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Introduction

The names of von Neumann and Morgenstern have been
closely associated with the concept * expected utility ? in economics.
The apparently casual weighted average of cardinal (as against
ordinal) levels of utility by probabilities has recently been often
uscd as a theoretical tool in economic analysis,

The Cowles Foundation Monograph “ Portfolio Selection” by
H. M. Markowitz [9], on the other hand, describes how portfolio
theory can be built on the basis of the von Neumann-Morgenstern
theorem. The works on risk by, c.g., Friedman and Savage [4],
Tobin [16], Arrow [1], [2], Hirshlcifer [6], Yaari [18], and Pratt
[13] have formed a substantial development in Neoclassical economic
thecory. And a theoretical starting point of this development is also
the theory of expected utility presented in “ Theory of Games and
Economic Behavior” by von Neumann and Morgenstern [17].

Apart from viewing it as a foundation of the developments just
mentioned, the original von Neumann-Morgenstern theorem on
utility has by itself the striking theoretical appeal that any set of
‘states’ or *commodity (or consumption) bundles’ which are com-
pletely ordered only in the ordinal sense can be given a cardinal
mcasure of utility of its elements, provided a set of axioms is
accepted with respect to the prefenence ordering among sure con-
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sumption bundles and multi-stage probability combinations of the
surc consumption bundles. According to the theorem, if the axioms
are fulfilled, the indifferent ‘curves’ can be put numerical values,
2 utils (say), 5 utils, 7 utils, ctc,, clearly indicating whether the
marginal utility is increasing or decrcasing. This is a remarkable
conclusion to anyone who have been taught that indifference
‘curves’ (e.g,) are just like contour lines in a map any of which
is not known to correspond to ‘how high’ a level of utility, and
that cven the difference in utility between an indifference curve A
and another indifference curve B is not known to be greater or less
than the difference in utility between the indiflerence curve B and
some third indifference curve C.

Fven if we are given only a preference ordering on the set of
surc prospects, cach indifference curve can be put a numerical
value in such a way that the ‘more’ preferred indiflerence curve
is put a greater value than the ‘less’ preferred. Such a measure,
however, is not uniquely determined so as for it to be invariant
with respect to convexity.

Given the idea of a probability combination (or a *mixture’)
of two sure comsumption bundles (e. g.,) which belong to two dif-
ferent indifference curves A and B resp,, and given the economic
agent’s ability to evaluate such a mixture as equivalent in utility to
a surc consumption bundle which belongs to some third indifterence
curve C, the three indifference curves will become numerically
comparable in utility in the sense that the difference in utility
between A and C is in such and such a proportion to the difference
in utility between G and B. The very values of the probabilities
pertaining to the mixture of the first two sure consumption bundles
will help give the ratio,

This idea of their theorem is thercfore simple, and based on
this idea, their theorem contributed to cconomic theory by postu-
lating only a few fairly irresistible axioms about the agent’s behavior
of rational choice among sure prospects and multi-stage probability
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mixtures of surc prospects, as a consequence of which some cardinal
measure of utility was shown to necessarily exist which is invariant
with respect to convexity (or concavity) if definable at all,

It should be remarked that their set of axioms is postulated so
as to ensure the calculation of expected utility in the form

Say, az, as,.cy tn ;a0 taz i as s Lt @n))= N1 arflax),...(1)
where the the argument of the term on the left-hand side denotes
the probability mixture which consists of sure prospects ai, @z,...,
@, with probabilitics ai, «z,..., and @y, attached to cach of them,
resp.,, and f(¢) denotes the cardinal utility function. The above
formula maintains that the cardinal utility of such a probability
mixture equals to the weighted average of the cardinal utilities of
all @, k=1,2,..,0, by a1z a2 .ty (Dl ae=1, ax>0, k=1,2,..,
n)

Onc of the aims of von Neumann and Morgenstern’s axiomatic
approach seems to lie in answering the question how to write down
rationality (or rvegulavity) rules in the most concise manner on
which a set of cardinal utility functions can be constructed so as
to ensure that such a calenlation as in (1) is always permitted.

Such a way of writing down rationality rules in ‘the most
concise’ maunner is by no means unique. (See [3], e. g, for an
alternative set of axioms.)

T'he scope, or the extents of the quantifications, of the original
axioms does not scem to have attracted much attention,  The
quiantifications of the axioms are not specified explicitly in [17].
In this paper the scope of the axioms is specified, and it is clarified
that the extents of the quantifications of the original axioms can
be significantly boiled down from the universal set U in [17]. (See
Section 2, 1-(1) of this paper.)

Another new aspect of this paper lies in the assumed (both up-
and downward) ‘extremumless’ ordering of the set U in the sense
that it has neither maximal nor minimal elements. It will be shown

that, interestingly, in that case, the original construction is verified
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entirely without a change in the axioms. The case with maximums
and/or minimums is also trcated.

Thirdly, the new proof in this paper of the von Neumann-
Morgenstern theorem is based on the distinction between sure
prospects and lotterics, and this will help clarify how the thcorem
accommodates the case in which some or all sure prospects are
“discrete’ with respect to the preference ordering, as exemplified by
the following. (In this cxample, there happens to be assumed to
exist the extremal clements,)

An Example

Let two real numbers x, ¥, and z, ¥<z2<y, be income levels in
a certain unit of money, and let us consider an cconomic agent
who cvaluates utility of income levels ¥ and » to be cqual to real
numbers #z: and #y, resp, in some unit of utility.

It is assumed that #z>y, so that he evaluates the income y
(>%) better than the income x. IHe is assumed to be subject to
the von Neumann-Morgenstern’s axioms about rational behavior
in the probabilistic circumstances. (cf. [17])

Now, assume, further, that he is not sure as to how better off
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he would become as his income rised from the level z toward 3,
because, for ecxample, he has not experienced life with income
levels between z and ¥, ctc. Assume, also, that, nonctheless, he
knows by how much the lifc with income y is better than that with
income x or z.

He is assumed to know in what pace he becomes better oft as
his income rises from ¥ to z, not in the sensc of some average pace
of getting-better-off, but in the sense of exactly how the pace of
getting-better-ofl itself changes as the level of income changes
(between ¥ and 2.)
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Under these assumptions, his utility function of income may
be determined like depicted in Fig. 1, as well as possibly like, c. g.,
in Iigs. 2 or 3, though, in theory, only one curve is unambiguously
and uniquely determined anyway.

The essential points arc that the given utility levels w0 and #uy
first give us a ulility measure of him as depicted by the straight
line in I'ig. 4, and that, logically then, it will be determined to
what probability combination (i.c,, to what / between ¥ and y in
Fig. 4) each of income levels between ¥ and z corresponds (or is

ulility level
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of xand y
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equivalent in utility), by the rational behavior of the particular
economic agent. (See Iig. 5.)

But why can the utility function be undefined at income levels
between z and y¥? Is such a ‘discontinuous’ shape of the utility
‘curve’ consistent with the von Ncumann-Morgenstern rationality
axioms? Can such a utility curve as in Fig. | really be determined
uniquely ?—According to the analysis in this paper, the answers to
these questions except the first ave both * yes.

Furthermore, in order for it to be possible that such a *‘discon-
tinuous’ utility curve of income exist and be uniquely determined,
the apparent scope of von Neumann-Morgenstern’s axioms seems
to contain redundancy. This is one of what the present paper
clarified. It is also indicated to what extent the scopc can be
narrowed. Thus, the analysis in this paper may be applied to the
case in which there is somne probability combination of sure pros-
pects which does not have any counterparting sure prospect.

