法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-03-14

準3次元電流分布推定法に関する研究

宮原, 晋一郎 / 早野, 誠治 / SAITO, Yoshifuru / HAYANO, Seiji / MIYAHARA, Shinichiro / SEKIJIMA, Daishiro / 齊藤, 兆古 / 関島, 大志郎

(出版者 / Publisher) 社団法人電気学会 / The Institute of Electrical Engineers of Japan

(雑誌名 / Journal or Publication Title) 電気学会論文誌 A, 基礎・材料・共通部門誌 / 電気学会論文誌 A, 基礎・材料・ 共通部門誌

(号 / Number) 10 (開始ページ / Start Page) 907 (終了ページ / End Page) 912 (発行年 / Year) 2000-10-01

論 文

準3次元電流分布推定法に関する研究

学生員	関島	大志郎 (法政大)
学生員	宮原	晋一郎(法政大)
正員	早野	誠治 (法政大)
正員	斎藤	兆古 (法政大)

A Study on the Quasi-3D Current Estimation

Daishiro Sekijima, Student Member (Hosei University) Shinichiro Miyahara, Student Member (Hosei University) Seiji Hayano, Member (Hosei University) Yoshifuru Saito, Member (Hosei University)

Recently, faulty operation by mutual interference among electric and electronic devices has become a social problem, which is caused by widely spread personal computers and cellular phones. A solution to overcome this difficulty is to estimate the current distributions from locally measured magnetic fields.

In this paper, we propose two methods, one is the direct inverse method and the other is the generalized vector sampled pattern matching (GVSPM in short) method, for estimating the current distributions in a square cubic box. First, we solve inverse source problems in order to estimate the 2D current distributions from locally measured 2D magnetic fields. Second, we combine the estimated 2D current distributions to obtain quasi-3D current distributions. Preliminary experimental results indicate the validity of the proposed methods.

キーワード:磁界,準3次元,電流分布推定,逆問題

1. まえがき

半導体技術の発展は、電気・電子機器の小型軽量化のみな らず、インテリジェント化を可能とし、爆発的な電気・電 子機器の普及をもたらした。その結果、高周波で駆動され る電気・電子機器は生産設備のみならず家電機器まで普及 し、家庭、事務所、工場、その他あらゆる場所でパソコン、 ファックス、携帯電話、空調機器、照明機器等の多くの電 気・電子機器が設置され、必要不可欠な文明の利器として 活用されている。それらの電気・電子機器が空間を占める密 度は、従来想定不可能な密度である。この意味で、人工的 な空間はあらゆる周波数の電磁界で満たされた空間と化し ている。この過酷な電磁環境中でも、電気・電子機器は誤動 作をすることなく円滑にそれらの機能を発揮しなければ、 人類の文明生活が維持できない状況に至っている。また、 あらゆる周波数の電磁界で満たされた空間の中で人類は生 活を強いられている状況である。 電気・電子機器に対してだけでなく人類に対しても可能 な限り、高周波の電磁界が分布しない自然な空間が望まし いことは言うまでもない。また、最近の電気・電子機器は、 ほぼ完全な密閉構造を持ち、さらに、電気・電子機器周辺 から得られる情報は局所的に測定された磁界のみである。 このため、磁界源である電流分布を推定するためには、本 質的には逆問題を解くことになる^(1,2)。

本論文では立方体各面で局所的に測定された2次元の磁 界分布から2次元の電流分布推定を直接逆行列法と一般化 ペクトル SPM 法を用いて行い,得られた局所2次元電流分 布を組み合わせて立方体内の準3次元電流分布を推定する。

2. 逆問題解析法

〈2・1〉 線形システム方程式 (1) 式で与えられる一 般的な線形システム方程式を考える。

電学論A, 120巻10号, 平成12年

$$\mathbf{Y} = C\mathbf{X} \tag{1}$$

〈2・2〉 直接逆行列法 (1) 式で, Y は n 次の入力ベク トル, X は m 次の解ベクトル, そして C は n 行 m 列のシ ステム行列である。m=n の場合,システム行列 C の逆行列 が存在することを前提として

$$\mathbf{X} = \boldsymbol{C}^{-1} \mathbf{Y} \tag{2}$$

の解ベクトル X を求める⁽³⁾。

〈2·3〉 一般化ベクトルSPM法 続いて, *m>n*となる不 適切な線形システム方程式の場合を考える。(1) 式は

$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_m \end{bmatrix}, \qquad C = \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 & \vdots & \mathbf{C}_m \end{bmatrix}$$
(3)

