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Abstract

This paper investigates the relationship between the maximum
principle with an infinite horizon and dynamic programming and sheds
new light upon the role of the transversality condition at infinity as
necessary and sufficient conditions for optimality with or without con-
vexity assumptions. We first derive the nonsmooth maximum prin-
ciple and the adjoint inclusion for the value function as necessary
conditions for optimality that exhibit the relationship between the
maximum principle and dynamic programming. We then present suf-
ficiency theorems that are consistent with the strengthened maximum
principle, employing the adjoint inequalities for the Hamiltonian and
the value function. Synthesizing these results, necessary and sufficient
conditions for optimality are provided for the convex case. In partic-
ular, the role of the transversality conditions at infinity is clarified.
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1 Introduction

The maximum principle in optimal control is a fundamental instrument in
dynamic optimization theory. It is usually formulated in a finite horizon, but
one often needs to treat the case for an infinite horizon, especially in economic
growth theory. While the maximum principle with an infinite horizon was
treated in a simple manner by Pontryagin et al. [28, Section 24], it was Shell
[33] (later Halkin [23]) who first pointed out, by way of counterexample,
that the transversality condition with a finite horizon cannot be extended
in an intuitive way to that with an infinite horizon as a part of necessary
conditions for optimality. Since then, the maximum principle with an infinite
horizon has been elaborated by, for instance, Aseev and Kryaziimskiy [3],
Aubin and Clarke [4], Feinstein and Luenberger [20], Michel [26], Seierstadt
and Sydsæter [32] and Ye [38] with primal attention to the transversality
condition at infinity.

On the other hand, solutions to optimal control problems can be char-
acterized by dynamic programming, which is based on the value function as
a solution to the Hamilton–Jacobi–Bellman (HJB) equation. Under some
regularity conditions, the value function is a smooth solution to the HJB
equation. It is well-known, however, that the regularity conditions are vio-
lated in many cases of interest and the value function fails to be continuously
differentiable even if the underlying data are smooth. Indeed, one may expect
the value function to be, at best, Lipschitz continuous, even in the smooth
data case. (For the differentiability of the value function, see Cannarsa and
Frankowska [13].)

To overcome this difficulty, there exist two lines of research. One is “non-
smooth analysis” initiated by Clarke [15, 16], which employs generalized
gradients of the value function and generalized solutions to the extended
HJB equation, and the linkage between the maximum principle and dynamic
programming has been established by Clarke and Vinter [17] and Vinter [36].
The other, a somewhat later development, is the concept of “viscosity solu-
tions” to the HJB equation, which makes use of the notion of super- and
subdifferentials, proposed by Crandall and Lions [18] and Crandall, Evans
and Lions [19]. The value function is shown to be a unique viscosity solu-
tion of the HJB equation and the connection between the adjoint equation
for the Hamiltonian and that for the value function has been investigated
by Barron and Jensen [7], Cannarsa and Frankowska [13], Frankowska [21],
Miricǎ [27] and Zhou [41]. For the relation between viscosity solutions to the
HJB equation and generalized solutions to the extended HJB equation, see
Frankowska [22] and Zhou [42].

The purpose of this paper is to investigate the relationship between the
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maximum principle with an infinite horizon and dynamic programming and
shed new light upon the role of the transversality condition at infinity as
necessary and sufficient conditions for optimality with or without convexity
assumptions.

In this paper, we mitigate the smoothness assumptions by introducing
the technique of nonsmooth analysis along the line of Clarke [15, 16]. We
first derive the nonsmooth maximum principle and the adjoint inclusion for
the value function as necessary conditions for optimality that exhibit the re-
lationship between the maximum principle and dynamic programming. The
necessary conditions under consideration are direct extensions of those of
Clarke and Vinter [17] and Vinter [36] to an infinite horizon setting. The
nonsmooth maximum principle with an infinite horizon demonstrated by Ye
[38] is generalized by taking into account unbounded controls and nonau-
tonomous systems.

We then present sufficient conditions for optimality under nonsmooth
nonconvex hypotheses. Two sufficiency theorems are provided. The first is
an extension of the finite horizon result by Zeidan [39, 40] to the infinite
horizon setting, which is stated in terms of the adjoint inequality for the
Hamiltonian that is consistent with the strengthened maximum principle.
The second, which exploits the adjoint inequality for the value function,
is novel in the literature in that the sufficient condition is related to the
adjoint inclusion of the value function as well as the adjoint inequality for
the Hamiltonian.

Synthesizing these results, it is possible to characterize optimal solutions
and provide necessary and sufficient conditions for optimality if one restricts
attention to the convex case. In particular, the role of the transversality con-
ditions at infinity is clarified. This characterization is analogous to the result
for the finite horizon case by Rockafeller [29], who systematically developed
dual problems of optimal control under convexity hypotheses. To this end,
the convexity of the value function and the concavity of the Hamiltonian are
established.

2 Preliminary

This section collects some preliminary results on generalized gradients for
locally Lipschitz functions. When the function under investigation is a convex
function, the results are reduced to the traditional subdifferential calculus.
A basic reference for the results treated in this section is Clarke [15].

Denote by 〈x, y〉 the inner product of the points x, y ∈ Rn. The norm

of x is given by ‖x‖ = 〈x, x〉 1
2 . A function f : Rn → R is Lipschitz of rank
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K > 0 near a given point x ∈ Rn if there exists some ε > 0 such that:

|f(y)− f(z)| ≤ K‖y − z‖ for every y, z ∈ x + εB.

Here, B is the open unit ball in Rn. A function f is said to be locally Lipschitz
on X ⊂ Rn if f is Lipschitz near x for every x ∈ X.

Let f be Lipschitz near x ∈ Rn. The generalized directional derivative of
f at x in the direction v ∈ Rn, denoted by f ◦(x; v), is defined as follows:

f ◦(x; v) = lim sup
y→x
λ↓0

f(y + λv)− f(y)

λ
.

The generalized gradient of f at x, denoted by ∂f(x), is defined by:

∂f(x) = {ζ ∈ Rn | 〈ζ, v〉 ≤ f ◦(x; v) ∀v ∈ Rn}.

Note that ∂f(·) induces a set-valued mapping from Rn into itself and we
denote it by ∂f : Rn ⇒ Rn.

The set of points at which a given function f fails to be differentiable
is denoted by Ωf . Radenmacher’s theorem states that a Lipschitz function
on an open subset of Rn is differentiable almost everywhere on that subset.
Thus, if f is Lipschitz near x, then its generalized gradient is given by:

∂f(x) = co
{

lim
ν→∞

∇f(xν) | xν → x, xν 6∈ N ∪ Ωf , ν = 1, 2, . . .
}

,

where ∇f(xν) is the gradient of f at xν , N is any set of Lebesgue measure
0 in Rn and the convex hull is taken over all limit points ∇f(xν) for which
{xν} is any sequence converging to x while avoiding the set N ∪Ωf and such
that ∇f(xν) converges.

Let F : Rn → Rm be a vector-valued function, written in terms of com-
ponent functions as F (x) = (f1(x), . . . , fm(x)) such that each fi (and hence
F ) is Lipschitz near a given point x ∈ Rn. Denote by JF (y) the m × n-
Jacobian matrix of partial derivatives whenever y ∈ Rn is a point at which
the partial derivatives exist and by ΩF the complement of the set of all such
points. The generalized Jacobian of F at x, denoted by ∂F (x), is defined by:

∂F (x) = co
{

lim
ν→∞

JF (xν) | xν → x, xν 6∈ ΩF , ν = 1, 2, . . .
}

.

The meaning of the convex hull is similar as above. It follows that:

∂F (x) ⊂ ∂f1(x)× · · · × ∂fm(x),
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where the right-hand side of the inclusion denotes the set of all matrices
whose i th row belongs to ∂fi(x) for each i.

The half-open interval [0,∞) of the real line is equipped with the σ-
algebra L of Lebesgue measurable subsets of [0,∞). Denote the product
of the σ-algebra of L and the σ-algebra Bn ×Bm of Borel subsets of the
product space Rn × Rm by L ×Bn ×Bm.

The t-section of a subset Ω of [0,∞) × Rn is denoted by Ω(t), that is,
Ω(t) = {x ∈ Rn | (t, x) ∈ Ω} for t ∈ [0,∞).

For later use, we present the following result.

Theorem 2.1. (i) Let Ω be an L ×Bn-measurable subset of [0,∞)×Rn.
If f : Ω → R is an L × Bn-measurable function such that f(t, · ) is
locally Lipschitz on Ω(t) for every t ∈ [0,∞), then ∂xf : Ω ⇒ Rn is
L ×Bn-measurable.

(ii) Let x0 ∈ Rn and ε > 0 be given. If f : (x0 + εB) × Rm → R is upper
semicontinuous and f( · , y) is Lipschitz on x0 + εB for every y ∈ Rm,
then ∂xf : (x0 + εB)× Rm ⇒ Rn is upper semicontinuous.