Section I. Notation and Assumptions

1. Sure Prospects” and the Preference Ordering

Let S be an arbitrary set, finite or infinite. Let us call elements
of the set S sure prospects, and denote them by x, ¥, 2, a, b, ¢, ctc.
Let x>y denote that x is preferred to y, and x1y that x is indiffer-
ent or equivalent fo y. It is assumed that

(1) If x, yeS, then one and only one of the following relations
holds : a>y, y>x, or x1y.

(2) Ifx, yand 2€S8, then xIy and yIz imply x1az.

(3) If x&S, then xlx.

(4) If x and yS, then xIy implies ylx.

(5) If x, y and z€S, then x>y and y>z imply x>z,

1) The concept of ‘sure prospects’ is mentioned in Herstein and Milnor
[5] and discussed in Marschak [10].
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(1) to (5) imply the following (6) and (7):
(6) Ifx, yand z&€S, then xIy and y>2z imply x>z
(7) Ifx, yand z€S$, then x>y and ylz imply x>z,

2. General Prospects

Let 7" denote the set such that (i) SC7, and (i) for any a,
1>a>0, and for any x, y€7, the combination (x, ¥ a) is an
clement of 7. (x, 3 «a) is interpreted as the probability combina-
tion of ¥ and y with probabilitics « and 1—a, resp. Let L denote
the set of all clements (@, b, @), 1>a>0, a, b&S. Any element of
the set L is called a primary lottery. l.et N denote the set of all
clements (x, 3, @), 1 >a>0, x, yeSUL, We define that an element
of T is a two-stage loltery if and only if it belongs to N—L. Even
such a lottery as (a, (a, a, a), B), wherec a€S, is regarded as a
two-stage lottery. Three-stage, or, in general, multi-stage lotteries
are defined accordingly. The sct 7° is called as the set of general
prospects.  Any clement of 7, or any general prospect, z, belongs
to one of the three cases: x€S, ¥=(3, 2z, «) for some 1 >a>0, y,
2€S, or x is a multi-stage lottery. 1f x is a multi-stage lottery,
then the number of its stages is finite, though there is not any
upper bound to the sct of numbers of stages.

S, and hence 7', may not have cither maximal or minimal
clements.

3. DExtensions of the Preference Ordering to General Prospeets:
the Axioms

The economic agent is supposed to be situated in a probabilistic
environment : the comparison in utility he is supposed to make may
not only be between sure prospects, but also between a sure pros-
pect and a primary or multi-stage lottery, and between two primary
or multi-stage lotteries. Thercfore the environment in which he is
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situated is supposed to include all multi-stage lotteries, i. e., such that
((x, 3, @), (2,1, 8, 1), and
(G 300y Gy By 1D (0,8, &), (w0, 5,9, 9,
ctc., where x, 3, 2, cte. belong to S, and a, §, r, ctc. belong to the
real open interval (0, 1.

He is supposed to obey the following rules, or ‘axioms’ on
which his whole preference system is entirely characterized, though,
it is important to point out, preference systems may differ from one
cconomic agent to another, owing to the freedom of choice the sct
of axioms permits.

L=(z: z=(x 3 ), x,yE8, 1 >a>0).
N=(z: z2=(x, 3 ), x, yESUL, 1 >a>0).

(al) Vzx, yeSUN,

If x>y then (x, 3, a0)>y, Va, 1>a>0.0

(a2) VY& y&SUN,

If x>y then x>(x, 3, ), Va, 1 >a>0,

(a3) Va4, 3 2z&€SUL,

If x>2z>y, then (3,3, a)>2, Ja, 1 >a>02

G4 VvV, 3 2zeSUL,

If a>2>y then z>(x, 3, «), Ja, 1>a>0,

b vx 0t zeT,

If xIy and ¢z, then (0, ¢ )1 2, @), Va, 1>a>0.

(a6) Vx yeSUL, Va, 1>a>0,

3 QI 2, 1 —a).
7)) Vzx, yeSUL, Va, VB, 1>a>0, 1>8>0,
(x5 3,0, 3, BICx, 3, af).

The axioms (al) to (a4) and (a6, 7) arc in the same forms

as those in von Necumann and Morgenstern’s original literature

except that the scope in which they are required to hold has been

1) The symbol ¢ ¥’ means ‘for any~" or, in other words, ¢ for all~. L.
g, ‘Va, y€T mcans ‘for any (all) x and y such that x,ye7,.......°

2) The symbol ‘3’ means ¢ there exist(s) some,...... PE.gy f Ja, 1>a>0°
means ‘ there is some a such that 1>a>0.
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taken to be narrower than the whole set 7.,

The axiom (ad) is essentilly what is called Samuelson’s strong
independence axiom (See, ¢. g., [14]). This is the only axiom which
must be postulated for the whole set 7 In this sense, this axiom
may be regarded as, so to speak, a ‘pre-axiom’ as distinct from the
other, which may explain why von Neumann and Morgenstern [17]
do not write it explicitly as an axiom along with the other. (As
to interpretations of the axioms except (ad), sce the literature [17],
and as to (ab) sec Malinvaud [8].)

In addition, of course, we have to presume the following :

(1) If x, yeT, then onc and only onc of the following rela-

tions holds : &>y, y>x, or xIy.

b2 Ifx, yand z€T, then xIy and ylz imply xlz.

(h3) If xeT, then xla.

(b)) If x and yeT, then xIy implics ylx.

(b5 I a, yand z€T, then x>y and y>z imply x>z
1) to (b5 imply:

(b6) If x, y and 2€T, then xly and y>z imply x>z

(b7 If 2, ¥ and z€T, then x>y and ylz imply 2>z,

For notational convenience we write x>y or y=<x if and only
it x>y or xIy. All these presumptions (b1) to (b3) form no new
restrictions or qualifications as compared with the original framework

of [17])

Section II. Logical Motivations to the Analysis

1. Some Relevant Conceptual Distinctions

In order to clarily the logical position of the present investigation
as compared with that in [17], two distinctions concerning the sct
7" will have to be made first : namely, the distinction between the
sct of surc prospects and the sct of lotteries and the distinction

between the set of cquivalence classes of 7" and the set 7 itself.



(1) Sure Prospects and Lotteries

The sct U in [17]Y exactly corresponds to the concept of the
set 7" as defined above. 'There, the set U consists of all sure pros-
pects and all lotteries. And 7" consists of both sure prospects and
lotteries.  For sure prospects are nothing but clements of the set S,
and lotteries are nothing but clements of 7'—S. Thus, U=7. The
distinction between the set S and the set 7°—S lies in that S is
given first and 7'—S is, so to speak, gencrated on the basis of
clements of S. E.g., if @ and b belong to S, then @ and b do not
belong to 7°—S, but lotteries (@, b, a), (b, 4, @), and even (q, @, a)
or (b, b, &), belong to 7'—S, and never belong to S, even though
as it will turn out later (a, a, a)la and (b, b, a)lb. Here we have
to distinguish the relation ‘I’ and the cquality ‘=", Even if any
clement of 7°—S has the relation ‘7’ (equivalence in utility) to
some clement of S, it must be regarded as a different clement of
the whole 7' from the latter. This is also the case, of course, for
any multi-stage lotterics which are cquivalent to some elements of
S. So, all lotteries including multi-stage lotteries constitute the sct
T'—S, and any clement of 7'—S is a (possibly multi-stage) lottery
built on the basis of clements of S.