とすると、(4)式のように書き直すことが可能である。

$$\mathbf{Y} = \sum_{i=1}^{m} x_i \mathbf{C}_i \tag{4}$$

さらに(4)式の両辺を入力ベクトルと列ベクトル,それぞれのノルムで正規化して(5)式を得る。

$$\frac{\mathbf{Y}}{|\mathbf{Y}|} = \sum_{i=1}^{m} \left(x_i \frac{|\mathbf{C}_i|}{|\mathbf{Y}|} \right) \frac{\mathbf{C}_i}{|\mathbf{C}_i|}$$
(5)

ここで,

$$\mathbf{X}' = \begin{bmatrix} \mathbf{X}_1 & \mathbf{C}_1 & \mathbf{X}_2 & \mathbf{C}_2 \\ \mathbf{X}_1 & |\mathbf{Y}| & \mathbf{X}_2 & |\mathbf{Y}| \end{bmatrix}^T,$$

$$\mathbf{C}' = \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ |\mathbf{C}_1| & |\mathbf{C}_2| & \mathbf{C}_m \end{bmatrix},$$

$$\mathbf{Y}' = \frac{\mathbf{Y}}{|\mathbf{Y}|}$$
(6)

とすると

$$\mathbf{Y}' = \mathbf{C}'\mathbf{X}' \tag{7}$$

(4) 式は入力ベクトルYが必ずシステム行列の列ベクト ルC_iの線形結合で与えられることを意味する。ここで、反 復解法である一般化ベクトルSPM法の評価関数を考える。*k* 回目の反復解CX^(k)と入力ベクトルY間の角度の余弦成分

$$f(\mathbf{X}^{(k)}) = \frac{\mathbf{Y}}{|\mathbf{Y}|} \cdot \frac{C\mathbf{X}^{(k)}}{|C\mathbf{X}^{(k)}|}$$
$$= \frac{\mathbf{Y}}{|\mathbf{Y}|} \cdot \frac{|\mathbf{Y}|}{|\mathbf{Y}|} \frac{C' \mathbf{X}^{(k)}}{|C' \mathbf{X}^{(k)}|}$$
$$= \mathbf{Y}' \cdot \frac{C' \mathbf{X}^{(k)}}{|C' \mathbf{X}^{(k)}|}$$
(8)

を解の評価関数とし、

$$f\left(\mathbf{X}^{(k)}\right) \to 1 \tag{9}$$

となる解ベクトルX⁽⁴⁾ を得る。まず,第一近似解ベクトル X⁽¹⁾を求めることを考える。反復計算の初期値をX⁽⁰⁾とす ると(7)式は,

$$C' \mathbf{X}'^{(0)} = \mathbf{Y}'^{(0)} \tag{10}$$

となる。両辺に*C*^Tを掛けると、

$$C'^{T} C' \mathbf{X}'^{(0)} = C'^{T} \mathbf{Y}'^{(0)}$$
(11)

となり,

$$C'^T C' \cong I \tag{12}$$

で近似すると

$$\mathbf{X}^{(0)} = C^{T} \mathbf{Y}^{(0)}$$
(13)

となる。反復計算の初期値 X⁽⁰⁾が(13)式で与えられるとすると、正規化された入力ベクトル Y'の第一次偏差 ΔY'⁽¹⁾は

$$\Delta \mathbf{Y}^{(1)} = \mathbf{Y}' - \frac{C' \mathbf{X}^{(0)}}{\left| C' \mathbf{X}^{(0)} \right|}$$
(14)