Proof. (i) Since f is L × Bn-measurable, it follows from the definition of
the generalized directional derivative that f ◦x(t, x; v) can be obtained as the
pointwise limit of the supremum of a countable family of continuous func-
tions, and, hence, f ◦x is an L ×Bn ×Bn-measurable function on Ω × Rn.
Note that ∂xf is scalarly measurable; namely, ∂xf is compact convex-valued,
f ◦x(t, x; · ) is the support function of ∂xf(t, x) in the sense that:

f ◦x(t, x; v) = max{〈ζ, v〉 | ζ ∈ ∂xf(t, x)},
(see Clarke [15, Proposition 2.1.2]) and f ◦x is a sublinear Carathéodory func-
tion, that is, f ◦x( · , · ; v) is L ×Bn-measurable for every v ∈ Rn and f ◦x(t, x; · )
is continuous and sublinear for every (t, x) ∈ Ω (see Clarke [15, Proposition
2.1.1]). Then, the measurability of ∂xf follows from its scalar measurability
(see Aliprantis and Border [1, Theorem 18.32]).

(ii) Choose any 0 < ε′ < ε and put η = ε − ε′. Then, {x + ηB |
x ∈ x0 + ε′B} is an open covering of x0 + ε′B whose union is x0 + εB.
Let S be the set of unit vectors in Rn. We claim that the function gη :
(x0 + (ε− η)B)× Rm × S → R defined by

gη(x, y, v) = sup
x′∈x+ηB
0<λ<η

f(x′ + λv, y)− f(x′, y)

λ

is upper semicontinuous. To this end, note first that the supremum is finite
because of the Lipschitz continuity of f( · , y). Define the set-valued mapping
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Γη : (x0 + (ε− η)B)× Rm × S ⇒ Rn × R by Γη(x, y, v) = (x + ηB)× (0, η).
Then, gη is the marginal function of the upper semicontinuous function:

(x′, y, v, λ) 7→ f(x′ + λv, y)− f(x′, y)

λ
,

on (x0 + (ε − η)B) × Rm × S × (0, η) maximized over (x′, λ) ∈ Γη(x, y, v).
Note that Γη is upper semicontinuous and relatively compact-valued. Then,
applying the maximum theorem and noticing that its proof is valid even if
Γη is not compact-valued but relatively compact-valued, gη is upper semi-
continuous (see Aubin and Frankowska [5, Theorem 1.4.16]). Since this is
true for every 0 < η < ε and gη is nondecreasing in η, the pointwise in-
fimum inf0<η<ε gη(x, y, v) of {gη} is upper semicontinuous on x0 + εB, but
the infimum coincides with f ◦x(x, y; v) by definition. Therefore, f ◦x is upper
semicontinuous on (x0 + εB) × Rm × S. From the fact that the function
v 7→ f ◦x(x, y; v) is finite and positively homogeneous (see Clarke [15, Proposi-
tion 2.1.1]), it follows that f ◦x is upper semicontinuous on (x0+εB)×Rm×Rn.
Henceforth, the upper semicontinuity of f ◦x( · , · ; v) is equivalent to that of the
set-valued mapping ∂xf because ∂xf is compact convex-valued and f ◦x(x, y; · )
is the support function of ∂xf(x, y) (see Aliprantis and Border [1, Theorem
17.41]).

3 Necessary Condition for Optimality

We are given L ×Bn×Bm-measurable functions L : [0,∞)×Rn×Rm → R
and f : [0,∞)×Rn×Rm → Rn, an L×Bn-measurable subset Ω of [0,∞)×Rn

and a set-valued mapping U : [0,∞) ⇒ Rm with the L ×Bm-measurable
graph. An ε-tube about the continuous function x : [0,∞) → Rn is a set of
the form:

T (x(·); ε) = {(t, x) ∈ [0,∞)× Rn | x ∈ x(t) + εB},

with ε > 0.
The optimal control problem under investigation is the following:

min J(x(·), u(·)) :=

∫ ∞

0

L(t, x(t), u(t))dt

s.t. ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [0,∞),

x(0) = x0,

x(t) ∈ Ω(t) for every t ∈ [0,∞),

u(t) ∈ U(t) a.e. t ∈ [0,∞).

(P)
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Here, the minimization is taken over all locally absolutely continuous func-
tions (arcs) x : [0,∞) → Rn and L -measurable functions u : [0,∞) → Rm

satisfying the control system for the problem (P).
Because the objective integral functional with an infinite horizon admits

its values to be infinite, there are several criteria for optimality (see, for
example, Feinstein and Luenberger [20], Halkin [23], Kamihigashi [24], Seier-
stadt and Sydsæter [32], Takekuma [34]). For simplicity, we restrict ourselves
to the class of pairs (x(·), u(·)) of functions for which the improper integral
converges, as in Aseev and Kryaziimskiy [3], Aubin and Clarke [4], Michel
[26], Pontryagin et al. [28] and Ye [38].

A process on a given subinterval I of [0,∞) is a pair (x(·), u(·)) of func-
tions on I of which x : I → Rn is a locally absolutely continuous function
and u : I → Rm is a measurable function such that the control system for
(P) with I in place of [0,∞) and the initial condition x(t) = x0, where t is
the left endpoint of I, is satisfied. A process (x(·), u(·)) on I is admissible if
the integrand L( · , x(·), u(·)) is integrable on I. A process on I is minimizing
if it minimizes the value of the integral functional

∫
I
Ldt over all admissible

processes on I. When I = [0,∞), we shall abbreviate the domain on which
processes are defined. In this section, (x0(·), u0(·)) is taken to be a fixed
minimizing process on [0,∞) for (P).

We define the value function V : Ω → R ∪ {±∞} by:

V (t, x) = inf

{∫ ∞

t

L(s, x(s), u(s))ds

}
,

where the infimum is taken over all admissible processes (x(·), u(·)) on [t,∞)
for which x(t) = x ∈ Ω(t). When no such admissible processes exist, the
value is supposed to be +∞, as usual.

3.1 Maximum Principle with an Infinite Horizon

The basic hypotheses to derive necessary conditions for optimality are as
follows.

Hypothesis 3.1. (i) L( · , x, · ) is measurable for every x ∈ Rn and L(t, · , u)
is Lipschitz of rank kL(t) on Ω(t) for every (t, u) ∈ graph (U) with kL

an integrable function.

(ii) There exists an integrable function ϕ on [0,∞) such that |L(t, x0(t), u)| ≤
ϕ(t) for every (t, u) ∈ graph (U).

(iii) f( · , x, · ) is measurable for every x ∈ Rn and f(t, · , u) is Lipschitz
of rank kf (t) on Ω(t) for every (t, u) ∈ graph (U) with kf a locally
integrable function.
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(iv) The function k on [0,∞) given by k(t) := kL(t) exp(
∫ t

0
kf (s)ds) is inte-

grable.

(v) There exists an ε-tube about x0(·) contained in Ω such that V (t, · ) is
Lipschitz of rank K on x0(t) + εB for every t ∈ [0,∞).

The Lipschitz continuity of the value function in the condition (v) of the
hypothesis is nonstringent because, as seen in Appendix A, the condition is
implied from the hypothesis guaranteeing the existence of minimizing pro-
cesses for every initial condition. In particular, when Ω = [0,∞) × Rn, it
is redundant because it is obtained from other conditions (i) to (iv) of the
hypothesis.

The Pontryagin (or pseudo) Hamiltonian HP and the (true) Hamiltonian
H for (P) are given respectively by:

HP (t, x, u, p) = 〈p, f(t, x, u)〉 − L(t, x, u),

and
H(t, x, p) = sup

u∈U(t)

{〈p, f(t, x, u)〉 − L(t, x, u)}.

Theorem 3.1. Suppose that Hypothesis 3.1 is satisfied. Then, there exists
a locally absolutely continuous function p : [0,∞) → Rn with the following
properties.

(i) −ṗ(t) ∈ ∂xHP (t, x0(t), u0(t), p(t)) a.e. t ∈ [0,∞).

(ii) HP (t, x0(t), u0(t), p(t)) = H(t, x0(t), p(t)) a.e. t ∈ [0,∞).

(iii) −p(t) ∈ ∂xV (t, x0(t)) a.e. t ∈ [0,∞).

(iv) −p(0) ∈ ∂xV (0, x0(0)).

It should be noted that the adjoint inclusion in the maximum principle
is sometimes relevant to the (true) Hamiltonian. (See Corollary 4.1 and
Theorems 5.1 and 5.2 in the sequel or Clarke [16].) The following result is a
weaker form of Theorem 3.1.

Corollary 3.1. The condition (i) of Theorem 3.1 implies that:

−ṗ(t) ∈ ∂xH(t, x0(t), p(t)) a.e. t ∈ [0,∞).

Proof. It suffices to show that:

∂xHP (t, x0(t), u0(t), p(t)) ⊂ ∂xH(t, x0(t), p(t)) a.e. t ∈ [0,∞).
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Let t ∈ [0,∞) be any point at which the condition (ii) of Theorem 3.1 is
true. Define the Lipschitz functions on Ω(t) by hP (x) = HP (t, x, u0(t), p(t))
and h(x) = H(t, x, p(t)). Then, hP (x) ≤ h(x) for every x ∈ Rn with equality
at x = x0(t). It follows from the definition of the generalized directional
derivative that:

h◦P (x0(t); v) = lim sup
x→x0(t)

λ↓0

hP (x + λv)− hP (x)

λ

≤ lim sup
x→x0(t)

λ↓0

[
h(x + λv)− h(x)

λ
+

h(x)− hP (x)

λ

]
= h◦(x0(t); v)

for every v ∈ Rn. Since the generalized directional derivatives are support
functions of the generalized gradients (see Clarke [15, Proposition 2.1.2]), the
above inequality is equivalent to the inclusion ∂hP (x0(t)) ⊂ ∂h(x0(t)). (See
Clarke [15, Proposition 2.1.4].)