(2) The Set 7' and the Set of its Equivalence Classes 7/17

The axioms, cspecially (a, 6, 7), so to speak, ‘ put together’
clements equivalent to c¢ach other to one subset of 7. E.g, the
axiom (a6) puts together two clements of N, (x, 3, a) and (¥, x, |
—a) to a subset of 7% 1f some clement of 7' does not have any
other element of 7" which is equivalent to it, then a subset of 7°
can still be formed as consists of the single clement of 7. Thus, all
clements of 7" are classified out to such subscts cach of which

1) As for the definition of U, it only runs ‘[w]e consider a system U of
entities #, v, W, .oeuue. In U, a relation is given, u>v, and for any
number «a, (0<a<l), an operation au+(1—a)v=w. (italic in the
original.)(P. 26, [17])
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consists of mutually equivalent elements of 7° and any of such
subsets does not have an clement which is equivalent to an element
which belongs to another of such subsets. Such subsets of 7' are
called *equivalence classes™ of T, and the set of equivalence classes
of T is denoted by 7/1, and called as ‘the quotient set of 1" with
respect to 1)

The distinction between the set 7" and its quotient set T/1 is
pointed out by Malinvaud [8] in relation to the Samuelson strong
independence axiom (a 5).

On the basis of the above two distinctions, the following dis-

tinction between two cases should be considered.

(3) The Equivalence Classes of S and of 7'

Since the relation ‘7? is defined on S as well as 7%, there arc
also cquivelence classes of the set S with respect to 1, and the set
of such equivalence classes may be written as S/1. We must dis-
tinguish between this S/7 and another set 7/ Lach and every
clement of S/7 which is an cquivalence class of S, always corre-
sponds to some clement of T/1, which contains an clement of 7°
which is equivalent to clements of the element of S/1, since SCT.
However, the converse is not necessarily true. Namcly, there can
be cases in which some element of 7T/1 which is an equivalence
class of T" does not have any clement of S/7 which contains some
clement of S which is equivalent to its elements,

Consider the following example. S=(income of a yen, income
of b yen, and income of ¢ yen), a>b>¢>0, so that S consists of
only three clements. ‘The number of sure prospects equals to three.
Assume that the economic agent has such preference as >0, b>c,
and a>c. e is assumed to be subject to all the axioms (al) to
(a7) along with the presumptions (b 1) to (b5). Then, the lottery
(a, b, 1/2), lor example, corresponds to no clement of S, i.e, a, b
and ¢, which is cquivalent in utility to (e, b, 1/2). This is an

example in which some clement of T/I does not correspond to
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any clement of S/I.
2. Comparison of the Scopes of the Axioms

If any element of T/1 corresponds to an clement of S/1, then,
in virtue of the Samuelson axiom (ab), the other axioms than
(a5), will need to be fulfilled only by clements of S or, in the
Malinvaud context [8], by elements of S/I. But otherwise, then
cven in the presence of (abd) the other axioms will have o be
fulfilled by not only eclements of S, or S/1, but also by, at least some
of, clements of TS, or T/1-S/1. According to the result of the
analysis in this paper, the other axioms than the strong independence
axiom are sufflicient for the same von Neumann-Morgenstern con-
clusion to be proved, even if they are, as postulates, not required
to be fulfilled strictly by all clements of 7/1; but if only they are
postulated to be fulfilled by all elements of a proper subset of 7'/1
—S/1, or, specifically, only at most two-stage lotterics, along with
all clements of S, or S/1.

Thus, our proof based on the less restrictive axioms implies
that the fruely necessary axiomatic requirements of their original
axioms, cspecially of the forms in (a6) and (a 7) among the other,
arc much weaker than the original text might indicate.

As explained in (3) of Subsection 1, the following two cascs
should be distinguished : (i) the case where any clement of 7'/1
‘corresponds’ (in the sense explained in (3)) to some element of
S/I, and (i) the case where some element of 7'/1 does not corre-
spond to any clement of S/, In Case (i), the original axioms
(with the independence axiom explicit) in [17] and their proof
may be interpreted as dealing with elements of S/ (or, equivalently,
clements of 1T'/1 represented by those of S/I). So the situation is
clear in this case. But, in Case (ii), some confusion ought to arise
from their prefercnce of using the symbol * =7 in place of /1’ and

from their unspecificd cextents of the quanifications of the axioms.
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as

For, in this case, the scope of their axioms may be interpreted
comprising all elements of 7°/1.

3. The Key IFormula as a Motivation to the Present Analysis

The formula which is a fundamental device for this paper is

as follows :

((I, Y (l‘), (E) ﬁ)s 7‘) 1(x, 3, ﬁ'l‘ 7(“""ﬁ)>
which will be proved in Theorem 5 in its preliminary form and in
‘I'heorem 10 in general,

This formula can be derived from our sct of axioms before
arriving at the von Neumann-Morgenstern conclusion.  "T'herefore
this formula is thus derivable also from the original axioms in
[171°. It might be interesting that this formula is implied by
them so to speak as a ‘quasi-axiom’ concerning the combining
operation, since the formula is derivable without the two axioms
(a4, 5) which are essentially required only in order to prove the
continuity theorem (Theorem 1, below).

Section ITI, Basic T'heorems

Theorem 1. Vx, 3, 2&S, if x>2>y, then Ja, 1>a>0, zI(x, 3, @,
Proof. By (a3), Jay, 1>ai>0, (%, 3, a)>z>y.een( 1)

By (a3), a2, 1>a>0, ((x,y a), y. a)>2z>y. By (a7),
(®, ¥, a1 @2’)>=2> Yorrrnen(2)

1) They say ‘[d]o not our postulates introduce, in some oblique way, the
hypotheses which bring in the mathematical expectation?’ (L 9, P, 28,
[17]) and ¢[t]he deductions which follow....are rather lengthy....
[T]he ideas that underly the deductions are quite simple, but unfortu-
nately the technical execution had 1o be somewhat voluminous in order
to be complete. Possibly a shorter exposition might be found later’
(P, 617-8, [17]) just before their proof. "Though the following proof
camnot be claimed to be shorter as a whole than their original, it aims
to improve upon it by using the above formula in naturally splitting the
proof into three stages.
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Putting az=a1 a2’, we have 1>a2>0, so that, by Eq. (2) and
by the same reasoning as in getting Fq. (2) from Eq. (1), we have
(x, 5, @) >-z>-y, as=az «a’. Repeating this step, we have ai>a2>

The series (am) is a monotonely decreasing series with a lower
bound 0, so that it has its limit, say a, 1>a=0.

By (ad), 38, 1>8>0, x>2>-(x, 5, f)..n (1)

By (a4), 38, 1>8>0, 2>(x,(x, ¥ P, ). By (a5, 6,7,
(the right-hand side)I(x, y, f1-+g2"— 51 f27). Hence, x>~2>-(x, 3, f2).
fe=i+ 5" —B 8 .. @)

Repeating the same reasoning as in getting Lq. (27) from (1),
we get a monotonely increasing series (fn) with an upper bound
1. Hence, the series has the limit §, 1=8>0.

Suppose a=0. Then (x, y, a)>>2>y for some a such that §>
a=0. By the property of 8, z2>-(x,  8) for some 8 such that §=8
>a. Hence, by (a ), (x, 3, a)>(x, % > Pre..(17)

By (a7, (x5, I((x, % 6), ¥, a/F)eee. . (27)

Since (x, 3, 8>y, by (a2), (x, 3, 0H>Ux 3, 3 a/f)......3)

By (1’7, (2) and (3""), we have (x, y, $)>(x, 3, ), a contradic-
tion. Hence, a>0.

