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Based on the McKee–Mitchell Scheme

with Improved Finite-Difference Formulas
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Abstract—The alternating-direction implicit method proposed
by McKee–Mitchell is applied to full-vectorial paraxial wave
equations. The high computational efficiency of the present
method is demonstrated in comparison with an iterative
solver. Novel finite-difference formulas that take into account
discontinuities of the fields are proposed and employed to ensure
second-order accuracy. Calculations regarding the effective index
of rib waveguides show that the present results remarkably
agree with values obtained from the modal transverse resonance
method.

Index Terms—Finite-difference methods, optical beam propa-
gation, optical waveguides.

I. INTRODUCTION

CONSIDERABLE effort has been directed to improving
a full-vectorial beam-propagation method (VBPM) from

various viewpoints. The VBPM’s developed so far have often
caused problems in terms of stability and/or accuracy. This
is due to the existence of mixed derivatives in coupled wave
equations. Since vectorial treatment is absolutely necessary to
simulate polarization-dependent and coupling devices, accu-
rate and stable numerical methods should be developed.

Pioneer work on a VBPM has been made by Huang and Xu
[1] using finite-difference (FD) techniques with an iterative
solver. Since the iterative solver is somewhat time-consuming,
Mansour et al. [2] introduced the alternating-direction im-
plicit (ADI) technique into the VBPM. Their formulation
was based on the Peaceman–Rachford scheme. Although the
Peaceman–Rachford splitting is effective in scalar [3] and
semivectorial calculations [4], [5], the application to the full-
vectorial case often causes instability in numerical results.
Yevick et al. [6] introduced the ADI technique using lines
at 45 to the principal axis. This technique, the so-called
Douglas–Gunn splitting, yields stable results but is extremely
complicated. On the other hand, McKee–Mitchell [7] have
developed an ADI process for parabolic equations with a
mixed derivative, which is known to yield reasonable results
with simpler splitting. However, no attempt has been made to
apply the McKee–Mitchell scheme to a VBPM.

One should also note that inaccuracy in previous VBPM’s
stems from improper treatment of the mixed derivatives.
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Since the field and its derivatives are often discontinuous,
the conventional FD formulas severely deteriorate the numer-
ical results. In the case of a semivectorial analysis, several
improved FD formulas have been proposed, which attain
considerable accuracy [8], [9]. This fact encourages us to
develop improved FD formulas even for the mixed derivatives
in the VBPM.

In this paper, we propose a novel VBPM based on the
McKee–Mitchell (MM) scheme [7], and demonstrate its better
stability than the VBPM based on the well-known Peace-
man–Rachford (PR) scheme, while maintaining high com-
putational efficiency. Special attention is paid to evaluation
of mixed derivatives as well as second derivatives. We pro-
pose new FD formulas taking into account discontinuities
of refractive indexes. The new FD formulas ensure second-
order accuracy even in full-vectorial calculations. The present
VBPM can also be used in imaginary-axis propagation. We
assess the accuracy of the present VBPM in the eigenmode
analysis in a rib waveguide as a classical benchmark test,
since reliable data on propagation constants are available [10].
Calculation shows how appropriate evaluation of the mixed
derivatives improves convergence behavior. Negligence of
discontinuities of the first derivative in previous works results
in poor convergence. Remarkable agreement not obtainable in
previous works is observed with the results derived by the
modal transverse resonance method [10], [11].

II. M CKEE–MITCHELL SCHEME

Assuming that the refractive index varies slowly along,
we solve the following paraxial vector wave equations [1]:

(1)

(2)

where

(3)

(4)

(5)

0733–8724/98$10.00 1998 IEEE

Authorized licensed use limited to: HOSEI UNIVERSITY KOGANEI LIBRARY. Downloaded on August 31, 2009 at 23:53 from IEEE Xplore.  Restrictions apply. 



YAMAUCHI et al.: FULL-VECTORIAL BEAM PROPAGATION 2459

with , and , in which
is the free-space wavenumber, is the index profile,
and is the reference refractive index.

Based on the MM scheme, which is known to yield rea-
sonable results with simpler splitting than the Douglas–Gunn
scheme [7], we derive FD equations from the coupled paraxial
wave equations. Since (1) and (2) have a similar form, we
only treat (1) in the following. After integrating (1) over an
interval of , we get

(6)

where the differential operators , and are re-
placed by difference operators , and , respectively.
Using the assumption of , we obtain

(7)

The ADI process, derived by McKee–Mitchell, is in unsplit
form

(8)

Now we introduce the Douglas–Rachford type splitting, so
that we obtain

(9a)

(9b)

Equation (9) involves the solution of only two tridiagonal sets
of equations at each propagation step. This is in contrast to
the Douglas–Gunn splitting, which requires the solution of
four tridiagonal sets of equations at each propagation step.