Theorem 3.1 does not exclude the possibility that −p(t) 6∈ ∂xV (t, x0(t))
for every t in the null set of [0,∞). The question naturally arises whether
this null set can be eliminated in special circumstances. The proof of the
following result is the same as that of Clarke and Vinter [17].

Corollary 3.2. The condition (iii) of Theorem 3.1 can be strengthened to:

−p(t) ∈ ∂xV (t, x0(t)) for every t ∈ [0,∞),

if (i) ∂xV ( · , x0(·)) : [0,∞) ⇒ Rn is upper semicontinuous; or (ii) Ω(t) is
convex for every t ∈ [0,∞) and V (t, · ) is a convex function on Ω(t) for every
t ∈ [0,∞).

3.2 Auxiliary Result

Theorem 3.1 can be proven by extending the necessary condition for the
finite horizon case provided by Clarke and Vinter [17] to the infinite horizon
case. To this end, we introduce a perturbed infinite-horizon optimal control
problem with free left endpoints and deduce the maximum principle for it.
The adjoint variable of the finite horizon problem restricted to the arbitrarily
fixed finite interval [0, T ] is extended to [0,∞) as T →∞ by making use of the
diagonalization method based on the equicontinuity of the relevant sequence
of adjoint variables.
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3.2.1 Perturbed Problem

Fix ε > 0 such that the ε-tube about x0(·) is contained in Ω given in Hy-
pothesis 3.1(v). A triplet (x(·), u(·), v(·)) of functions on [0,∞) is called a
perturbed process if it satisfies the perturbed control system:

ẋ(t) = f(t, x(t), u(t)) + v(t) a.e. t ∈ [0,∞),

x(t) ∈ x0(t) + εB for every t ∈ [0,∞),

u(t) ∈ U(t) a.e. t ∈ [0,∞),

v(t) ∈ B a.e. t ∈ [0,∞).

Here, an L -measurable function v : [0,∞) → Rn is viewed as a new control
function.

Define the function σε : [0,∞)× Rn → R by:

σε(t, v) = max{〈p, v〉 | p ∈ ∂xV (t, x0(t) + εB̄)}.

Here, B̄ is the closure of B. Since ∂xV (t, · ) is compact-valued and upper
semicontinuous (see Clarke [15, Proposition 2.1.1]), ∂xV (t, x0(t) + εB̄) is
compact for every t ∈ [0,∞). Therefore, the maximum in the above is
indeed attained.

Lemma 3.1. (i) σε is L ×Bn-measurable and σε(t, · ) is continuous for
every t ∈ [0,∞);

(ii) σε( · , v(·)) is locally integrable on [0,∞) if v(·) is locally integrable on
[0,∞).

Proof. (i) Since V is continuous on T (x0(·); ε) by Theorem A.1 and V (t, · )
is Lipschitz on x0(t) + εB for every t ∈ [0,∞) by Hypothesis 3.1(v), we can
apply Theorem 2.1(i) and noting that the t-section of T (x0(·); ε) is x0(t)+εB.
Thus, ∂xV is L ×Bn-measurable on T (x0(·); ε), and, hence, the set-valued
mapping Σ defined by Σ(t) = ∂xV (t, x0(t) + εB̄) is L -measurable. Since
σε(t, · ) is the support function of Σ(t), the measurability of σε follows from
that of Σ. The continuity of σε(t, · ) follows from the fact that Σ(t) is compact
in Rn for every t ∈ [0,∞).

(ii) Since V (t, · ) is Lipschitz of rank K on x0(t)+εB for every t ∈ [0,∞),
we have max{‖p‖ | p ∈ Σ(t)} ≤ K (see Clarke [15, Proposition 2.1.2]).
Thus, if v(·) is locally integrable on [0,∞), then |σε(t, v(t))| ≤ K‖v(t)‖ for
a.e. t ∈ [0,∞). Therefore, σε( · , v(·)) is locally integrable.

The following result is an obvious extension of Clarke and Vinter [17,
Lemma 8.4].
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Lemma 3.2. If (x(·), u(·), v(·)) is a perturbed process, then:

∫ t

0

L(s, x(s), u(s))ds +

∫ t

0

σε(s,−v(s))ds− V (0, x(0)) ≥ 0,

for every t ∈ [0,∞) with the equality at (x0(·), u0(·), v(·) ≡ 0).

Consider the following perturbed infinite-horizon optimal control problem
with free left endpoints:

min

∫ ∞

0

L(t, x(t), u(t))dt +

∫ ∞

0

σε(t,−v(t))dt− V (0, x(0))

s.t. ẋ(t) = f(t, x(t), u(t)) + v(t) a.e. t ∈ [0,∞),

x(t) ∈ x0(t) + εB for every t ∈ [0,∞),

u(t) ∈ U(t) a.e. t ∈ [0,∞),

v(t) ∈ B a.e. t ∈ [0,∞).

(Pε)

Here, u(·) and v(·) are control functions and x(·) is a state function. Note
that, by Hypothesis 3.1, for every perturbed process (x(·), u(·), v(·)), we have:

|L(t, x(t), u(t))− L(t, x0(t), u0(t))|
≤ |L(t, x(t), u(t))− L(t, x0(t), u(t))|+ |L(t, x0(t), u(t))− L(t, x0(t), u0(t))|
≤ kL(t)‖x(t)− x0(t)‖+ 2ϕ(t)

≤ εkL(t) + 2ϕ(t),

a.e. t ∈ [0,∞). Thus, the improper integral
∫∞

0
Ldt converges over all per-

turbed process. A perturbed process is admissible for the problem (Pε) if the
improper integral

∫∞
0

σεdt converges. A minimizing process for (Pε) is a per-
turbed process that minimizes the objective integral functional of (Pε) over
all admissible process. By Lemma 3.2, (x0(·), u0(·), v(·) ≡ 0) is a minimizing
process for (Pε).

3.2.2 Necessary Condition for the Perturbed Problem

Let l : Rn → R be locally Lipschitz. Consider the following free left and right
endpoint infinite-horizon problem:

min l(x(0)) +

∫ ∞

0

L(t, x(t), u(t))dt

s.t. ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [0,∞),

x(t) ∈ Ω(t) for every t ∈ [0,∞),

u(t) ∈ U(t) a.e. t ∈ [0,∞).

(Q∞)
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We say that a process is admissible for the problem (Q∞) if the improper
integral

∫∞
0

Ldt converges.
A necessary condition for (Pε) is obtained from that for the more general

problem (Q∞). While the following result was exploited by Ye [38] with
a sketchy outline of the proof, the suggested proof requires an adequate
diagonalization method. For completeness, we render an alternative proof.
(The compactness argument in Step 3 in the sequel is where we depart from
the argument by Ye [38].)

Theorem 3.2. Let (x0(·), u0(·)) be a minimizing process for (Q∞) with Hy-
pothesis 3.1. Then, there exists a locally absolutely continuous function
p : [0,∞) → Rn such that

(i) −ṗ(t) ∈ ∂xHP (t, x0(t), u0(t), p(t)) a.e. t ∈ [0,∞),

(ii) HP (t, x0(t), u0(t), p(t)) = H(t, x0(t), p(t)) a.e. t ∈ [0,∞),

(iii) p(0) ∈ ∂l(x0(0)).

Proof. [Step 1]: Let T ∈ [0,∞) be given arbitrarily. Consider the truncated
problem:

min l(x(0)) +

∫ T

0

L(t, x(t), u(t))dt

s.t. ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [0, T ],

x(T ) = x0(T ),

x(t) ∈ Ω(t) for every t ∈ [0, T ],

u(t) ∈ U(t) a.e. t ∈ [0, T ].

(QT )

It follows from the Bellman principle of optimality that the minimizing pro-
cess (x0(·), u0(·)) for (Q∞) restricted to the interval [0, T ] is a minimizing
process for the problem (QT ) as well. To show this, suppose to the contrary
that (x0(·), u0(·)) is not a minimizing process for (QT ). Then, there exists
an admissible process (x(·), u(·)) for (QT ) such that:

l(x(0)) +

∫ T

0

L(t, x(t), u(t))dt < l(x0(0)) +

∫ T

0

L(t, x0(t), u0(t))dt.

Let x̂ : [0,∞) → Rn be a locally absolutely continuous function such that
x̂(t) = x(t) for t ∈ [0, T ) and x̂(t) = x0(t) for t ∈ [T,∞) and let û : [0,∞) →
Rm be a measurable function defined by û(t) = u(t) for t ∈ [0, T ) and
û(t) = u0(t) for t ∈ [T,∞). By construction, (x̂(·), û(·)) is an admissible
process for (Q∞) satisfying:

l(x̂(0)) +

∫ ∞

0

L(t, x̂(t), û(t))dt < l(x0(0)) +

∫ ∞

0

L(t, x0(t), u0(t))dt,

12



contradicting the minimality of (x0(·), u0(·)) for (Q∞).
While the truncated problem (QT ) is a free left endpoint problem with

fixed right endpoint x0(T ), by reversing the elapse of time, the problem
can be readily transformed into a free right endpoint problem with fixed left
endpoint x0(T ) (simply replace t with T −t). Therefore, the multiplier in the
Hamiltonian attached to L in (QT ) can be normalized to 1. By the nonsmooth
maximum principle (see Clarke [15, Theorem 5.2.1]; Vinter [37, Theorem
6.2.1]), there exists an absolutely continuous function pT : [0, T ] → Rn such
that

(a) −ṗT (t) ∈ ∂xHP (t, x0(t), u0(t), p
T (t)) a.e. t ∈ [0, T ],

(b) HP (t, x0(t), u0(t), p
T (t)) = H(t, x0(t), p

T (t)) a.e. t ∈ [0, T ],

(c) pT (0) ∈ ∂l(x0(0)).