Suppose §=1. Then 8>a. By the property of 8, there exists
8, B>B>a, x>-2>(x, % 8. By the property of a, there exists a,
p>aza, (x, 5 a)>2. Hence, we have x>(x, 3, a)>(x, 2,8, f>a

...... (i). But by 8>« and (a5, 6, 7), we have (x, 3, HI(x, (x, 3 a),
B—a)/d—a))...... (i1). Since x>(x, ¥, a), we have, by (a ), (x,
&3 a), (B—a)/(1=a))>(x, 3, @)ueenns Gi. By (@, G, (i), we

have (x, y, a)>(x, 3 ), a contradiction. Hence §<1.

There may exist more than one ai which satisfy Eq. (1). Let
A denote the set of all such ai. For each a1€Ai, there exists the
series (an), and its limit a. Let us put this as a(a1). The set (a
(ay), ereA)) is bounded from below, so that it has its infimum ¢
(Weierstrass). 1>a@20. For any positive number &, there exists
some 1€ Ay such that g+e¢>a(a1) >0, By the property of a(ai),
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there exists some m such that g+ e>an=a(ar), where am is a term
of the series (an) corresponding to the ai

Now, suppose @=0. Then, we can take e=f in the above argu-
ment, and there exists @ such that (x, 3, @)>2z>y, and f>a>0. By
the property of 8 there cxists some B such that f=ZB>a and 2)>~(x,
¥ f). By the same argument about Egs. (17) to (3”) above, a
contradiction is obtained. Hence, ¢>0. By the definition of an
infimum, ¢ is uniquely determined from the wriplet (x, 3, 2). Since
1>a>0, (v, ¥, @) is already included in the set L,

If (x, 9 0)>2, then (x4, ¥ @)>2>), so that gesdi, we get the
decreasing series (am), a1=g, and have a:<q, @24, a contradic-
tion, If z>-(x, y, @), then x>-2>>-(x, ¥, @), so that by the same argu-
ment about Egs. (17) and (27, we get the series (fn") with fi'=g¢q
and its limit & Then we have §/>g, and, by the property of g,
there exists some « such that §/>a=a>0, (v, 3, e)>2z, By the
property of §, there exists some g such that 1>8"28>«q, 2>-(x, 3,
8. Hence, (2, 3, a)>(x, 3, 8>5 By (@D, (x, 3 QI((x, 3,8,
a/f). By (a2), (x,3 )>((x, 38, 3 a/f). Hence, (v, y, a)>(x,
¥, ), a contradiction, Therefore, we must have (x, 3, @)lz.
Theorem 2. VxeSUL, Ya, 1>a>0, it holds that (x,x, a)lx,
Proof. (along the line of von Neumann-Morgenstern’s proof of
their proposition (A :7T) in [17].) Suppose (v, x, a)>x, where x&
SUL. Then, noting that (x,x,a)e€SUN, we can apply (al, 2),
and get (x, 2, @)>((¥, 2, @), 1, f>x for any 8, 1>8>0. Since xe
SU L, we can apply (a7) to the seccond term, and get (x, 5, a)>(x,
x, af)>x. lHence, (¥, x, @)>(x, 2, 7)>x for any 7, a>y>0....... .
Since x&SUL, we can apply (a6). and get (x, x, )I(x, X, 1~a)
and (v, x, I, 6, 1—y). By (1), we have (x, 2, 1 —a)>(x, 2,1 —7)
>x for any y,a>7r>0. Thercefore, if (%, x, @)>x, then we have (x,
X, a)l(x, x, a)>(x, x5,y )>x for any 7/, ¢’ >a’,...... (2), where a’=1
—a. But by (2, a’)>x, we can substitute & for a in (2), and
get (x, 2, a1, x, L—-a”)>(x, 2, 7°)>x for any y°, y°>1—a’. Since
a=1-a’, we have (&, 2, a)>(x, 2, r°)>x for any 7°, r°>a....... 3).



73

If (x,x, a)<x for some «, 1>a>0, then, by (al, 2), a>(x, (x,
X, ), 1=f)>(x,x,a) for any 8, 1>>0. Hence, by (a6, 7), x>
(x, x, af)>(x, x, &) for any B, 1>p>0, so that we have (1, %, )<
x5 <x, Vr, 1>a>¢>0....... @). By (4) and (a6), we have
oy x, l—a)<(x, 2, 1 =p)<x for any y, 1 >a>7>0. Therefore, if (x,
x, a)<<x, we have, by putting y'=1—-7r, (&, 2, QI(x, x, a)<(x, %, 7")
<x for any 7/, @’ <yp'puunen (5), where «’=1—a. But by (x,x, a)<<
x, we can substitute &’ for a in (8), and get (x, x, aDI(x, 5, 1—a’)
<(x, x, r°)<x for any y°, 1—a’<y°. Since a=1-a’, we have (x,
2, ) <(x, x, r°)<x for any r°, a<y°...... ).

Now, suppose (x,%, a)>x for some ai, 1>a1>0. 'Then, by
(D, we have (x, x, a)>(x, x, y)>x for any 7, ei>y. However, if
we fix such a5 and y, then, by (3), we also have («x, x, r)>(x, x, ay)
as follows : since (x,x, y)>x, we have (1) and (3) for the case «
=y, so that we may put y°=a1 in this (3), and have (x, x, r)>(¥,
x,a1) by this (3). Hence (x,x, a)>(x, %, a1), a contradiction.
Hence, not (x,x, a)>x for any «, 1>a>0.

Suppose, therefore, that (x, x, @)<x. ‘Then, by (4), we have
(2, x, a)<(x, 2, r)<x for any y, r<ai. Also, since (x,x, r)<x, we
have (4) and (6) for the case a=y, so that we may put y°=a: in
this (6), and have (x, x, )<, x, a1). Hence, (x, 2, a))<(x, 1, a1),
a contradiction. Hence, not (¥, %, a)<x for any a, 1>a>0. It
follows that (x, x, @)Ix for all «, 1>a>0,

Lemma 1. Vx, y8, x>y, if a>a’, then (&, 3, a)>(x, 3, a’).
Proof. Supposc a>a’, x, y&S. Then, by (7)), (1,3 a)I((,y,
), ¥ a’/a). By (al), (x, 00>y, By (a2), (x,5 a)>((x, 3 a),
y, a’/a). IHence (x, y, a)>(x, 3 a’).

By Lemma 1 and (a6), it is easy to sce that if not xIy and
az#a’ then not (&, y, «)I(x, 3, a’). Therefore, we have
Theorem 3. VYx, y z&S, if x>z>7» then there cxists some a
uniquely, such that 1>a>0, 21(x, 3, a).