となる。(14) 式が意味するところは, (8) 式の, 解の評価 関数 *f* と等価な正規化ベクトルの差 Δ**Y**'を用いて,

 $\Delta \mathbf{Y}' \rightarrow \mathbf{0}$ (15) となる解ベクトル $\mathbf{X}^{(1)}$ を求めることである。したがって、 $I_m \epsilon_m \chi$ の単位正方行列、 $\Delta \mathbf{X}^{(1)} \epsilon$ 解の誤差ベクトルとする と、第一近似解ベクトル $\mathbf{X}^{(1)}$ は (16) 式の形で書ける。

$$\mathbf{X}^{(1)} = \mathbf{X}^{(0)} + \Delta \mathbf{X}^{(1)}$$

= $\mathbf{X}^{(0)} + C^{T} \Delta \mathbf{Y}^{(1)}$
= $\mathbf{X}^{(0)} + C^{T} \left(\mathbf{Y} - \frac{C' \mathbf{X}^{(0)}}{|C' \mathbf{X}^{(0)}|} \right)$ (16)
= $C^{T} \mathbf{Y} + \left(I_{m} - \frac{C'^{T} C'}{|C' \mathbf{X}^{(0)}|} \right) \mathbf{X}^{(0)}$

最終的に, k回目の解ベクトルX^(k)は(17)式で与えられる。

T. IEE Japan, Vol. 120-A, No. 10, 2000

$$\mathbf{X}^{(k)} = \mathbf{X}^{(k-1)} + C^{T} \Delta \mathbf{Y}^{(k-1)}$$

$$= C'^{T} \mathbf{Y}' + \left(I_{m} - \frac{C'^{T} C'}{|C' \mathbf{X}'^{(k-1)}|} \right) \mathbf{X}'^{(k-1)}$$
(17)

次に,解の収束条件について考えてみる。(17)式で解が収 束する条件は状態遷移行列S

$$S = I_{m} - \frac{C^{T} C^{T}}{|C^{*} \mathbf{X}^{*(k-1)}|}$$

= $I_{m} - \frac{C^{T} C^{*}}{|\mathbf{Y}^{*(k-1)}|}$
= $I_{m} - C^{T} C^{*}$ (:: $|\mathbf{Y}^{*(k-1)}| = 1$) (18)

の最大固有値が1より小さいことである。行列Sの固有値を λとすると(19)式を得る。

$$|\lambda I_m - S| = \begin{vmatrix} \lambda & \varepsilon_{12} & \cdots & \varepsilon_{1m} \\ \varepsilon_{21} & \lambda & \cdots & \varepsilon_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \varepsilon_{m1} & \varepsilon_{m2} & \cdots & \lambda \end{vmatrix} = 0$$
(19)

ここで*ε_{ii}は C^{'T} C*'の性質から必ず大きさが1未満である。

 $\left|\boldsymbol{\varepsilon}_{ij}\right| < 1 \tag{20}$

固有値入は(19)式を満たすが、仮に $|\lambda| \ge 1$ とすれば | $\varepsilon_{ij}|<1$ からこの行列式の各列ベクトルは必ず1次独立に なり行列式は零になり得ない。これは矛盾なので $|\lambda|<1$ と なる。このため、(19)式の条件は常に成り立ち(17)式は絶 対に安定な反復解を与える。これは、状態遷移行列Sの最大 絶対値を持つ対角要素が近似的に最大固有値に等しいため である。以上の反復型不適切問題の解法を一般化ベクトル サンプルドパターンマッチング法(Generalized Vector Sampled Pattern Matching Method,以下GVSPM法と略記)と 呼ぶ⁽⁴⁾。

3. 準3次元電流分布推定

〈3・1〉 シミュレーション シミュレーションによる 電流分布を図1のように設定する。図1の電流分布が生ず る立方体の6面に垂直な方向の磁界成分から直接逆行列法 を用いて2次元電流分布がそれぞれ得られる。このように して得られた2次元電流分布を重ね合わせることで、図2 に示す準3次元電流分布が得られる。ここで、図中のXYZ 軸は、それぞれ、立方体の横、縦、高さ方向の長さを示し ている。また、図3では主要な電流分布以外の誤差ベクト ルを取り除くため閾値演算を用いている。同様にして、 GVSPM法を用いて計算された準3次元電流分布を図4に、 主要な電流分布以外の誤差ベクトルを閾値演算によって取 り除いた準3次元電流分布を図5に示す。ここで、電流分 布の推定点数は 15×15×15 = 3375 個である。閾値は磁 界の実測値から今回提案した直接逆行列法とGVSPM法で 推定した準3次元電流分布とシミュレーションで得られた 準3次元電流分布の比較でそれぞれ決定した。