[Step 2]: By the finite sum formula for generalized gradients (see Clarke
[15, Proposition 2.3.3]), we have from the condition (a) that:

−ṗT (t) ∈ ∂xf(t, x0(t), u0(t))
∗pT (t)− ∂xL(t, x0(t), u0(t)) a.e. t ∈ [0, T ],

where ∂xf(t, x0(t), u0(t))
∗ denotes the transpose of the generalized Jacobian

∂xf(t, x0(t), u0(t)). Denote f in terms of the component functions such that
f = (f1, . . . , fn). Since (t, x) 7→ fi(t, x, u0(t)) and (t, x) 7→ L(t, x, u0(t)) are
measurable functions on Ω satisfying the conditions of Theorem 2.1(i), there
exist measurable selections AT (·) and aT (·) satisfying:

AT (t) ∈ (∂xf1(t, x0(t), u0(t))× · · · × ∂xfn(t, x0(t), u0(t)))
∗

for every t ∈ [0, T ] with AT (t) an n× n-matrix and

aT (t) ∈ ∂xL(t, x0(t), u0(t)) for every t ∈ [0, T ]

with aT (t) an vector in Rn such that:

−ṗT (t) = AT (t)pT (t)− aT (t) a.e. t ∈ [0, T ].

(See Clarke [15, Theorem 3.1.1].) Then, the solution pT (·) to the linear
differential equation system is given by:

pT (t) = ST (t, 0)pT (0)−
∫ t

0

ST (t, s)aT (s)ds for every t ∈ [0, T ], (3.1)

where ST is the fundamental matrix of the system ż(t) = AT (t)z(t) defined
by

d

dt
ST (t, s) = AT (t)ST (t, s), ST (s, s) = I for every s, t ∈ [0, T ], (3.2)
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and I is the n × n-identity matrix. Because ‖AT (t)‖ ≤ kf (t) for every
t ∈ [0, T ] by Hypothesis 3.1(iii), it follows from Gronwall’s inequality that:

‖ST (t, s)‖ ≤ exp

(∫ t

s

kf (τ)dτ

)
for 0 ≤ s ≤ t ≤ T .

Thus, by combining (3.1) and (3.2), we have:

‖ṗT (t)‖ =
∥∥ d

dt
ST (t, 0)pT (0) + aT (t)

∥∥
≤ ‖pT (0)‖‖AT (t)‖‖ST (t, 0)‖+ ‖aT (t)‖

≤ Klkf (t) exp

(∫ t

0

kf (s)ds

)
+ kL(t) =: ψ(t),

(3.3)

a.e. t ∈ [0, T ], where Kl is a Lipschitz bound of l near x0(0). Since ψ is
locally integrable on [0,∞) by Hypothesis 3.1(i), (iii) and (iv), we have:

‖pT (t)‖ ≤ ‖pT (0)‖+

∫ t

0

‖ṗT (s)‖ds ≤ Kl +

∫ t

0

ψ(s)ds (3.4)

for every t ∈ [0, T ].
[Step 3]: Note that, for each k = 1, 2, . . . , the sequence {pν(·)}ν≥k is

bounded in the sup norm and equicontinuous on [0, k] by (3.3) and (3.4). By
the Ascoli–Arzela theorem, there exists a subsequence {pν1(·)} of {pν(·)}ν≥1

that converges uniformly on [0, 1] to p1(·). Since the sequence {ṗν1(·)} is
bounded in L1([0, 1];Rn) and uniformly integrable on [0, 1] by (3.3), we then
invoke the Dunford–Pettis criterion to extract a subsequence of {ṗν1(·)} that
converges weakly to α(·) in L1([0, 1];Rn). Thus:

pν1(t) = pν1(0) +

∫ t

0

ṗν1(s)ds → p1(0) +

∫ t

0

α(s)ds = p1(t),

for every t ∈ [0, 1], and, hence, p1 : [0, 1] → Rn is absolutely continuous. Sim-
ilarly, there exists a subsequence {pν2(·)} of {pν1(·)} that converges uniformly
on [0, 2] to an absolutely continuous function p2 : [0, 2] → Rn. Continuing
in this way, for each k = 1, 2, . . . , we can extract a subsequence {pνk(·)} of
{pνk−1(·)} converging uniformly on [0, k] to an absolutely continuous function
pk : [0, k] → Rn. Note that, by construction, pk(t) = pk+1(t) for t ∈ [0, k].

Define the locally absolutely continuous function p : [0,∞) → Rn by:

p(t) = pk(t) for t ∈ [0, k].

Then, p(·) is well-defined and for every compact interval I of [0,∞), the
restriction p(·) to I is the uniform limit of a subsequence (which possibly
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depends on I) of {pν(·)} restricted to I. By construction of p(·), we have
ṗ(t) ≤ ψ(t) a.e. t ∈ [0,∞) and ‖p(t)‖ ≤ Kl +

∫ t

0
ψ(s)ds for every t ∈ [0,∞).

[Step 4]: Define the set-valued mapping Σ : [0,∞)× Rn → Rn by:

Σ(t, p) = ∂xHP (t, x0(t), u0(t), p).

By Hypothesis 3.1(i) and (iii), (x, p) 7→ HP (t, x, u0(t), p) is a continuous
function on (x0(t) + εB)×Rn for every t ∈ [0,∞) and satisfies the condition
of Theorem 2.1(ii). Thus, Σ(t, · ) is upper semicontinuous on Rn for every
t ∈ [0,∞). Note also that Σ is L × Bn-measurable by Theorem 2.1(i)
and compact convex-valued. Therefore, Σ(t, · ) satisfies property (Q) and,
hence, property (K) a.e. t ∈ [0,∞) (see Cesari [14, Theorem 8.5.4]). As
demonstrated above, there exists a locally absolutely continuous function
p : [0,∞) → Rn such that for each k = 1, 2, . . . , there exists a subsequence
{pν(·)} (which we do not relabel) such that ṗν(t) ∈ Σ(t, pν(t)) a.e. t ∈ [0, k]
for each ν, pν(·) converges uniformly to p(·) on [0, k] and ṗν(·) converges
weakly to ṗ(·) in L1([0, k];Rn). Therefore, by the closure theorem of Cesari
(see Cesari [14, Theorem 10.6.i]; or one can apply Clarke [15, Theorem 3.1.7]),
we have ṗ(t) ∈ Σ(t, p(t)) a.e. t ∈ [0, k] for each k. Henceforth, the condition
(i) of the theorem is satisfied.

Since HP is linear with respect to p, taking the limit along a suitable
subsequence (we do not relabel it) in the inequality that follows from the
condition (b):

HP (t, x0(t), u, pν(t)) ≤ HP (t, x0(t), u0(t), p
ν(t))

for every u ∈ U(t) a.e. t ∈ [0, ν], yields:

HP (t, x0(t), u, p(t)) ≤ HP (t, x0(t), u0(t), p(t)),

for every u ∈ U(t) a.e. t ∈ [0,∞), which is the condition (ii) of the theorem.
The condition (iii) of the theorem follows from the condition (c) and the

compactness of ∂l(x0(0)) with pν(0) → p(0) in ∂l(x0(0)) along a subsequence.

3.3 Proof of Theorem 3.1

Now, back to the necessary condition for (Pε). Since (x0(·), u0(·), v(·) ≡ 0)
is a minimizing process for (Pε) by Lemma 3.2, it follows from Theorem 3.2
that there exists a locally absolutely continuous function pε : [0,∞) → Rn

such that

(1) −ṗε(t) ∈ ∂xHP (t, x0(t), u0(t), pε(t)) a.e. t ∈ [0,∞),
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(2) HP (t, x0(t), u0(t), pε(t)) = H(t, x0(t), pε(t)) a.e. t ∈ [0,∞),

(3) max
v∈B

{〈pε(t), v〉 − σε(t,−v)} = 0 a.e. t ∈ [0,∞),

(4) −pε(0) ∈ ∂xV (0, x0(0)).

Since ‖ṗε(t)‖ ≤ ψ(t) a.e. t ∈ [0,∞) and ‖pε(t)‖ ≤ K +
∫ t

0
ψ(s)ds for

every t ∈ [0,∞) with ψ(t) = Kkf (t) exp(
∫ t

0
kf (s)ds) + kL(t), where K is the

Lipschitz bound of V (0, · ) given in Hypothesis 3.1(v). Thus, the net {pε(·)} is
an equicontinuous family of locally absolutely continuous functions on [0,∞)
and, hence, the similar diagonalization process as in Step 3 of the proof
of Theorem 3.2 yields: there exists a locally absolutely continuous function
p : [0,∞) → Rn such that, for every compact subset I of [0,∞), the net
{pε(·)} contains a subnet (which we do not relabel) such that pε(·) converges
uniformly to p(·) on I and ṗε(·) converges weakly to ṗ(·) in L1(I;Rn) as
ε → 0. Therefore, by taking the limits in the conditions (1), (2) and (4)
along a suitable subnet as in Step 4 of the proof of Theorem 3.2, at the limit,
we obtain the conditions (i), (ii) and (iv) of the theorem.