III. I MPROVED FD FORMULAS

We treat three consecutive mesh points with a discontinuity
between points and and derive FD formulas when the
interface between different media is located midway between
two mesh points.

We first express the fields and using Taylor-series
expansions. is given by

(10)

With respect to , the continuity relations at the interface
should be satisfied. Let and refer to the fields at
the infinitesimally right and left of the interface, respectively.
When is used, can be written as

(11)

On the other hand, using can be expressed as

(12)

Since the relation between and [8], [9]

can be rewritten in the form

(13)

where and .
The FD formula for the second derivative can be obtained

by eliminating the first derivative from (10) and (13) [9]

(14)

where
, and , in which

. The coefficient can be approximated by
without significant effects. Equation (14), regarded as

an extension of Stern’s formula [12], is a special case of (6)
in our previous paper [9]. Note that recently Vassallo [13]
also developed similar improved FD formulas for the second
derivative.

Consideration is now given to the treatment of the mixed
derivative. No attempt has been made to evaluate the mixed
derivatives accurately. Direct discretization of the mixed
derivative results in poor convergence behavior, as will be
shown in Fig. 5. To evaluate the mixed derivative correctly,
we consider the first derivative, since the mixed derivative is
composed of the combination of the first derivatives. As in
the case of derivation of (14), we can derive the following
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Fig. 1. Overlap integral between the numerical and exact fields for a minor
component of HE11 mode of a step-index fiber as a function of propagation
distancez.

three-point FD formula for the first derivative by eliminating
the second derivative from (10) and (13):

(15)

where and .
Equations (14) and (15) are utilized to evaluate the first and
second derivatives in (9). For example, (14) is applied to

or (3), and to or (4) with . Equation (15) is
used for and in [see (5)] with .

may be evaluated by another FD formula, in
which the interface conditions of electric flux density are
satisfied. Following the similar procedure mentioned above,
we obtain

(16)

Corresponding formulas similar to (14)–(16) are also derived
when the discontinuity lies between points and (see
the Appendix).

IV. RESULTS

We first compare the MM scheme with the PR scheme in
propagation behavior of HE11 mode of a step-index fiber.
Fig. 1 shows the overlap integral between the numerical
and exact fields for the minor component as a function of
propagation distance. The exact fields are chosen as input
fields. The transverse mesh size is taken to be

m. The total number of mesh points is
. The configuration parameters are as

follows. The core radius is m, and the refractive
indexes of the core and cladding are and

. A wavelength of m is used, so that the
normalized frequency is . This fiber is not realistic,
but is considered to investigate sensitivity of the schemes in
a strongly guiding structure. It is found that the MM scheme
allows a larger propagation step length than that in the
PR scheme. Further calculation shows similar tendency in the
major component. The PR scheme is efficient only for scalar
[3] and semivectorial cases [4], [5].

Fig. 2. Comparison in computational effort between the McKee–Mitchell
scheme and the iterative solver.

Fig. 3. Rib waveguide geometry.

High computational efficiency of the MM scheme is demon-
strated in Fig. 2, in which comparison with the VBPM using
an iterative solver (Bi-CGSTAB) [14] is made. The computing
time in the Bi-CGSTAB depends on a tolerance factor for
convergence. The tolerance factor is chosen in such a way
that the results obtained by the Bi-CGSTAB are comparable
to those obtained by the MM scheme. In the MM scheme, the
standard Thomas algorithm can be used, leading to less CPU
time and memory.

For a step-index fiber, we cannot correctly assess the accu-
racy of FD formulas due to discretization error of a circular
core. Hence, we next consider a rib waveguide (shown in
Fig. 3) used as a classical benchmark [10]. The configuration
parameters are , , m, rib
width m, central rib height m, and lateral
height varying from 0.1 to 0.9 m. The computational
domain parameters are m above the top of the rib,

m below the guiding layer, and m (or
5.5 m for m) aside from the rib lateral side.

The fundamental mode can be calculated by the imaginary
distance procedure in which the coordinatein the propaga-
tion direction is changed to [15]. The effective index is
evaluated by the growth in the field amplitude [16], as shown
in (17) at the bottom of the next page. For evaluation of the
effective index defined by , the reference index

has to be a value close to the exact one. It should be
noted, however, that the exact value is unknown in practice.
In this paper, we adopt a new technique of iteratively renewing

[17]. The effectiveness of this technique is shown in
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Fig. 4. Convergence behavior of the normalized propagation constantB as
a function of propagation� .

Fig. 4, in which the normalized propagation constant
is presented as a function of. The data

are for the quasi-TE mode with m. The transverse
mesh size and propagation step length are
taken to be m and m, respectively.
As the input field, we choose a step function as

for m and m
otherwise

for the major component and zero for the minor component.
When we fix to be or , converges to
a different value. In contrast, renewing iteratively leads
to monotone convergence to the same value regardless of an
initial value of (it has been confirmed that converges
to the exact value in a two-dimensional waveguide [17]). The
convergence value is close to a value obtained with the modal
transverse resonance method (MTRM) as will be discussed in
detail.

