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Abstract—The propagation constants of rib waveguides are
analyzed by the imaginary distance beam-propagation method
based on a newly derived finite-difference formula for semivecto-
rial H-fields. The formula ensures a truncation error ofO(�x)2,
provided that the discontinuity lies midway between two mesh
points. Comparison with previously published results for a rib
waveguide as a classical benchmark shows the effectiveness of
the present method.

Index Terms—Finite-difference methods, optical beam propa-
gation, optical waveguides.

I. INTRODUCTION

TO IMPROVE accuracy of a propagating beam analysis in
a step-index optical waveguide, care has to be exercised

in evaluation of the second derivatives of transverse fields,
since the accuracy of the conventional finite-difference for-
mula deteriorates at an interface between different refractive
indices [1], [2]. In the analysis of a step-index waveguide, a
semivectorial approach is often sufficient, unless one needs
minor field components [3]. Recently, we have derived an
improved formula for semivectorial E-fields [4], which ensures
a truncation error of .

In this letter, we present a novel finite-difference formula for
semivectorial H-fields. To demonstrate superiority of a newly
derived formula, we evaluate the normalized propagation
constant of rib waveguides [3], using the imaginary-distance
beam-propagation method (BPM) [5]–[7]. The results in quasi-
TE and quasi-TM modes are compared with those obtained by
the modal transverse resonance method (MTRM) [3], [8].

II. FORMULATION

Three consecutive mesh points shown in Fig. 1 are consid-
ered. The interface is at distance (with ) from
point . Starting from the one-dimensional Helmholtz equation,
we first express the fields and using Taylor-series
expansions, as described in [2] and [4]. Let and refer to
the fields at the infinitesimally right and left of the interface,
respectively. The continuity relations at the interface, which
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Fig. 1. Mesh points near a discontinuity.

are different from those in E-fields [4], require that

where is the free-space wavenumber and . After
some manipulations similar to those in [4], we finally obtain

(1)

where

in which

It is worth mentioning that the coefficient of van-
ishes when either 0.5 or 0 (note that 0 is ap-
proximately realized in the limit where approaches zero).
Equation (1) reduces to Stern’s formula [1] when we neglect
the term making and 0.5. A formula
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Fig. 2. Rib waveguide geometry.

similar to (1) is also derived when the discontinuity lies
between and .

To assess the accuracy of the newly derived formula,
we evaluate the eigenmode of a step-index waveguide. The
fundamental mode is obtained by the imaginary distance BPM
in which the coordinate in the propagation direction is
changed to j. The alternating-direction implicit method is
employed for the analysis of a three-dimensional structure.

The effective index can be evaluated by the growth in the
field amplitude [6], i.e.,

(2)

For evaluation of the effective index, the reference index
has to be a value close to the exact one. It should be noted,
however, that the exact value is unknown in practice. In this
letter, we adopt a new technique of iteratively renewing
[9]. This technique leads to the advantage that the effective
index converges automatically.

III. RESULTS

We consider a rib waveguide shown in Fig. 2. This con-
figuration has been used as a classical benchmark [3]. The
configuration parameters are 3.40, 3.44, rib width

3.0 m, central rib height 1.0 m, and lateral height
varying from 0.1–0.9 m. The computational domain

parameters are 0.5 m above the top of rib,
3.0 m below the guiding layer, 2.5 m (or 5.5 m for

0.9 m) aside from the rib lateral side. A wavelength of
1.15 m is used. A transparent boundary condition often

used in a propagating beam analysis is not necessarily needed
for this analysis, since the fields other than the fundamental
mode decay rapidly as they propagate along the imaginary
axis. Hence, no special boundary condition is imposed at the
edge of the computational window, i.e., zero boundary terms
are used instead of a transparent boundary condition.

The effective index is defined by and the
normalized propagation constant is .
Fig. 3 shows the convergence behavior offor the quasi-TE
and quasi-TM modes as a function of transverse mesh size

. In this analysis is chosen to be 0.5m.

(a)

(b)

Fig. 3. Convergence behavior of normalized propagation constantB as a
function of transverse mesh size�.(a) Quasi-TE mode. (b) Quasi-TM mode.

For comparison, the results obtained using Stern’s formula
are also shown. It is found that the present formula achieves
faster convergence.

Table I tabulates the values obtained from the present
technique in both the quasi-TE and quasi-TM modes. The
transverse mesh size is fixed to be 0.02 m. The
values derived with the modal transverse resonance method
(MTRM) and the deviations 10 are also
presented. The ’s have been independently computed
by Sudbø and Vassallo, and the four-digit values are believed
to be exact [3], [8] (note that the MTRM is a full-vectorial
eigenmode solver). It is found that the present results agree
well with those obtained from the MTRM. Further comparison
with other data summarized in [3, Table I] demonstrates the
effectiveness of the present method. The maximum deviation,
which is observed in the quasi-TE mode, is3 for 0.7 and
0.9 m. Incidentally, we have also calculated thevalues
using the E-field formulation [4]. The results agree with those
obtained from the H-field formulation up to five-digit values.

It should be noted that the values for 0.02 m do
not converge completely. Since the error is almost proportional
to , we can estimate more exact ’s at 0 by
an extrapolation technique [3], [10]. Table I also presents
the extrapolated value . In general, the ’s are
slightly less than the ’s. This is considered to be due to
negligence of coupling terms in a semivectorial analysis. The
fact that the semivectorial analysis tends to yield an effective
index slightly less than that in the full-vectorial analysis is
also found in [11].
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TABLE I
NORMALIZED PROPAGATION CONSTANTS AND DEVIATIONS FROM MTRM

IV. CONCLUSION

We have derived an improved finite-difference formula
for semivectorial H-fields in step-index optical waveguides.
The derived formula ensures a truncation error of ,
provided that the discontinuity lies midway between two mesh
points. The propagation constants of rib waveguides for a
classical benchmark test are evaluated using the imaginary
distance BPM in both the quasi-TE and quasi-TM modes. The
obtained results are compared with the values derived with
the modal transverse resonance method (MTRM). The present

formula can be used for a propagating beam analysis, while
maintaining the accuracy comparable to that of the MTRM.
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