Finally, we investigate the implication of the condition (3) according to
the argument by Clarke and Vinter [17]. Take a point t ∈ [0,∞) at which
(3) is true. Then:

−pε(t) ∈ co ∂xV (t, x0(t) + εB̄) =: Πε(t),

for otherwise −pε(t) and the closed convex set Πε(t) can be strictly separated,
i.e., there exists a vector v in B such that:

〈pε(t), v〉 > max{−〈p, v〉 | p ∈ Πε(t)} = σε(t,−v)

in contradiction of (3). Thus, −pε(t) ∈ Πε(t) a.e. t ∈ [0,∞) and passing to
the limit along a subnet yields:

−p(t) ∈
⋂
ε>0

co ∂xV (t, x0(t) + εB̄) a.e. t ∈ [0,∞). (3.5)

We claim that the condition (iii) of the theorem:

−p(t) ∈ ∂xV (t, x0(t)) a.e. t ∈ [0,∞),

holds. Otherwise, we can strictly separate the point −p(t) and the closed
convex set ∂xV (t, x0(t)), i.e., there exists v ∈ Rn and δ > 0 such that:

−〈p(t), v〉 − δ > max{〈p, v〉 | p ∈ ∂xV (t, x0(t))} = V ◦(t, x0(t); v).
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Since the generalized partial derivative V ◦(t, · ; · ) is upper semicontinuous
(see Clarke [15, Proposition 2.1.1]):

−〈p(t), v〉 − 1
2
δ > V ◦(t, x; v),

whenever x ∈ x0(t) + εB ⊂ Ω for some ε > 0. Then:

−〈p(t), v〉 − 1
2
δ > sup{〈p, v〉 | p ∈ ∂xV (t, x0(t) + εB̄)}

= max{〈p, v〉 | p ∈ co ∂xV (t, x0(t) + εB̄)}.

But this implies that:

−p(t) 6∈ co ∂xV (t, x0(t) + εB̄),

in contradiction of (3.5). Therefore, the condition (iii) of the theorem is true.
This completes the proof of Theorem 3.2.

4 Sufficient Conditions for Optimality

We now turn for the important issue of sufficient conditions ; that is, condi-
tions that assure that a given admissible process is in fact an optimal solution
of the problem.

4.1 Sufficiency Theorems

Definition 4.1. An admissible process (x0(·), u0(·)) for (P) is locally mini-
mizing in T (x0(·); ε) if there exists some ε > 0 such that (x0(·), u0(·)) min-
imizes the functional J(x(·), u(·)) over all admissible processes (x(·), u(·))
satisfying x(t) ∈ x0(t) + εB for every t ∈ [0,∞).

Note that, if ε = +∞, then (x0(·), u0(·)) is a minimizing process for (P).

Hypothesis 4.1. (i) L(t, · , · ) is lower semicontinuous on Ω(t) × U(t) for
every t ∈ [0,∞).

(ii) f(t, · , · ) is continuous on Ω(t)× U(t) for every t ∈ [0,∞).

(iii) U(t) is closed for every t ∈ [0,∞) and graph (U) is L ×Bm-measurable.

(iv) For every t ∈ [0,∞) and for every bounded subset Z of Rn × Rn, the
set:

{u ∈ U(t) | ∃(x, v) ∈ Z : f(t, x, u) = v},
is bounded.

17



The following result is an extension of Zeidan [40] to the infinite horizon
case.

Theorem 4.1. Suppose that Hypothesis 4.1 is satisfied. Let (x0(·), u0(·))
be an admissible process for (P) such that there exist a locally absolutely
continuous function p : [0,∞) → Rn, a locally absolutely continuous n × n-
symmetric matrix-valued function P on [0,∞) and some ε > 0 with the
following properties.

(i) For a.e. t ∈ [0,∞) and for every v ∈ εB and u ∈ U(t):

HP (t, x0(t) + v, u, p(t)− P (t)v)

≤ HP (t, x0(t), u0(t), p(t))− 〈ṗ(t) + P (t)ẋ0(t), v〉+ 1
2
〈v, Ṗ (t)v〉.

(ii) For every η > 0, there exists some t0 ∈ [0,∞) such that:

1
2
〈v, P (t)v〉 < 〈p(t), v〉+ η for every v ∈ εB and t ∈ [t0,∞).

Then, (x0(·), u0(·)) is a locally minimizing process in T (x0(·); ε) for (P).

Note that the condition (i) of the theorem implies the condition (ii) of
Theorem 3.1. When ε = +∞ and the matrix-valued function P in the
theorem happens to be identically the zero matrix, the condition (i) of the
theorem reduces to the supergradient inequality for H:

H(t, x0(t) + v, p(t))−H(t, x0(t), p(t)) ≤ −〈ṗ(t), v〉, (4.1)

for every v ∈ Rn. The condition (4.1) is imposed by Feinstein and Luenberger
[20] to obtain the sufficiency result. This is, of course, satisfied if H(t, x, p(t))
is concave in x for every t ∈ [0,∞). Thus, the condition (i) of the theorem
can be viewed as a strengthening of the necessary conditions (i) and (ii) of
Theorem 3.1 under the convexity hypothesis.

If P (t) is negative semidefinite for every t ∈ [0,∞) and limt→∞ p(t) = 0,
then the condition (ii) of the theorem is satisfied. On the other hand, if P = 0,
then the condition (ii) of the theorem is equivalent to the transversality
condition at infinity:

lim
t→∞

p(t) = 0. (4.2)

For the finite horizon case, sufficient conditions for optimality were given
by Mangasarian [25] under the hypothesis that the Hamiltonian HP is con-
cave and differentiable in (x, u), whose result was extended by Seierstadt
and Sydsæter [32] to the infinite horizon case. Thus, the above observation
leads to an extension of the Mangasarian sufficiency theorem with an infinite
horizon as follows.
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Corollary 4.1. Suppose that Hypothesis 4.1 is satisfied. Let (x0(·), u0(·))
be an admissible process for (P) and p : [0,∞) → Rn be a locally absolutely
continuous function with the following properties.

(i) H(t, · , p(t)) is concave on Rn for every t ∈ [0,∞).

(ii) −ṗ(t) ∈ ∂xH(t, x0(t), p(t)) a.e. t ∈ [0,∞).

(iii) HP (t, x0(t), u0(t), p(t)) = H(t, x0(t), p(t)) a.e. t ∈ [0,∞).

(iv) lim
t→∞

p(t) = 0.

Then, (x0(·), u0(·)) is a minimizing process for (P).

For the derivation of the transversality condition (4.2) as a necessary
condition for optimality, see Aseev and Kryaziimskiy [3] and Michel [26] for
the smooth case and Ye [38] for the nonsmooth case.

Consider the following transversality condition at infinity:

lim
t→∞

〈p(t), x(t)− x0(t)〉 ≥ 0, (4.3)

for every admissible arc for (P). To obtain the sufficiency result, Seierstadt
and Sydsæter [32] imposed the condition (4.3) in addition to the conditions
(i) and (ii) of the corollary as well as the differentiability assumption on
(L, f) and Feinstein and Luenberger [20] assumed (4.3) for the nonsmooth
nonconcave Hamiltonians along with the condition (4.1).

Note that the condition (4.3) is implied by the condition (4.2) if every
admissible arc is bounded. However, (4.3) is difficult to check in practice
when admissible arcs are unbounded because it involves possible information
on the limit behavior of all admissible arcs. The condition (4.2) on its own
right needs no such information and improves upon (4.3). Its derivation as
a sufficient condition is novel in the literature.

Let V be an extension of the value function on Ω (which we do not relabel)
to [0,∞)×Rn given by V (t, x) = +∞ for (t, x) 6∈ Ω. We now provide a new
sufficient condition in terms of the adjoint inequality for the value function.

Theorem 4.2. Suppose that Hypothesis 4.1 is satisfied. Let (x0(·), u0(·))
be an admissible process for (P) such that there exist a locally absolutely
continuous function p : [0,∞) → Rn and a locally absolutely continuous n×n-
symmetric matrix-valued function P on [0,∞) with the following properties.

(i) For a.e. t ∈ [0,∞) and for every v ∈ Rn and u ∈ U(t):

HP (t, x0(t) + v, u, p(t)− P (t)v)

≤ HP (t, x0(t), u0(t), p(t))− 〈ṗ(t) + P (t)ẋ0(t), v〉+ 1
2
〈v, Ṗ (t)v〉.
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(ii) For every v ∈ Rn and t ∈ [0,∞):

V (t, x0(t))− 〈p(t) + P (t)x(t), v〉+ 1
2
〈v, P (t)v〉 ≤ V (t, x0(t) + v).

(iii) lim
t→∞

V (t, x0(t)) = 0.

Then, (x0(·), u0(·)) is a minimizing process for (P).

For the case in which P = 0 in the theorem, the condition (ii) of the
theorem reduces to the subgradient inequality for V (t, · ):

V (t, x0(t) + v)− V (t, x0(t)) ≥ −〈p(t), v〉,

for every v ∈ Rn. This is, indeed, satisfied if V (t, x) is convex in x for
every t ∈ [0,∞). Thus, the condition (ii) of the theorem can be viewed as a
strengthening of the adjoint inclusions (iii) and (iv) of Theorem 3.1.