The convergence behavior of for the quasi-TE mode as
a function of transverse mesh size is shown in Fig. 5,
where is chosen to be 0.5 m. In this calculation, is
fixed to be 0.05 m regardless of (although a larger
is available when is large). For comparison, the results
obtained using the combination of other FD formulas [1], [12]
are also shown. It is revealed that the use of (14)–(16) achieves
faster convergence. Although not illustrated, a similar tendency
is also observed in the quasi-TM mode. The results regarding
the semivectorial (sv) and full-vectorial (fv) cases with the
improved FD formulas are found to have almost the same
convergence behavior.

Table I tabulates the values obtained from the present
technique in both the quasi-TE and quasi-TM modes. The
mesh size is taken to be 0.025m. For reference, the data
for the semivectorial case are also presented. Thevalues
are expressed with the deviations 10 from

Fig. 5. Convergence behavior of the normalized propagation constantB as
a function of transverse mesh size�.

TABLE I
NORMALIZED PROPAGATION CONSTANT B OBTAINED WITH MTRM
AND DEVIATIONS IN SEMIVECTORIAL AND FULL-VECTORIAL CASES

the MTRM. The four-digit values of ’s are believed
to be exact [10], [11]. Table I also presents extrapolated
values at and indicates that the difference between
the semivectorial and full-vectorial results is slight. It should
be noted, however, that the data on the full-vectorial case
remarkably agree with ’s. The deviation for fv
is only within 1. It can be said that accurate evaluation of
the mixed derivatives greatly contributes to improvement of
accuracy in terms of agreement with the MTRM.

Typical field distributions in the quasi-TE and quasi-TM
modes are illustrated in Figs. 6 and 7, respectively. Singular-
ities and discontinuities of the fields are clearly displayed.

Comparison in deviations with other techniques is shown
in Fig. 8. All the data are derived using an extrapolation

(17)
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(a) (b)

Fig. 6. Field distributions in the quasi-TE mode: (a)Ex and (b) Ey .

(a) (b)

Fig. 7. Field distributions in the quasi-TM mode: (a)Ey and (b) Ex.

technique and expressed as a function of. One of the data was
obtained by Pregla using the method of lines (MOL) [10], [18].
Another data was obtained using the Yee’s mesh VBPM [19],
[20]. In general, all the results relatively agree with the data
of the MTRM. Strictly speaking, however, the MOL achieves
better results in the quasi-TE mode than the quasi-TM mode,
while the Yee’s mesh VBPM indicates opposite tendency. It
is noteworthy that the present method is successful for both
the quasi-TE and the quasi-TM mode.

Fig. 9 shows another interesting comparison among three
different discretization schemes: Stern type (present), Bier-
wirth type [21], and Yee type [20]. The rib waveguide config-
uration to be considered here is the one used in [21]. Note that
in contrast to the Stern scheme, the discontinuity lines are just
on mesh points in the Bierwirth scheme. Also note that in the
Yee scheme, the components ofand are interlaced within
a unit cell. It is worth mentioning that the present scheme
again shows the fastest convergence, although each scheme is
second-order accurate. The reason why a Stern-type scheme
shows faster convergence than a Bierwirth-type scheme is

probably due to the fact that the Stern-type scheme avoids
evaluation of the fields at the corners of the rib waveguide. One
should note that quite recently, Hadley succeeded in deriving
a high-accuracy formula in the Bierwirth type [22]. It seems,
however, that the high-accuracy formula is effective except
for corner points.

V. CONCLUSIONS

We have presented an improved vectorial finite-
difference BPM based on the McKee–Mitchell scheme.
The present scheme is more stable than the conventional
Peaceman–Rachford scheme and achieves high computational
efficiency in comparison with an iterative solver. The mixed
derivatives in the coupled wave equations are evaluated
taking into account discontinuities of refractive indexes. The
present BPM ensures second-order accuracy, provided that
the discontinuity lies midway between two mesh points.
The propagation constants of a rib waveguide for a classical
benchmark are evaluated using the imaginary distance
procedure in both quasi-TE and quasi-TM modes. The
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(a) (b)

Fig. 8. Comparison in deviations from MTRM as a function oft: (a) quasi-TE mode and (b) quasi-TM mode.

Fig. 9. Comparison in convergence behavior of the normalized propagation
constant B among three discretization schemes.

obtained results remarkably agree with the values derived
with the modal transverse resonance method.

APPENDIX

When a discontinuity lies between points and , the FD
formulas corresponding to (14)–(16), respectively, are derived
as follows:

(18)

where ,
, and , in which ,

, and

(19)

where and

(20)

The coefficient can be approximated by without
significant effects.
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