Proof. Supposc zI(x, 3, ao), ((=1,2). Then (x, ¥, a)I(®, ¥, a2), so
that ai=ao.
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Theorem 4. Vx, y=S, x>y we have (&, ¥ a)>(x, 3, a’) il and
only if a>a’.
Proof. Supposc (x, 3, @)>(x, y,a’) and a’>a. Then by Lemma |
(x, y, a)>(x, ¥, a), a contradiction. Suppose, instead, that «’=e,
Then, (&, 3, « )=, 3 a)>(x, ¥, a’), a contradiction.
Theorem 5. NVx, y5, Ya, 8, v, 1>a>0, 1>8>0, 1>¢>0, it holds
that ((x, ¥, @), (%, 3, B), PIICx, ¥, Bk r(a—PF)).
Proof. First, supposc a#fp. lLet 1>0>0. Substitute x, (v, 3, 0)ES
UL for a, ¥, resp., and p, ¢ for @, §, vresp. in (a7), ‘Then, we have
W(x, oy 3.0, p). (3, 9,0), Ix, (2, 3,0), pd). ccvevr. (1)
By (ad, 6, 7), (the left-hand side of (I))I((x, 3, 04-p—0p), (%, 3, 0),
#). whereas (the right-hand side of (1))I(x, ¥, 0 pp—0p¢). Tlence,
for V0, p, ¢, 1>0, p, $>0,
(%, 3, 0+p--0p), (2,3, 0), I(x, ¥, 0-1- p—0p).......... (2)
(i) Suppose 1>a>8>0. Then we can take 0, p, ¢ such that 1>
0>0, 1>p>0, 1>¢>0, which fulfil
0+p—0p=a, 0=4, and d=y, a>8, | >a>(,
I>830, 13730, overvieeeiieieeeeseenns et (3)
In fact we get 0, ¢, 1>0, ¢>0 by the given 8, . We get, from
the =38 and the given a, p=(a—8)/(1—8), where 1>p>0. And
we get 04-pd—0pp=8-t-r(a—8). Thus, we have
(ERNORCH V)R] (CALW: RIS CTY:)) NENRONTRINS 1)
(i) Suppose 1>8>a>0. Put a’=4, f'=a. Then, since a’>f’, we
have, by (8, ((x % a?, (3% B, 1O 3B +7 (@ —F)). By
(a6), we have ((x, y, ), (x, % 8), 1 —rDI(x, 3, a+7r'(B—a)). Since
r”is arbitrary (1>77>0), we may take 1—y"=7 for the given 7.
And we have ((x, 3, «), (o, 0. 8), DIy, 3, —r(B—a)). Hence the
formula holds if a+#8.
Suppose a=f. ‘Then, by (b3), (x, 3 «)I(x, 3 8), so that by
Theorem 2, we have ((x, 3, @), (x, %8, DI, » QI y, DI, 2P
+rCa—).



Section IV. Theorems on General Prospects

Theorem 6. Yxel, 3yeSUL, x1y.

Proof. lLect x&T. Suppose there is not any y€S, xfy. Then, x
is an clement of L, or clse, is an at most finite-stage lottery on the
basis of a finitc number of clements of S. Let S: denote the set
of those basic clements of x. Then, S:.CS, and S: contains at
least two clements of S which are not cquivalent in utility.
(Otherwise, all clements of S:r would be cquivalent in utility to,
say, YES, so that, by Theorem 2 and (a5), the multi-stage lottery
x would (so to speak) be reduced recursively down to y in the
sense of the simple expression x1y, a contradiction.) Since S: is a
finite set, Sy contains both its maximal and minimal clements,
denoted m' and mi, resp.  If 2E€Sz, then 2€S and m'zzzme.  If
mt-z>mz, then, by Theorem 3, we have zI(m!, mz, «.). Hence, if
z2&S;, then one, and only one of 2Iml, 2lme, or zL(m!, e, @) must
hold.

Suppose x&SUL. 'Then, by xlx, there is not anything to
prove.  So, supposc xESU L. Then, the raw expression of & as a
multi-(finite-) stage lottery includes such forms as x=(......; (21, 22,
@)y )y o Conni2iienn), 2268 Clearly, if m'>-zi>me, i=1,2,
then z(I(m!, e, @), i=1,2, so that, by Theorem 3, we have (zy, 2y,
a)l(mt, ma, f), where f=a;,Fala,;—a,). If z¢ appears in the raw
expression of x as x=(......2r......), we remark that such a 2z can
be substituted in the expression by (', me, a,) owing to (ah),
provided neither z¢Im' nor zilma.

If only onc of m'>z>~me and m'>z>m: holds in the form
(21, 25, @), then the reduction of (21, 2j5, @) to the form (m!, mz, B)
can be ensured by (a5, 6, 7). If neither m!>2>m2 nor m'>zs >
me, then, clearly (zi, 25, &)IQOnt, me, B), or Imt, or Imeo.

Now x may contain in its raw expression such forms as indi-
cated by x=(..oo((21, 22, ), (23 24, ), Devrves)eene (D), O x=C(.uuis
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(a1, 22, @), 23, B).iin), or (o2, (22,23, @), B)evin)enn(2). In

any of these cases, by (ad, 6, 7) and Theorems 2 and 5, the ex-
plicitly written part in (1) or (2) will be reduced to the form (!,
mz, r) or m' or ma ‘Thus, x can be rewritten as x1(.....QGmY, miz, 1)
wees)y or X1Caamtnn), or ICeme.) in any of these cases.
Similarly, by Theorem 5, the multi-stage lottery x rewritten on the
basis of m' and ma can be recursively reduced its number of stages,
finally to arrive at the relation xI(m', mz, 0).  Since (m?, mg, 0), m',
ne&SUL, the proof is complete.

Lemma 2. VY x&T, it holds that (v, x,a)lx for Va, 1>a>0.
Proof. By Theorem 6, we have some yeSU L such that xIy. By
(a5), we have (x,x, @)I(y, 3 @), and by Theorem 2, we have (y,
y, )y Tlence (x,x, a)lylx.

Theorem 7. Y x, ¥ 2€7T, x>2z>y, there exists a uniquely, 1>a>0,
z2I(x, 3, ).

Proof. By Theorem 6, xI1(x, x2, ) or Lxy, and yI1(y, y2, ) or 1y,
and zl(z1,22,7) or lai, where %4, yi, 2465, i=1,2. Let Qe y, 0, or
Q¢ for brevity, denote the set of x¢, y, and 2z¢ which appear in
the three expressions. Q¢ » consists of at most six clements, so that
it has its maximal and minimal clements, denoted by m!, ma2,
Clearly m'>mz.  (Otherwise, x1ylz, a contradiction.) By Theorem
1, any clement of Qc) is cquivalent in utility to some primary
lottery (mt, miz, «) or clse to m' or mz, Hence, any of xi, yi, and
z¢ can be reduced to its cquivalent, which are m', m2, or of the
form (m', w2, «). Clearly, by 'Theorem 3, the «’s arc uniquely
determined, By (ad, 6, 7) and Theorem 5, x, y, and 2z can be
reduced to their equivalent of the similar forms, Suppose £ and ¥
are reduced to their equivalent, (n', me, az) and (mt, mz, ay), resp.
Then, by x>y and Theorem 4, we have az>ay. Since zI(n?, e,
a:), we have, by Theorem 4, a:>a:>ay. If we take r=(a:—ay)/
(az—ay), then, by Theorem 5, we have zI(mt, me, a:)I(Gnt, m2, ax),
Onty ma, @), YK, 3, 1) Suppose x10nY, me, ax) and ybna, Then,
since zI(m!', we, @), we have, by Theorem 4, a: <, so that, by (a 7),
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we have zIGnt, mz, a)I((nY, 0z, az), me, a/a)1(x, ¥, a./az). Sup-
pose xlm' and yI(m!, mz, «y). ‘Then, by Theorem 4, we have a:>
@y, so that, by (a3, 6, 7), we have (x, 3 (a.—ay)/(1—ay))I(n!,
(it me, ay), Cai—ay)/(I—a )G, me, a)lz. Suppose xIm! and
ylme, Then zI(mt, me, a:)(x, 3, a.).