図3. 閾値演算された準3次元電流分布

Fig.3. Quasi-3D current distributions with threshold operation

電学論A, 120 巻 10 号, 平成 12 年

Fig.5. Quasi-3D current distributions with threshold operation

〈3・2〉 実験⁽⁵⁾ 励磁コイルは内半径2cm,外半径 10cmのドーナツ状のものを作成し,電流を0.1A通電した。 1面につき,測定面のX,Y方向の長さはそれぞれ16cm, 電流分布推定面のX,Y方向の長さもそれぞれ16cmとする。 また,立方体の6面各面へ垂直な磁界の測定点数はX,Y 方向共に8点とした。従って,全体の磁界測定点数は6×8 ×8=384点である。

〈3・3〉 直接逆行列法 立方体内のコイル位置を3回 変更して測定された磁界分布を用いた。1回目はコイルを X-Y平面に平行に配置して測定を行った(Case 1)。立方体各 面に垂直方向で測定された磁界分布から直接逆行列法で推 定された2次元電流分布を用いて得られた準3次元電流分 布を図6(a)に示す。図6(a)はシミュレーションで決めた閾 値を用いて主要部分を抽出した電流分布である。この結果 からコイルをX-Y平面に平行に配置した場合は準3次元電 流分布が直接逆行列法を用いて比較的高精度で推定可能で あることが確認できた。

2回目はコイルをX-Y平面に対して45度, Y-Z平面に対 して垂直方向に配置して測定を行った(Case 2)。図6(b)に 得られた準3次元電流分布を示す。図6(b)はシミュレーシ ョンで決めた閾値を用いて主要部分を抽出した電流分布で ある。この結果からコイルをX-Y平面に平行に配置した場 合と比較して電流分布の推定精度が低下していることが分 かる。これは、コイルの作る磁界の主要成分を立方体のい ずれの面でも測定できないためと考えられる。

3回目はX-Y平面に対して45度,Y-Z平面に対して垂直 方向となる平面上でコイルを45度回転させて配置し,測定 を行った(Case 3)。図6(c)にその準3次元電流分布を示す。 図6(c)はシミュレーションで決めた閾値を用いて主要部 分を抽出した電流分布である。この結果からコイルをX-Y 平面に平行に配置した場合と比較して電流分布の推定精度 が低下していることが分かる。すなわち,電流の生ずる磁 界分布の主要成分が立方体の6面のいずれかで測定される 場合,最も良好に電流分布が推定される。

〈3・4〉 GVSPM 法 直接逆行列法の場合と同様に、立 方体内にコイル位置を3回変更して測定された磁界分布を 用いた。コイルをX-Y 平面に平行に配置して測定された磁 界分布から、GVSPM 法で推定された2次元電流分布を用 いて得られた準3次元電流分布を図7(a)に示す。ここで、 電流分布の推定点数は15×15×15 = 3375 個である。な お、電流の主要成分を抽出するため、以下の結果は全てシ ミュレーションで決定した閾値を用いている。この結果か ら直接逆行列法と比較してGVSPM 法は、より詳細な電流 分布を与えていることが分かる。したがって、GVSPM 法 による準3次元電流分布推定は比較的高精度で推定可能で あることが判明した。

コイルを X-Y 平面に対して 45 度, Y-Z 平面に対して垂 直方向に配置した場合の準3次元電流分布を図7(b)に示 す。図7(b)はシミュレーションで決めた閾値を用いて主要 部分を抽出した電流分布である。この結果からコイルを X-Y 平面に平行に配置した場合と比較して電流分布の推定 精度が低下していることが分かる。しかしながら, GVSPM 法を用いた場合, 直接逆行列法よりも詳細な準3次元電流 分布が推定可能であることが判明した。

