling
(i), so that we have limg.eX i RuS(exp S)—1<+40. Thus the
conditions (i) and (ii) of Theorem A-l are both fulfilled. IHence,
by Theorem A-l, Bu.=¥1., R converges uniformly as k—oo. (Q.
E.D)
Proof of Theorem 4

Let us proceed to the proof of Theorem 4. Here, we use the
following Theorem A-2 [4, 'Th. 44, p. 172] : Let a double sequence
{rai} fulfill the conditions that (i) r. converges to y, as k—oo
uniformly with respect to 2, and that (i) limy—w 7.=7y. Then,
g,y 7ar cxists and cquals y. Putting ya=0B. for kyn=1,2,..,
we can apply Theorem A-2, By the extended definition ol B.,,
we  have ling v Ba=101.., so that the condition () is fulfilled.
Finally, by Lq. (13), we have limg.. Ba=(exp $)—1, so that the
condition(ii) is fulfilled. Hence, by Theorem A-2, we have limg, v

) 3) It follows from Theorem 1 lIuruilrim._,.w(limk;.w B )=(expS)—1 with
k and n exchanged in Lqg. (17).
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Bu=CxpS)—-1. (Q,E.D.)

Theorem 4 says that the exponential compound interest is the
limit of the k-stratum interest for D, as a double sequence with
respect to & and #.¥

Conclusion

In this paper the concept of the i-th interest stratum for 1,
was introduced, which signifies the i-th stage of the whole cumulative
interest-gencerating process, Il g., the 2nd and 3rd interest strata
for D, mecan the totals of all the interests on interests and all the
interests on interests on interests, respectively, produced through the
n periods on the constant unit principal. The k-stratum interest for
D, is simply the total of the Ist, 2nd, ..., and k-th interest strata,
signifying the sum of interests covering only up to the k-th stage
of the whole interest-gencrating process.

The main results can he restated in terms of the k-stratum
interest for D,.. Tirst, the compound interest for 1, is the n-stratum
interest for D,, and Theorem | proved that the limit of the com-
pound interest for D, is the exponential compound interest.  Second,
being based on Theorem 2, Theorem 3 substantially proved that
the k-stratum interest for D, converges to the 2-stratum interest in the
continuous case as 2 tends to infinity. Therefore we can make the
k-stratum interest for D, approach the exponential compound
interest by first taking n to oo and then k to 4-c0, However can’t
we converge the former, Ba, to the latter, eS—1, with both %k and
n kept to be finite and without taking 2 cqual to #? And if we
can, in what way? ‘Theorem 4 shows that there is the very simple
way in which we can do that. It follows from Theorem 4 that in
order for us to converge B,, to ¢*—1 we have only to think of

such % as less than # and to take % sufliciently large.

4) 'I‘hris mL;;G;s t]mt, for cachi::rbitraril?éﬁén £>0, there exists a positive
integer N, such that if >N, and 2> N, we always have |Bue— (Cexp
SH—-D|<s [, p. 171].
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