Theorem 8. VY x, yeT, il x>y, then Va, 1>a>0, 23>-(x, y, a)>.
Proof. We define the sct Qcz, v just as we defined Qcz, v, »» in the
proof of Theorem 7. We denote maximal and minimal clements
of Qcz, » by m! and m2, resp. There can be four cases; (i) xIm!
and yIme, (i) xIm' and not ylme, (iii) not xDlm! but ylmz, and
(iv) neither xIm! nor ylma. In Case (i), by (al, 2), x>(x, ¥ a)
>y In Case (ii), we have m!'>y>ni, so that by Theorem 7 we
have yI(ml, me, ay). By (ab, 6, 7), we have (x, 3, «)I(n!, (', w2,
ay), a)I(ml, m, ayta—aya). Since ay+a—aya>ay, by Theorem
4, we have (r,y,@)>y Also by (a2), we have xIm'>(x,y a).
The proof in Case (iii) is similar to this case. In Case (iv), xI(m!,
ma, az) and yLQn', e, ay), so that by (a5) and Theorem 5, (x, y,
a)IGnly mey aytalaz—ay)). By Theorem 4, a:>ay, so that we
have a:>ay+a(az—ay)>ay. IHence by Theorem 4, we have x>
(x, 3, a) >y

Lemma 3. Yx, yel, it x>y, then (4,3, )I(3x,1—a) for Va,
1>a>0.

Proof. Since in any casc of (i) to (iv) ¥ and » are equivalent to
mt, (m',mz, B), or mz which belongs to SUL. By (ab, 6), the
required conclusion is directly obtained.

Theorem 9. Vx, yeT, if x>y then (x,» a)>(x, ¥ a2) if and
only if ai1>a,

Proof. The four cases (i) to (iv) have been defined in the proof
of Theorem 8. In Case (i), the conclusion is obtained directly by
Theorem 4. Put zi=(x, y,ay), i=1,2, In Case (ii), we have z;l
(mt, (m', mz, ay), i), so that, by (a6, 7), we have zJd(mnl, ma, o1),
where pi=aytai—ayai, i=1,2. If 21>-2¢, then, by Theorem 4, we
have p1>p:. Hence ai>az. Conversely, if ai>az, then 91> p2, so
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that, by Theorem 4, we have zi>22. The proof in Case (iii) is
similar. In Gasc (iv), by Theorem 5, we have zI((n!, m2, az),
(mt, mz,y @), a)1(nl, ez, p0), where pi=ay-tai(az—ay), i=1,2, By
Theorem 4, we have a:>ay. If z213>-z2, then, by Theorem 4, we
have p1>pz, so that we have ai>az. Conversely, if ai>az, then,
by @:>ay, we have pi>p2, so that, by Theorem 4, we have 21> 22
Theorem 10. Yx, yeT, Va, 8, 1, 1>a, 8, 7>0, ((x, 3, @), (x, 3 8),
NI, 3 8+r(a—p)).

Proof. TFirst, supposc xIy. Then, by Lemma 2, we have (x, ¥, @)
Ix for any a. Hence, by (ab), ((x, 3 a), (2,38, DI, %7).
Again by Lemma 2, (x, 2, ) IxI(x, 3, B+ r(a—p)). Hence ((x, y, @),
0, 8, I, 3, Btr(a—p).

Suppose x>y, We defined the four cases (i) to (iv) in the
proof of Theorem 8. In Gase (i), by (a3) and Theorem 5, we
have the required conclusion. In Case (ii), by the argument in the
proof of Theorem 8, we have (v, y, a)I(nt, m2, ay--ai—ayay), i=
1,2, Putting pi=ay+as—ayai ((=1,2), we have, by Theorem 5,
Wx, 3, ), (2,3, a2), PI(OmY, ma, p), (mY,me, p2), YII(m, me, patr
(p1—p2)). On the other hand (x, 3, a2+ y(ar—a2))I(mt, (m}, me, ay),
az-ty(ar—a))IOnt, e, ay--(aetrlar—az)) —ay(az-t-rlar—az))) =
(mt,ms, 0). 1t is casy to scc that 8=p2--y(p1—p2). By Theorem 4,
putting e=a and 8=az, we have the required conclusion, The
proof in Casc (iii) is similar, In Case (iv), by the same rcasoning
as in the proof of Theorem 8, we have (&, y, a)L(m?, ma, ay-taiax
—ay))=0mt, myy @), i=1,2, By Theorem 3, we have ((x, 3, ar), (x,
¥, a2), P00, mz, @), (n', mz, ¢2), r)IOnY, me, e+ y(@i—¢2)). On
the other hand, by Theorem 5, we have (x, ¥, az+-y Car—a2))1(Gn!,
ma, az), (M}, Mz, ay), az--y(ar—az))1Onty me, ay-+ (az-t (o —a2)) (ax
—ay))=(ml, me, 0°). But ¢utr(di—@) =ay+(az—ay)(ar-l-(1 =)
a2)=0’. Hence we have the required conclusion.

If >, then we put 2’=y, y'=x, a’=l—a, and §'=1-4, and
substitute them in the conclusion proved in the above case. ‘T'hen,
we have (0,2, 1—a), (3, %, 1=8), DI x, (=8 +r(f—a)) Hence,
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by Lemma 3 and (a5), we have ((, ¥ «), (%, % 8), r)I(x, 3 8-+
r(a—p).

Theorem 11. Suppose ¥, y1, x>y, Then for any z such that
zeT and x>z>-y there exists «(z) uniquely such that zI(x, 3,
a(2)), 1>a(2)>0, and if x>z~22>-y and z1, 227, then, for any
8, 1>8>0, it holds that a((ay, 22, 8)) =Ra(z1) + (1 —Ba(z2).

Proof. By Theorem 7, a(2) exists uniquely for each z. By Theorem
8, we have z:3-(z1, 22, )22, so that x>~(21, 22, f)>y. Since z:d(x,
¥ a(zd), i=1,2, by Theorem 10, we have (21, 22, DI(x, 3, a(22)+
B8Ca(z)— a(z2))). Hence, by Theorem 9, we have a((zy, 22, )=
a((x, ¥, a(z2) + pla(zr) —a(22)))) = a(z2) +plaz) — a(z2).

Scction V. The von Neumann-Morgenstern Theorem

Theorem 12. Supposc x, ye71', 2>>y. Let a(z) be the function
defined in Theorem 11. Consider any recal-valued function f(2)
defined for all z&T', x>z>y such that (1) if zilzz, x>2:>y, i=1,2,
then f(2)=f(z2), (2) f((21, 22, B))=Bf(2)+ (1 —B) f(22) for any =z,
x>zi>y, i=1,2, 1>>0, and (3) il x>z21>-2z2>-3, then f(21)>f(z2).
Then, such a function f(2) exists, and always takes the form f(2)=
ca(2)+d, where ¢ and d arc real numbers and ¢>0. Any such
function ca(z)+d fulfils the properties (1) to (3).
Proof. By Theorems 9 and 11, a(2) fulfils the propertics (1), (2)
and (8) for f(2). So does any function ca(z)+d, ¢>0. Hence f(2)
exists. Let f(2) be a function which fulfils (1) to (8). Take arbi-
trarily zi and 22 such that x>>213>22)>3, and determine real values
¢ and d so as to have fi=cai-+d and fa=caz-d,...... (a), where fi
=f(2¢) and ai=a(z¢), i=1,2, By Theorem 9, we have ai>az, so
that we have ¢={fi—f2)/(a1—a2) and d={(aife—a2f1)/(a1—az) to
be finite definite. By the property (3) of f(2), we have ¢>0.
Suppose, for some z3, £>z3>-y, f(21) #caz+d,...... (b), where as
=a(zs). If za>zi, then, we have, by Theorem 7, that z21(zs, z1, f)
for some unique 8, 1>8>0. Ience, by the property (2) of f(2),



80

we have fz=8fs+ {1 —pf....... (c). But since, by Theorem 11, we
have ae=a((2s, 21, B)) =Pas-+ (1 —Pai...... (d). Multiplying the
terms on both sides of lLiq. (d) by ¢ and adding d to them, we
have ¢ az++d=8(c as+d)+(1—p)(c ai--d), so that, by (a) and (b),
noting B#0, we have ¢ asl-d=fi=8(c as+d)+(U—-Dfi#sfs+(1—
P f1, contradicting (c).