X-Y平面に対して45度, Y-Z平面に対して垂直方向となる 平面上でコイルを45度回転させて配置した場合の準3次元 電流分布を図7(c)に示す。図7(c)はシミュレーションで決 めた閾値を用いて主要部分を抽出した電流分布である。図 6に示す直接逆行列法の推定結果よりも, GVSPM法はより 詳細な準3次元電流分布を与えることが分かる。

(a) Case 1

(b) Case 2

(c) Case 3

図7. GVSPM 法による準3次元電流分布 Fig.7. Quasi-3D current distributions by the GVSPM method

電学論A, 120巻10号, 平成12年

4. まとめ

本論文では、立方体の外側6面で測定された局所的な磁 界分布から直接逆行列法と GVSPM 法を用いて準3次元電 流分布推定を行った。その結果, GVSPM 法を用いて準3 次元電流分布推定を行った場合、直接逆行列法と同等、ま たはそれ以上の精度で電流分布が推定可能であることが判 明した。

(平成 11 年 12 月 20 日受付, 平成 12 年 5 月 26 日再受付) 文 献

- (1) T.Doi, S.Hayano and Y.Saito: "Magnetic field distribution caused by a notebook computer and its source searching", Journal of Applied Physics, Vol.79, No.8, pp.5214-5216 (1996).
- (2) Y.Midorikawa, J.Ogawa, T.Doi, S.Hayano and Y.Saito: "Inverse analysis for magnetic field source searching in thin film conductor", IEEE Transaction on Magnetics, Vol.MAG-33, No.5, pp.4008-4010 (1997).
- (3) 增田則夫, 緑川洋一, 斎藤兆古, 遠矢弘和:"電子回路 基板中の電流分布推定に関する研究",電気学会論文誌 A, Vol.119, No.7, pp.997-1004(1999).
- (4) 関島大志郎, 早野誠治, 斎藤兆古, 澤田彰, 堀井清之: "一般化 SPM 法による二次元電流分布推定", 電気学 会マグネティクス研究会資料, MAG-99-151, (1999).
- (5) 宮原晋一郎, 早野誠治, 斎藤兆古:"準3次元電流分布 測定法とその応用",電気学会マグネティクス研究会資 料, MAG-99-153, (1999).
- 関島 大志郎 (学生員) 1976年9月26日生。1999年

3 月法政大学工学部電気電子工学科卒業。 現在,同大学大学院工学研究科電気工学 専攻修士課程在学中。主として、電磁界 系逆問題解析に関する研究に従事。IEEE, 日本 AEM 学会学生員。

宫原 晋一郎(学生員) 1975 年 7 月 3 日生。2000 年 3 月法政大学大学院工学研究科電気工学 専攻修士課程修了。現在,清水建設株式 会社勤務。在学中,主として,電磁界系 逆問題解析に関する研究に従事。日本 AEM 学会学生員。

早野 誠治(正員) 1947年7月6日生。1977年3月法 政大学大学院工学研究科修士課程修了。 同年同大学助手, 1993 年同専任講師. 1996年同助教授,現在に至る。電気磁気 学の講座を担当。主として、計算電磁力 学および磁化特性のモデリングに関す る研究に従事。工学博士。IEEE,応用磁 気学会, 日本生体磁気学会, 日本 AEM 学 会会員。

1946年7月24日生。1975年3月 法政大学大学院工学研究科博士課程修 了。同年同大学助手, 1976年同講師, 1978 年同助教授, 1987年同教授, 現在に至る。 電磁気学, 電気機器および大学院応用数 学,電磁力学の講座を担当。主として,計 算電磁力学、および高周波変圧器に関す る研究に従事。工学博士。日本 AEM 学 会著作賞受賞 (Mathematica によるウェ ーブレット変換, 朝倉書店), International Journal of Applied Electromagnetics in Materials, Editorial Board。 IEEE, 電子通信 情報学会, 日本応用磁気学会, 日本生体 磁気学会, 日本 AEM 学会, Electromagnetics Academy (MIT)会員。