While the role of the limit behavior of the value function at infinity in the
condition (iii) of the theorem is novel in optimal control theory, it is clarified
in the derivation of the sufficiency result for convex problems of calculus of
variations with an infinite horizon by Benveniste and Scheinkman [12] and
Takekuma [35].

4.2 Proof of Sufficiency Theorems

Let F : [0,∞) × Rn × Rn → R ∪ {+∞} be an L × Bn × Bn-measurable
function. Consider the problem of Lagrange in calculus of variations:

min J (x(·)) :=

∫ ∞

0

F (t, x(t), ẋ(t))dt, (L)

where the minimum is taken over all locally absolutely continuous functions
(arcs) x : [0,∞) → Rn satisfying the initial condition x(0) = x0. We say
that x(·) is an admissible arc if J (x(·)) is finite and the initial condition is
satisfied and that x0(·) is locally minimizing in T (x0(·); ε) for the problem
(L) if there exists some ε > 0 such that x0(·) minimizes J (x(·)) over all
admissible arcs x(·) satisfying x(t) ∈ x0(t) + εB for every t ∈ [0,∞). The
Hamiltonian for (L) is given by:

H (t, x, p) = sup
v∈Rn

{〈p, v〉 − F (t, x, v)}.

The sufficiency theorem for problems of Bolza due to Zeidan [39] is adapted
to the infinite horizon setting here.
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Theorem 4.3. Let x0(·) be an admissible arc for (L). Suppose that there exist
a locally absolutely continuous function p : [0,∞) → Rn, a locally absolutely
continuous n × n-symmetric matrix-valued function P on [0,∞) and some
ε > 0 with the following properties.

(i) For every v ∈ Rn and a.e. t ∈ [0,∞):

F (t, x0(t), ẋ0(t) + v)− F (t, x0(t), ẋ0(t)) ≥ 〈p(t), v〉.

(ii) For every v ∈ εB and a.e. t ∈ [0,∞):

H (t, x0(t) + v, p(t)− P (t)v)−H (t, x0(t), p(t))

≤ − 〈ṗ(t) + P (t)ẋ0(t), v〉+ 1
2
〈v, Ṗ (t)v〉.

(iii) For every η > 0, there exists some t0 ∈ [0,∞) such that:

1
2
〈v, P (t)v〉 < 〈p(t), v〉+ η for every v ∈ εB and t ∈ [t0,∞).

Then, x0(·) is a locally minimizing arc in T (x0(·); ε) for (L).

Proof. Under the conditions (i) and (ii) of the theorem, for every admissible
arc x(·) with x(t) ∈ x0(t) + εB for every t ∈ [0,∞):

〈p(t), x(t)− x0(t)〉 − 1
2
〈x(t)− x0(t), P (t)(x(t)− x0(t))〉

≤
∫ t

0

[F (t, x(s), ẋ(s))− F (s, x0(s), ẋ0(s))]ds.
(4.4)

(See Zeidan [39] or Clarke [15, Theorem 4.3.1].) Let η > 0 be given arbitrarily.
By the condition (iii) of the theorem and (4.4), we have:

∫ t

0

[F (t, x(s), ẋ(s))− F (s, x0(s), ẋ0(s))]dt > −η for every t ∈ [t0,∞).

Letting t → ∞ in this inequality gives J (x0(·)) ≤ J (x(·)) + η for every
admissible arc x(·) with x(s) ∈ x0(s) + εB for every s ∈ [0,∞). Hence, x0(·)
is locally minimizing in T (x0(·); ε) for (L).

Define the function F : [0,∞)× Rn × Rn → R ∪ {+∞} by:

F (t, x, v) = inf{L(t, x, u) | u ∈ U(t) : f(t, x, u) = v}. (4.5)

(Note that the infimum over the empty set is taken to be +∞.) An estab-
lished technique for transforming the problem of optimal control (P) into
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that of calculus of variations (L) is available here (see Rockafeller [30, 31]).
It is based on the observation that the Hamiltonian H for (P) coincides with
the Hamiltonian H for (L) on Ω. Indeed:

sup
v∈Rn

{〈p, v〉 − F (t, x, v)}

= sup
v∈Rn

{〈p, v〉 − inf{L(t, x, u) | u ∈ U(t) : f(t, x, u) = v}}

= sup
u∈U(t)

{〈p, f(t, x, u)〉 − L(t, x, u)},

and, hence, for every (t, x, p) ∈ [0,∞)× Rn × Rn:

H (t, x, p) = H(t, x, p). (4.6)

The following result is a special case of the equivalence theorem due to
Rockafeller [31]. (See also Clarke [15, Theorem 5.4.1].)

Equivalence Theorem. Suppose that Hypothesis 4.1 is satisfied. Let F
be given in (4.5). Then, x0(·) is a minimizing arc for (L) if and only if
there is a control function u0 : [0,∞) → Rm corresponding to x0(·) such that
(x0(·), u0(·)) is a minimizing process for (P).

Proof of Theorem 4.1. The argument is based on Zeidan [40] and Clarke [15,
Theorem 5.4.2]. Hypothesis 4.1 assures that F is L ×Bn×Bn-measurable
and F (t, · , · ) is lower semicontinuous for every t ∈ [0,∞). (See Clarke [15,
Theorem 5.4.1] and Rockafeller [31].) The condition (i) of the theorem and
(4.6) imply that:

F (t, x0(t), ẋ0(t)) = L(t, x0(t), u0(t)) a.e. t ∈ [0,∞). (4.7)

On the other hand, (4.5) implies that J (x(·)) ≤ J(x(·), u(·)) for every ad-
missible process (x(·), u(·)) for (P) with x(t) ∈ x0(t) + εB for every t ∈
[0,∞). Therefore, to show that (x0(·), u0(·)) is a locally minimizing process
in T (x0(·); ε) for (P), it suffices to demonstrate that x0(·) is a locally min-
imizing arc in T (x0(·); ε) for (L), which is guaranteed if the conditions (i)
and (ii) of Theorem 4.3 are shown to be met. It is easy to verify that the
condition (i) of Theorem 4.1 and (4.6) imply that:

H (t, x0(t), p(t)) = 〈p(t), ẋ0(t)〉 − F (t, x0(t), ẋ0(t)) a.e. t ∈ [0,∞).

Thus, the condition (i) of Theorem 4.3 is satisfied. The condition (i) of
Theorem 4.1 and (4.6) again yield the condition (ii) of Theorem 4.3.
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Proof of Theorem 4.2. Let (x0(·), u0(·)) be an admissible process for (P) sat-
isfying the conditions of the theorem. It suffices to show that:

V (0, x0(0)) =

∫ t

0

L(s, x0(s), u0(s))ds + V (t, x0(t)), (4.8)

for every t ∈ [0,∞), because taking the limit as t →∞ in (4.8) yields:

V (0, x0(0)) =

∫ ∞

0

L(s, x0(s), u0(s))ds,

from which the optimality of (x0(·), u0(·)) follows.
Suppose to the contrary that (4.8) is not true. By the definition of V ,

there exists some η > 0 such that:

V (0, x0(0)) + η <

∫ T

0

L(t, x0(t), u0(t))dt + V (T, x0(T )), (4.9)

for some T ∈ [0,∞). Again by the definition of V , there exists an admissible
process (x(·), u(·)) for (P) such that:

∫ ∞

0

L(t, x(t), u(t))dt < V (0, x0(0)) + η.

Thus, the inequality (4.9) implies the existence of an admissible process
(x(·), u(·)) for (P) such that:

∫ T

0

L(t, x(t), u(t))dt + V (T, x(T )) <

∫ T

0

L(t, x0(t), u0(t))dt + V (T, x0(T )).

(4.10)
It follows from (4.5) that:

L(t, x(t), u(t))−L(t, x0(t), u0(t)) ≥ F (t, x(t), ẋ(t))−F (t, x0(t), ẋ0(t)), (4.11)

a.e. t ∈ [0,∞). As noted in the proof of Theorem 4.1, the conditions (i) and
(ii) of Theorem 4.3 are satisfied for ε = +∞. Thus, integrating the inequality
(4.11) together with (4.4) and the condition (ii) of the theorem yield:

∫ T

0

[L(t, x(t), u(t))− L(t, x0(t), u0(t))]dt ≥ −(V (T, x(T ))− V (T, x0(T ))),

which contradicts (4.10).
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5 Necessary and Sufficient Conditions for Op-

timality

In this section, we derive the necessary and sufficient conditions for opti-
mality under convexity hypotheses. Convex problems of optimal control
examined here clarify the role of the limit behavior of the value function for
a complete characterization of optimality. Furthermore, we investigate the
role of transversality conditions at infinity and derive them as necessary and
sufficient conditions for optimality under some additional assumptions.

5.1 Limit Behavior of the Value Function at Infinity

As demonstrated in the Appendix, the hypothesis that follows is derived from
the convexity hypothesis on the primitive (L, f, Ω, U).

Hypothesis 5.1. (i) Ω(t)× U(t) is convex for every t ∈ [0,∞).

(ii) H(t, · , p) is concave on Rn for every (t, p) ∈ [0,∞)× Rn.

(iii) V (t, · ) is convex on Ω(t) for every t ∈ [0,∞).

Theorem 5.1. Suppose that Hypotheses 3.1, 4.1 and 5.1 are satisfied. An
admissible process (x0(·), u0(·)) is a minimizing process for (P) if and only if
the following conditions are satisfied.