If z2)-23, then it is casy to have a contradiction to (¢) by a
similar reasoning.

Suppose, then, that z0>-23>-z2. By Theorem 7, we have z3l(ai,
22, 8) for some 8. By the property (2) of f(2), we have fs=8fi-1-
(I1-8)fa. But by Theorem 11, we have as=a((z1, 22, 8))=pa1-
(1—B)as, so that, by (a) and (b), we have fa#cas-+d=p8(c ar+d)
+(A=pB)(c azt+d)=fi-+(1 =B fe. This is a contradiction,

All this implies that, once given the values of f(2) at any 2,
22, x>z1>-22>- ¥, there must be some ¢ and d as determined by (a),
and once ¢ and d arc determined, of which ¢ is positive, we have
J@=ca(2)+d for all z&T, x>z,
Corollary 1. Let ¥ and y'€T be ¥ >x>y1y’, or 2’'Ix>y>y’, or
>-x>-y>y’. Il f/(2) is any rcal-valued function defined for all
z€T, x’>2>y" such that (1) if zilz;, then f7(21) =f"(22), (2) f'((2,
2, ) =B f'(2)+((-f (22, ¥YB, 1>p>0, and (B) if 21>z, then
S (2)>f(22), for any z1, 22T, 2" >2>y’, i=1,2, then this function
f7(2) is uniquely determined up to a positive-sloped lincar trans-
formation. Also, any such function f’(2) is an cxtension of some
function f(2) for x>2z>y defined in Theorem 12, in the sensc that
f7(2) is defined for an extended domain x27>2>3" of x>2>y and
S’ (2) takes the same values as f(2) for all z&T, x>z>y.
Proof. Let fi’(2), i=1,2, be functions fulfilling the properties (1)
to (3). Lect a’(2) denote the function defined for x">z>y’ just as
a(2) is defined for x>2>y. Then, by Theorem 12, we have fi’(2)
=cia’(2) +-ds, and ¢>0, i=1,2. Hence fi'(2)=c1(f2'(2) —d2)/c2-I-
di=(ci/c)f () —d2(c1/c2)+dy, so that fi’(2) is a poéitive-slopcd
linear transformation of f2’(2).
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Consider the function f’(2), defined as f’(2)=f"(z) for all
z€T, ¥>z>y, and for this domain only. Let a(2) denote the same
function defined in Theorem 1. Then, since f”’(2) preserves all
the properties (1) to (8) of f'(2) for the narrower domain x>2>-
¥ by ‘Theorem 12, we have f”(2)=c¢”a(2)--d”’, and ¢">0. Putting
(@) =ca(2)+d, we have [ (2)=c”((f(2)—d)/c)+d”,...... (). Since
¢>0 and d are arbitrary in (i), we may take c¢=c¢” and d=d” in
(1), and we have f(2)=f""(2) for all zeT, x>z>y. Thus, f'(2) is
an cxtension of this f(2).

Corollary 2. let f(2) be a function defined in Theorem 12 for
x>z>y. Suppose there are #’, y’€7T such that x”>x and/or y>
¥y, and #Zx and y2y’. ‘Then there uniquely exists a function
f’(2) such that f’(2) is an extension of f(2) from x>2>y to &' >z
>y, and f'(2) [ulfils the properties (1) to (3) in Corollary 1.
Proof. By assumption the function f(2) is given. Define f'(2)=
c’a’(2)+d’ by a’(z) for the pair 2” and ¥y’ so as to have f'(zi)=
J(z0) for some zy, i=1,2, x>z1>~2z20~3. Then, by f(21)>f(z2), ¢’>
0, and f"(2) fulfils the properties (1) to (3) of Corollary 1. Now,
define f7(2) as in the proof of Corollary 1. Since f(2) =ca(2)-1-d,
we have, by the preserved properties of f77(2), f7/(2) =c”a(2)-Fd"".
Hence, f"(2)=(c""/e) f(2)+(cd”"—c"’d) /¢, where ¢>0 by assump-
tion. [ere, since f"(z)=f"(z1), i=1,2, ¢’ and d’” must be such
that f”"(z)=f(z¢) for the above zi, i=1,2, 2>21>-22>y. We then
have f(z) ="z =(c""/c)f(z)+(ed” —c”’d) /¢, i=1,2, so that (¢
—¢")f(z)=cd” —c”’d=(c—c¢"")f(z2). Therefore, since f(z1)#/(22).
we have ¢=¢” and, by ¢, ¢">0,d=d”’. 'Thus, f*’(2) coincides with
J(2) for all z&T, x>2z>y. Obriously, the two values f(z21), i=1,2,
uniquely determines (by f'(z)=f(20), {=1,2) the function f’(2)
with the propertics (1) to (3) in Corollary 1. Hence, the uniqueness
of the extension of f(z) to x’>z>y’.

Let us proceed to prove the von Neumann-Morgenstern theorem
in cach of the cases in which the set 7° does and does not contain

extremums with respect to the preference ordering.
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Theorem 13, 'There exists a function f(2) defined for all zeT
such that (1) if zly, x, yeT', then f(2)=f(3), ) f((x, 3, a))=af(x)
+ (=) f(3) for any x, yeT, 1>a>0, and (3) if >3, x, ye7, then
SCO>f(. Such a function f(a) is uniquely determined up to a

positive-sloped lincar transformation,

(1) The case without extremal prospects: Proof

Let T be ‘extremumless” with respect to the preference ordering,

i. e, have no maximal or minimal prospects.
Irxistence. 'This assumption implies that for any %, yeT', x>y, there
are X, y’€T such that x’>x>y>y". Then, choose x, 3 21, 227,
x>z2i>-22>-y, and specily f(z0), i=1. 2 to determine ¢ and d as in
the proof of ‘Theorem 12, thus determining f(2) for x>2z>y. Since,
by assumption, X">x> >3, we can extend f(2) from x>2>y to
x">2z>3’, and then the values f(x) and f(y) are determined. (See
Corollary 2.) Similarly, by the assumption of extremumlessness, the
values f(x") and f(y*) arc alse determined by further extending the
function,

Uniqueness. By Corollary 2, for any extension of the domain,
the values of the extended function on the additional domain are
uniquely determined. By the definition of the extension, the valuces
of the extended function on the initial domain before the extension
arc preserved after ite Let f(2) and f'(2) be any two functions
defined for all ze 7', tulfilling the properties (1) to (3). By Corol-
lary 1 the one must be a positively sloped linear transformation of
the other, when they are viewed as functions defined only on the
same subsct ¥>2>y of 7. T'his subsct is arbitrary, and hence the

uniqueness in this case is verified,

(D) The case with extremal prospects: Prool

let 7° have some maximal and/or minimal prospects.
Existence, (i) Supposc there are some 8, y'eT, ¥’ zzzy for any
zeT'. Consider the function a’(2) for x">z>y" in Theorem 11,
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Extend the function «’(2) to x> z>y by defining «’(x”)=1 and
a’(3)=0. Then, (G-1) (¢, 3, ="y, 8.1+ =5.00=(x", ¥, fa’
G-’ (7)), (-2) &', &y, ), I, ¥, a--f-—-af)=(",
¥, B 14+ =Pa)=, ¥, 8’ () +(1—-Ba’(2"), and (i-3) ((«', ¥,
), ¥, DI, ¥, a)=0" ¥, 8. a+(1=.0)=C0", ¥y, fa’ (@) +(1-5)
«’(3")), where 22=(x", ¥, @) Hence, we have a’((x, 3, f))=PHa’(x)
+U=a’( for any X,y ¥ Zx>yxy, 1>>0.... (). Define
a(2)=1,0 for z such that zIx” and Ty’, resp.

