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Abstract—The propagation constants of rib waveguides are
analyzed by the imaginary distance beam-propagation method
based on a newly derived finite-difference formula for semivecto-
rial H-fields. The formula ensures a truncation error OfO(A:L')Z,
provided that the discontinuity lies midway between two mesh $i1 ¢ $int
points. Comparison with previously published results for a rib
waveguide as a classical benchmark shows the effectiveness of
the present method.
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Fig. 1. Mesh points near a discontinuity.

I. INTRODUCTION

O IMPROVE accuracy of a propagating beam analysis are different from those in E-fields [4], require that
a step-index optical waveguide, care has to be exercised

in evaluation of the second derivatives of transverse fields, Or =91

since the accuracy of the conventional finite-difference for- 9¢r 98(7)

mula deteriorates at an interface between different refractive 2337 2337

indices [1], [2]. In the analysis of a step-index waveguide, a P ¢r _0°¢L k2 (n2 —n2 s
semivectorial approach is often sufficient, unless one needs dz? 337 o

minor field components [3]. Recently, we have derived an Ppr _o Por +K2(n? — n2 )3¢L
improved formula for semivectorial E-fields [4], which ensures dz3 | 0x3 i) Ty

a truncation error olD(Az)?.

In this letter, we present a novel finite-difference formula fof.
semivectorial H-fields. To demonstrate superiority of a neWFy
derived formula, we evaluate the normalized propagationd?¢;  ag;_1 + bp; + cpiy1 Az Py 9
constant of rib waveguides [3], using the imaginary-distance 972 — dAr2? - 3 953 +0(Az7) (1)
beam-propagation method (BPM) [5]-[7]. The results in qua "here
TE and quasi-TM modes are compared with those obtained by )
the modal transverse resonance method (MTRM) [3], [8]. a=1+(0-1)(1-¢& +mdz"l

b=—2—(0-1)(1-¢& —mAz*(1 +1)
c=1

d=1+3(6-1)(1-&(2¢+ 1)+ tmAzT

wherel; is the free-space wavenumber ahe n?, , /n?. After
me manipulations similar to those in [4], we finally obtain

Il. FORMULATION
Three consecutive mesh points shown in Fig. 1 are consid-

ered. The interface is at distanéAz (with 0 < £ < 1) from e=—(0 -1 - &2 ~-1)/d
pointi. Starting from the one-dimensional Helmholtz equationy which

we first express the fieldg; ; and ¢;,1 using Taylor-series m =LK1 — &2(n2 — 12, )
expansions, as described in [2] and [4]. ket and¢;, refer to T2 ¢ i+l
the fields at the infinitesimally right and left of the interface, IF=¢+ 91;5_
respectively. The continuity relations at the interface, which 3

It is worth mentioning that the coefficient @¢,/dz* van-
ishes when eithe¢ = 0.5 or 0 (note thatt = 0 is ap-
The authors are with the College of Engineering, Hosei University, Kogan% . ,
Tokyo 184, Japan. quation (1) reduces to Stern’s formula [1] when we neglect
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similar to (1) is also derived when the discontinuity lies  0.2930 T u , '
betweeni — 1 and . ¢+ present
To assess the accuracy of the newly derived formula, ©-29187 ©° i;;g;w iy
we evaluate the eigenmode of a step-index waveguide. The 02006
fundamental mode is obtained by the imaginary distance BPM_
in which the coordinatez in the propagation direction is 0.2894 - o
changed to 4. The alternating-direction implicit method is
employed for the analysis of a three-dimensional structure. 0.2882 i
The effective index can be evaluated by the growth in the
field amplitude [6], i.e., 0-2870 50 0.01 0.02 0.03 0.04 0.05
B(1) = nok A u m]
(b)
| A7)dx dy ¢ —1 dz d
" {/d)(x,y,'f +A)d y} " {/(/)(x,y, 7)dz y} Fig. 3. Convergence behavior of normalized propagation condtaas a
+ Ar - function of transverse mesh size.(a) Quasi-TE mode. (b) Quasi-TM mode.

(2)
. L . For comparison, the results obtained using Stern’s formula
For evaluation of the effective index, the reference indgx are also shown. It is found that the present formula achieves

Powever, hat the oxaet value fs unknown in pracice, In eSS convergence.
' P ' Table | tabulates theé3 values obtained from the present

e e s e S joshique n both he uas T and QuasiTh mades. The
index convergeg automatically 9 %’r%nsverse. mesh. size is fixed to B = 0.02 um. The
' values derived with the modal transverse resonance method

(MTRM) and the deviation§B — Byrry)x 10* are also
presented. Thé\rrn'S have been independently computed

We consider a rib waveguide shown in Fig. 2. This corby Sudbg and Vassallo, and the four-digit values are believed
figuration has been used as a classical benchmark [3]. Tthebe exact [3], [8] (nhote that the MTRM is a full-vectorial
configuration parameters ang = 3.40,n, = 3.44, rib width eigenmode solver). It is found that the present results agree
= 3.0 um, central rib height= 1.0 um, and lateral height well with those obtained from the MTRM. Further comparison
= ¢t varying from 0.1-0.9um. The computational domainwith other data summarized in [3, Table I] demonstrates the
parameters ar&¢, = 0.5 um above the top of ribY, = effectiveness of the present method. The maximum deviation,
3.0 um below the guiding layerX, = 2.5um (or 5.5um for which is observed in the quasi-TE mode;#i8 for¢ = 0.7 and
t = 0.9 um) aside from the rib lateral side. A wavelength 00.9 um. Incidentally, we have also calculated tievalues
A= 1.15um is used. A transparent boundary condition ofteasing the E-field formulation [4]. The results agree with those
used in a propagating beam analysis is not necessarily needbthined from the H-field formulation up to five-digit values.
for this analysis, since the fields other than the fundamentallt should be noted that th& values forA = 0.02 zm do
mode decay rapidly as they propagate along the imaginargt converge completely. Since the error is almost proportional
axis. Hence, no special boundary condition is imposed at ttie AZ, we can estimate more exad®'s at A = 0 by
edge of the computational window, i.e., zero boundary termas extrapolation technique [3], [10]. Table | also presents
are used instead of a transparent boundary condition. the extrapolated valu®gxrr. In general, theBgxTr'S are

The effective index is defined by.s = G/k and the slightly less than thé&\rru's. This is considered to be due to
normalized propagation constantis— (ngﬂ—ng)/(ngl—ng). negligence of coupling terms in a semivectorial analysis. The
Fig. 3 shows the convergence behaviorifor the quasi-TE fact that the semivectorial analysis tends to yield an effective
and quasi-TM modes as a function of transverse mesh sindex slightly less than that in the full-vectorial analysis is
A(= Az = Ay). In this analysist is chosen to be 0.zm. also found in [11].

I1l. RESULTS
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TABLE | formula can be used for a propagating beam analysis, while
NORMALIZED PROPAGATION CONSTANTS AND DEVIATIONS FROM MTRM maintaining the accuracy comparable to that of the MTRM.
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