(i) There exists a locally absolutely continuous function p : [0,∞) → Rn

such that

(a) −ṗ(t) ∈ ∂xH(t, x0(t), p(t)) a.e. t ∈ [0,∞),

(b) HP (t, x0(t), u0(t), p(t)) = H(t, x0(t), p(t)) a.e. t ∈ [0,∞),

(c) −p(t) ∈ ∂xV (t, x0(t)) for every t ∈ [0,∞),

(ii) lim
t→∞

V (t, x0(t)) = 0.

Proof. [Necessity]: Let (x0(·), u0(·)) be a minimizing process for (P). The
conditions (i-a) to (i-c) of the theorem follow from Theorem 3.1 and Corollary
3.2. Since:

−∞ < V (t, x0(t)) =

∫ ∞

t

L(s, x0(s), u0(s))ds < ∞,

by the Bellman principle of optimality, taking the limit as t → ∞ in this
equality yields the condition (ii) of the theorem.

[Sufficiency]: Since H(t, · , p) is concave on Rn and V (t, · ) is convex on
Ω(t) by Hypothesis 5.1, Theorem 4.2 applies with P = 0.
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5.2 Transversality Condition at Infinity

To derive a sharper result on the transversality condition at infinity, one must
specify the problem in more detail. The following hypothesis is in accordance
with the standard conditions in economic growth theory such as Benveniste
and Scheinkman [12] and Takekuma [35].

Hypothesis 5.2. (i) Ω(t) ⊂ Rn
+ for every t ∈ [0,∞).

(ii) 0 ∈ U(t) a.e. t ∈ [0,∞).

(iii) f(t, 0, 0) = 0 a.e. t ∈ [0,∞).

(iv) L(t, 0, 0) ≤ 0 a.e. t ∈ [0,∞).

(v) L(t, · , u) is nondecreasing on Ω(t) for every u ∈ U(t) a.e. t ∈ [0,∞).

Theorem 5.2. Suppose that Hypotheses 3.1, 4.1, 5.1 and 5.2 are satisfied.
An admissible process (x0(·), u0(·)) is a minimizing process for (P) if and
only if there exists a locally absolutely continuous function p : [0,∞) → Rn

such that

(i) −ṗ(t) ∈ ∂xH(t, x0(t), p(t)) a.e. t ∈ [0,∞);

(ii) HP (t, x0(t), u0(t), p(t)) = H(t, x0(t), p(t)) a.e. t ∈ [0,∞);

(iii) −p(t) ∈ ∂xV (t, x0(t)) for every t ∈ [0,∞);

(iv) lim
t→∞

〈p(t), x0(t)〉 = 0.

Proof. [Necessity]: Let (x0(·), u0(·)) be a minimizing process for (P). Then,
by Theorem 5.1, the conditions (i) to (iii) of the theorem are satisfied. By the
convexity of V (t, · ) in Hypothesis 5.1(iii), the condition (iii) of the theorem
implies that

V (t, 0)− V (t, x0(t)) ≥ −〈p(t), x0(t)〉 for every t ∈ [0,∞).

Since V (t, x) is nondecreasing in x by Hypothesis 5.2(v), −p(t) is in the
nonnegative orthant. We thus have −〈p(t), x0(t)〉 ≥ 0 for every t ∈ [0,∞)
because x0(t) is in the nonnegative orthant by Hypothesis 5.2(i). Note that
(x(·) ≡ 0, u(·) ≡ 0) is an admissible process on [t,∞) with initial condition
0 ∈ Ω(t) by Hypothesis 5.2(i) to (iii). Thus, we have:

V (t, 0) ≤
∫ ∞

t

L(s, 0, 0)ds ≤ 0,
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by Hypothesis 5.2(iv). Therefore, we have:

−V (t, x0(t)) ≥ −〈p(t), x0(t)〉 ≥ 0 for every t ∈ [0,∞).

Taking the limit in this inequality yields:

0 = − lim
t→∞

V (t, x0(t)) ≥ lim
t→∞

−〈p(t), x0(t)〉 ≥ 0.

Therefore, the condition (iv) of the theorem is true.
[Sufficiency]: Let (x0(·), u0(·)) be an admissible process satisfying the con-

ditions (i) to (iv) of the theorem. Since H(t, ·, p(t)) is concave by Hypothesis
5.1, the adjoint inclusion in the condition (i) of the theorem implies:

H(t, x(t), p(t))−H(t, x0(t), p(t)) ≤ 〈−ṗ(t), x(t)− x0(t)〉, (5.1)

a.e. t ∈ [0,∞) for every admissible process (x(·), u(·)) for (P). It follows from
the condition (ii) of the theorem that:

H(t, x0(t), p(t)) = 〈p(t), ẋ0(t)〉 − L(t, x0(t), u0(t)),

and
H(t, x(t), p(t)) ≥ 〈p(t), ẋ(t)〉 − L(t, x(t), u(t)),

and substituting these into (5.1) yields:

L(t, x(t), u(t))− L(t, x0(t), u0(t)) ≥ d

dt
〈p(t), x(t)− x0(t)〉 a.e. t ∈ [0,∞).

Integrating this inequality gives:

∫ T

0

[L(t, x(t), u(t))− L(t, x0(t), u0(t))]dt ≥ 〈p(T ), x(T )− x0(T )〉
≥ 〈p(T ), x0(T )〉,

for every T ∈ [0,∞). Here, the fact that p(T ) and x0(T ) are in the nonneg-
ative orthant is employed. Letting T →∞ in this inequality along with the
transversality condition (iv) of the theorem yields:

∫ ∞

0

L(t, x(t), u(t))dt ≥
∫ ∞

0

L(t, x0(t), u0(t))dt.

This completes the proof.
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While the transversality condition at infinity:

lim
t→∞

〈p(t), x0(t)〉 = 0,

is familiar in economic growth theory, the derivation of this condition as a
necessary and sufficient condition for optimality in optimal control is novel
in the literature. Aseev and Kryaziimskiy [3] obtained this as a necessary
condition for optimality under somewhat restrictive smoothness assumptions
with quasi-linear control systems.

For convex problems of Lagrange in calculus of variations, Araujo and
Scheinkman [2], Benveniste and Scheinkman [12] and Takekuma [35] ob-
tained this condition as a necessary and sufficient condition for optimality
for the nonsmooth case and Becker and Boyd [10] did so for the smooth case.
For the derivation of the variant of this condition as a necessary condition
in nonconvex smooth problems of Lagrange in calculus of variations with
unbounded integrands, see Kamihigashi [24].

A Properties of the Value Function and the

Hamiltonian

We have assumed in Hypothesis 3.1(v) that V (t, · ) is Lipschitz of rank K
on x0(t) + εB for every t ∈ [0,∞). In Appendix A.1, we demonstrate the
continuity of V on the ε-tube about x0(·) and the Lipschitz continuity of
V (t, · ) under the existence of a minimizing process for any initial condition.
For the finite horizon case, the result is well-known (see, for instance, Vinter
[37, Proposition 12.3.5]), but some intricate arguments are involved for the
infinite horizon case concerning the integrability of the integrand and the
interiority of the minimizing arcs.

The convexity of the value function is proven in Appendix A.2 under some
additional assumptions. The concavity of the Hamiltonian is demonstrated
in Appendix A.3.

A.1 Lipschitz Continuity of the Value Function

Theorem A.1. Suppose that Hypothesis 3.1 is satisfied. Then, V is contin-
uous on the ε-tube about x0(·).
Proof. Let (t, x) ∈ T (x0(·); ε) ⊂ Ω be given arbitrarily. Since V (t, x) is
finite by Hypothesis 3.1(v), the Bellman principle of optimality implies that,
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for every admissible process (x(·), u(·)) on [t,∞) with the initial condition
x(t) = x, we have:

V (t, x) ≤
∫ τ

t

L(s, x(s), u(s))ds + V (τ, x(τ)),

whenever τ ∈ [t,∞). The continuity of x(·) implies that there exists some
δ > 0 such that (τ, x) ∈ T (x0(·); ε) for every τ ∈ [t, t+δ). Thus, by employing
the Lipschitz continuity of V (τ, · ) on x0(τ)+εB, for every (τ, y) ∈ T (x0(·); ε)
with τ ∈ [t, t + δ), we have:

V (t, x)− V (τ, y) ≤
∫ τ

t

L(s, x(s), u(s))ds + |V (τ, x(τ))− V (τ, x)|
+ |V (τ, x)− V (τ, y)|

≤
∫ τ

t

|L(s, x(s), u(s))|ds + K(‖x(τ)− x‖+ K‖x− y‖).

The similar argument applied for the case 0 ≤ τ < t yields:

|V (t, x)− V (τ, y)| ≤
∫ t∨τ

t∧τ

|L(s, x(s), u(s))|ds + K(‖x(τ)− x‖+ K‖x− y‖),

for every τ ∈ [t − δ, t + δ] ∩ [0,∞) with some δ > 0. Letting (τ, y) →
(t, x) yields V (τ, y) → V (t, x). Therefore, V is continuous at every (t, x) ∈
T (x0(·); ε).

We extend the notion of an ε-tube. Let θε : [0,∞) → R be a positive
measurable function given by θε(s) = ε exp(

∫ s

0
kf (τ)dτ) for s ∈ [0,∞) with

ε > 0. An extended ε-tube about continuous function x : [t,∞) → Rn is of
the form:

T (x(·); θε) := {(s, x) ∈ [t,∞)× Rn | x ∈ x(s) + θε(s)B}.