Now, define f°(2) for ¥’ >z22y by f/(2)=ca’(2)+d. Then, f*
(x)=c+d and f(3")=d, and by Eq. (1), we have f/((x, 3 8))=c
B’ (D (=B’ (M) +d=plca’ (X)) +d) + (1 =B (ca’ (N 1-d)=pf (%)
+A=8f () for any x, y, " Zx>=yzy. f(2) clearly fulfils the
properties (1) and (3).

(ii) Supposc there is a maximal clement ¥’€7), i. ¢, such that
2’ >x for any x€7, but there is no minimal clement to 7' Let
the interval for which the initial f(2) before any extention is defined
be x>z>y. Choose any 3, such that y'<y. Define a’(x), as in
Subcase (i) above, for ¥ >2>3". By usc of this «’(x), starting
from the interval x>2z>3, the function f(2) can be extended to &7
>x>3 as in the proof of Corollary 2. Since y* is arbitrary, it
can be extended all over 7.

Gii) In the case where there is a minimal clement but not a
maximal clement to 7', the proof is similar to that of (ii).
Uniqueness. Let f(z) and f'(2) be functions defined for all ze T
which fulfil the propertics (1) to (3).

(i) Supposc there are ¥, y'€T, 8 2>z y for all ze€7. Then,
for &' >2z>9y", f(2)=c a«(2)-d and f(2)=c¢" a(2)-+d’, where a(2) is
the function defined in Theorem 11 for x">2>y’, Also, by Corol-
lary 2 of Theorem 12, for a’>z>y", f'(2)=af(2)--b, where >0
and b arce constant. Let us show that ()-1: we must define f(x”)
=c-+d, f/(x)=c+d’, and f(¥)=d, f(¥y)=d’, and that (i)-2: f
)=af(x)+b and S (¥)=af(y")+b.
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(i)-1: Suppose the value f(x*) we define is not cqual to ¢--d.
Then, by the property (2) of f(2) for the domain %" >z>y’, we
have for z=(x,’ y’, @), f((x") 2, B)=Pf(x")+(1—B)f(2)# (c-+d)+
(=P catd)=c(B+{—=Pa)+d=ca((x’, 2, f))+d by (', 2z, HI(x,
Yy a+B—ap) and Theorem 9. Since x">(a", 2, 8)>y’, this cquals to
S22, 8), a contradiction. Hence, we must 'define f(x")=c-d.
Similarly f'(x)=c¢’-+d’. Also, by the similar reasoning, we must
define f(y)=d and f/(y)=d’. We define f(2)=c-d for zIx’, ctc.

(D-2: Let 21, z2€T be &' >2>-22>-y, and fi, /i denote f(20),
S (z0), i=1, 2, resp. Then, we have fi' =afi+d and fi’=afe-+0b......
(@), Supposc f/(x¥)#af()+b...i.(b). Then, since there u-
niquely exists y, 20(x’, 22, 7), 1>¢>0, we have, by the property (2)
of f/(2), /i =1/ )+(1=7)fe e, (¢). But by the property (2)
of f(2), we also have fi=f((, 22, P))=rfX)+U—=7)fruuen..en. (D.
From Eq. (d), we have afit-b=yr(a fQx)+D) (1 —r)(a fot-b), so
that, by (a) and (b). noting 7 #0, we have fi' =afi+b=yr(a f(x")-+b)
A=) 2 (D)= fy contradicting to (c). Also, if we
suppose f'(¥)#a f(y)-+b, we have a contradiction by the similar
reasoning. Ience, we have f'(2)=af(2)+b for all z, 8" >z,
i.c, for all zeT.

(ii) Suppose therc is a maximal (minimal) clement x° of T°
but no minimal (maximal, resp.) clement y” of 7', Let us deal with
with only the first case, since the other case can be similarly treated.
Let y&T be 2>y, Then, for a’>2>y, f(2)=ca(2)+d, f'(2)=
¢’a(2)+d’, and, by Corollary 2, f’(2)=a f(2)--b for all 2, ¥'>2> 3",
where a(2) is the function pertinent to x” and y’. By exactly the
same reasonings as thosc in Subcase (1) just above, it is verified
that (1) we must define f(x)=c-+d and f/(x")=¢"-1-d’ and that (2)
we then have f/(x)=af(x’) +b. Thus, we have f'(2)=af(2)1b for
all 2, 8" 2>2z>y’. Since y* is arbitrary, we have f'(2)=af (2)+b for
all zeT.



Conclusion

If we take all the axioms (al) to (a7) for granted, (1) The-
orem 12 and its two corollaries ensure existence of a cardinal utility
function defined all over the set of sure prospects S, which is
unique up to a positive-sloped linear transformation, so that convexi-
ly or concavity, if definable, at any point x&S would be preserved,
regardless of any such transformation, Certainly, they ensure ex-
istence of a cardinal utility function defined all over the sef of
general prospects T, but in nothing but that lics the point essentially
rclevant to the classical and fundamental cconomic problem of
cardinal utility.

(2) They also ¢nable us to carry on recursively the following
scparating operations with respect to the utility function thus
defined on 7'

Let x=(((a,b, ), ¢, a2), (d, (e, f, as), a1), as), c.g. where a,
b, cte. belong to S, and all a4, s belong to the open interval (0, 1),
Let #(2) be a utility function which has been constructed on the
basis of our axioms (al) to (a7) so as to fulfil the properties (1)
to (3) of Theorem 12,

Then, by the property (2), we have

u(x)=asut(((a, b, ar), ¢, a))+ (N —as)u((d, (e, [, a3z), ay))
= as(ae(ar w(a) -+ (A —a)u(d)) + (I —adulc))
+ (I =as)Casu(d) + (1 —a)(as ue) -+ (1 —adu(f))
= Dkt B 1e(xe),

where 2=a,b,¢,d, ¢, and f for k=1,2,......,5, resp,, Xi-, fe=1, and
Bx>0 for k=1,2,...... , O,

If T/1-S/I+¢, then it is only at the stage of Theorem 10
(which is a basis of Theorem 12) that such a calculation as the

above example shows becomes ensured to be possible at least in the
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logical context of the analysis of this paper. In fact, even the first
cquality of the above calculation cannot be logically justified before
arriving at Theorem 10, for, in this general case of T/I—-S/I+¢,
the multi-stage lotteries ((¢, b, av), ¢, az) and (d, (e, f, as), as) may
not have any corresponding elements of S which are equivalent in
utility to themselves, and, if” so, such a proposition as Theorem 12
will be required, even after Theorem 5 has been proved, which
rcads only in terms of clements of S,

The calculation (1) in Introduction will be verified as follows:
Rewrite the argument of the term on the lefi-hand side of (1) o
the form of a multi-stage (binary) lottery like that of x above. By
the calculation similar to that applicd to x in the above, we will
g
the resulting weights in the expression coincide with those proba-

)

t the weighted average expression. It will be casy to show that

hilitles in the original argument of the left-hand side of (1).

(3) Theorem 13 indicates that under the axioms the cardinal utility
function exists (uniquely in that sense) even when the set S is
extremumless with respect to the relation > (‘I'he range of the

function may or may not be unbounded.)?
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