Hypothesis A.1. There exists some ε > 0 such that, for every (t, x) ∈ Ω,
there exists a minimizing process (x( · | t, x), u( · | t, x)) on [t,∞) with the
initial condition x(t | t, x) = x such that the extended ε-tube about x(· | t, x)
is contained in Ω.

Without loss of generality, we may assume that x0(·) = x( · | 0, x0).

Theorem A.2. Suppose that the conditions (i) to (iv) of Hypothesis 3.1,
and Hypothesis A.1, are satisfied. Then, V (t, · ) is Lipschitz of rank K on
x0(t) + ε

2
B for every t ∈ [0,∞).
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Proof. Let T ∈ [0,∞), t ∈ [0, T ] and x, y ∈ x0(t) + ε
2
B ⊂ Ω(t) be given

arbitrarily. Consider the ordinary differential equation (ODE):

ẋ(s) = f(s, x(s), u(s | t, y)) for s ∈ [t,∞), x(t) = x.

Then, Hypothesis 3.1(iii) guarantees the existence and uniqueness of a solu-
tion x(·) of the ODE satisfying:

‖x(T )− x(T | t, y)‖ ≤ exp

(∫ T

t

kf (s)ds

)
‖x− y‖ ≤ θε(T ).

(See Vinter [37, Corollary 2.4.5].) This shows that (T, x(T )) is in the ex-
tended ε-tube about x(· | t, y) for every T ∈ [0,∞). Therefore, x(s) ∈ Ω(s)
for every s ∈ [t,∞) by Hypothesis A.1 and (x(·), u(· | t, y)) is an admissible
process on [t,∞) with initial condition x(t) = x ∈ Ω(t). We thus have:

V (t, x) ≤
∫ ∞

t

L(s, x(s), u(s | t, y))ds.

In view of:

‖x(s)− x(s | t, y)‖ ≤ exp

(∫ T

t

kf (s)ds

)
‖x− y‖,

for every s ∈ [t, T ] and T ∈ [0,∞), we obtain:

V (t, x)− V (t, y) ≤
∫ ∞

t

[L(s, x(s), u(s | t, y))− L(s, x(s | t, y), u(s | t, y))]ds

≤
∫ ∞

t

[
kL(s) exp

(∫ s

t

kf (τ)dτ

)]
ds‖x− y‖ ≤ K‖x− y‖,

with K =
∫∞

0
k(s)ds < ∞ by Hypothesis 3.1(iv). Interchanging the role of x

with y in the above, we arrive at |V (t, x)− V (t, y)| ≤ K‖x− y‖. Therefore,
V (t, · ) is Lipschitz of rank K on x0(t) + ε

2
B for every t ∈ [0,∞) and the

Lipschitz constant K is independent of t.

A.2 Convexity of the Value Function

Define the set-valued mapping Γ : Ω ⇒ R× Rn by:

Γ(t, x) = {(v, w) ∈ Rn × R | ∃u ∈ U(t) : w ≥ L(t, x, u), v = f(t, x, u)},
and the set M by:

M = {(t, x, u) ∈ [0,∞)× Rn × Rm | (x, u) ∈ Ω(t)× U(t)}.
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Hypothesis A.2. (i) L and f are continuous on M .

(ii) −∞ < V (t, x) for every (t, x) ∈ Ω.

(iii) Ω and graph (U) are closed.

(iv) Ω(t) is convex for every t ∈ [0,∞).

(v) Γ(t, · ) : Ω(t) ⇒ Rn × R has the convex graph for every t ∈ [0,∞).

The condition (ii) of the hypothesis is automatically satisfied if Hypothesis
A.1 is imposed. The conditions (iv) and (v) of the hypothesis are somewhat
stronger than the standard convexity hypothesis guaranteeing the existence
of a minimizing process that Γ(t, · ) is convex-valued for every t ∈ [0,∞). (See
Balder [6], Bates [8], Baum [9], Bell et al. [11], Feinstein and Luenberger [20].)

Theorem A.3. Suppose that Hypothesis A.2 is satisfied. Then, V (t, · ) is
convex on Ω(t) for every t ∈ [0,∞).

Proof. Let x, y ∈ Ω(t) and λ ∈ (0, 1) be arbitrary. We must show the
inequality:

V (t, λx + (1− λ)y) ≤ λV (t, x) + (1− λ)V (t, y).

If V (t, x) = +∞ or V (t, y) = +∞, then the inequality is trivially true.
Suppose that V (t, x) < +∞ and V (t, y) < +∞. Denote by (x(·), u(·))
an admissible process on [t,∞) with the initial condition x(t) = x and by
(x′(·), u′(·)) an admissible process on [t,∞) with the initial condition x′(t) =
y. Define z(s) = L(s, x(s), u(s)) and z′(s) = L(s, x′(s), u′(s)) for s ∈ [t,∞).
We then have (z(s), ẋ(s)) ∈ Γ(s, x(s)) and (z′(s), ẋ′(s)) ∈ Γ(s, x′(s)) a.e.
s ∈ [t,∞). Let (zλ(·), xλ(·)) = λ(z(·), x(·)) + (1 − λ)(z′(·), x′(·)). From
Hypothesis A.2(iv) and (v), it follows that (zλ(s), ẋλ(s)) ∈ Γ(s, xλ(s)) a.e.
s ∈ [t,∞) with the initial condition xλ(t) = λx + (1 − λ)y. Then, by the
implicit function theorem for orientor fields (see Cesari [14, Section 8.2.C.2]),
there exists an L -measurable function uλ : [t,∞) → Rm such that zλ(s) ≥
L(s, xλ(s), uλ(s)), ẋλ(s) = f(s, xλ(s), uλ(s)) and uλ(s) ∈ U(s) a.e. s ∈ [t,∞).
We thus have:

V (t, λx + (1− λ)y) ≤
∫ ∞

t

L(s, xλ(s), uλ(s))ds ≤
∫ ∞

t

zλ(s)ds

= λ

∫ ∞

t

L(s, x(s), u(s))ds + (1− λ)

∫ ∞

t

L(s, x′(s), u′(s))ds.

30



Taking the infimum of the admissible processes (x(·), u(·)) on [t,∞) with
x(t) = x and (x′(·), u′(·)) with x′(t) = y in the right-hand side of the inequal-
ity yields:

V (t, λx + (1− λ)y) ≤ λV (t, x) + (1− λ)V (t, y),

from which the convexity of V (t, · ) follows.

A.3 Concavity of the Hamiltonian

The concavity of the Hamiltonian is subtler than the convexity of the value
function. Specifically, Hypothesis A.2, guaranteeing the convexity of the
value function V (t, x) in x, is insufficient to establish the concavity of the
Hamiltonian H(t, x, p) in x.

Note that, by (4.6), for every (t, x, p) ∈ [0,∞)× Rn × Rn:

H(t, x, p) = sup
v∈Rn

{〈p, v〉 − F (t, x, v)}.

Thus, H(t, x, p) is concave in x if F (t, x, v) is convex in (x, v). As shown
by Feinstein and Luenberger [20], the following hypothesis is sufficient for
F (t, · , · ) to be a convex function on Ω(t) × Rn for every t ∈ [0,∞), from
which the concavity of the Hamiltonian follows.

Hypothesis A.3. (i) Ω(t)× U(t) is convex for every t ∈ [0,∞).

(ii) L(t, · , · ) is convex on Ω(t)× U(t) for every t ∈ [0,∞) and L(t, x, · ) is
nondecreasing on U(t) for every (t, x) ∈ Ω.

(iii) f(t, · , ·) : Ω(t)× U(t) → Rn is concave for every t ∈ [0,∞).

(iv) f(t, · , U(t)) : Ω(t) ⇒ Rn has the convex graph for every t ∈ [0,∞).

(v) For every v ∈ f(t, x, U(t)) and u ∈ U(t) with v ≤ f(t, x, u) and x ∈
Ω(t), there exists some u′ ∈ U(t) such that u′ ≤ u and v = f(t, x, u′).

Theorem A.4. H(t, · , p) is concave on Rn for every (t, p) ∈ [0,∞)× Rn if
Hypothesis A.3 is satisfied.

Note also that the conditions (i) to (iii) and (v) of the hypothesis imply
Hypothesis A.2 and, thus, the convexity of the value function.
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[38] Ye, J. J., (1993). “Nonsmooth maximum principle for infinite-horizon
problems”, Journal of Optimization Theory and Applications, vol. 76,
pp. 485–500.

[39] Zeidan, V., (1984). “A modified Hamilton–Jacobi approach in the gen-
eralized problem of Bolza”, Applied Mathematics and Optimization,
vol. 11, pp. 97–109.

[40] Zeidan, V., (1984). “First and second order sufficient conditions for op-
timal control and the calculus of variations”, Applied Mathematics and
Optimization, vol. 11, pp. 209–226.

[41] Zhou, X. Y., (1990). “Maximum principle, dynamic programming, and
their connection in deterministic control”, Journal of Optimization The-
ory and Applications, vol. 65, pp. 363–373.

[42] Zhou, X. Y., (1993). “Verification theorems within the framework of
viscosity solutions”, Journal of Mathematical Analysis and Applications,
vol. 177, pp. 208–225.

35


