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Technique Combining FD-BPM and FD-TDM
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Abstract—A technique connecting a scalar wide-angle finite-
difference beam-propagation method(FD-BPM) with a scalar
finite-difference time-domain method (FD-TDM) is systemati-
cally described and used to analyze a lensed coreless fiber. The
propagating field and its phase distribution are calculated to
demonstrate the phase adjustment effect of the lens. The power
concentration due to the lens is evaluated by the directive gain
used in the antenna engineering. The effect of an antireflection
coating on the reflected power is also evaluated.

Index Terms—Finite-difference method, lensed fiber, optical
beam propagation.

I. INTRODUCTION

M ANY numerical methods have been developed for the
analysis of optical waveguides. Of them the finite-

difference beam-propagation method (FD-BPM) [1] and the
finite-difference time-domain method (FD-TDM) [2] are pow-
erful tools of analyzing the propagating beam in optical
waveguides. The FD-BPM based on the implicit scheme has
the advantage of unconditional stability which allows the use
of a large sampling grid and a transparent boundary condition
[3]. Since the FD-BPM assumes only forward traveling waves,
reflected waves generated at longitudinal discontinuities have
been neglected. For the case in which the reflection cannot be
neglected, the bidirectional BPM has been developed [4], [5].

On the other hand, the FD-TDM that directly solves
Maxwell’s equations can be applied to the analysis of
the propagation, reflection, scattering, and radiation of
electromagnetic waves in optical devices [6]. The result of
the FD-TDM is accurate since no approximation is introduced
with respect to polarization and propagating beam direction,
but it requires great computation time and memories for the
simulation of optically large structures.

Recently, a scalar FD-TDM was formulated in rectangular
coordinates [7] and was extended to cylindrical coordinates
[8], [9]. Compared with the vector FD-TDM, the scalar FD-
TDM requires less memory and is computationally more
efficient. It should be noted, however, that the scalar FD-TDM
still imposes a computational burden for large structures. From
this viewpoint, a hybrid BPM-FDTD simulation has begun to
attract attention [10]–[12].

In this paper, we systematically describe the hybrid tech-
nique that combines a scalar wide-angle FD-BPM and a scalar
FD-TDM, and apply it to the analysis of a lensed coreless fiber
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(CF) [13]–[15]. After confirming the validity of the present
technique, we analyze the propagating field in the CF. Special
attention is paid to focusing properties of the lensed CF. The
far-field pattern is evaluated from the field at the endface.
Furthermore, we reveal the effects of an antireflection (AR)
coating [16] on the fields in the lens.

II. NUMERICAL METHOD

A. Formulation

We consider the propagation of a circularly symmetric field
in an optical fiber, and derive the equations for the FD-

BPM. The scalar Helmholtz equation in cylindrical coordinates
is

(1)

where is a wavenumber in free space,
is a component of the electric field at an angular frequency
of and is the index profile of the waveguide. For
convenience, the electric field is expressed as

(2)

where is the appropriately chosen reference refractive
index. In this paper, the reference refractive indexis chosen
to be that in the cladding. Substituting (2) into (1), we obtain

(3)

When we neglect the second derivative with respect to(3)
reduces to the paraxial equation. In this paper, we use the (1,1)
Pad́e approximant operator [17], so that we derive

(4)

where

(5)

We apply the Crank–Nicholson scheme to (4), and derive the
difference equations. Using the simplifying symbol

(6)

where and are integers, we obtain the following difference
equation for

(7)
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Fig. 1. Field distribution in the coreless fiber.

Fig. 2. Comparison between the propagating fields obtained from the hybrid
technique and the FD-TDM(r = 0 �m):

where
and

The indeterminate form at the origin can be eval-
uated by L’Hospital’s rule. Taking into account the circular
symmetry of the field, we obtain for

(8)

where
Equations (7) and (8) can be easily solved by efficient

techniques such as the Thomas algorithm. The transparent
boundary condition developed by Hadley [3] is imposed at
the edge of the calculation region.

We, next, describe the scalar FD-TDM for circularly sym-
metric waveguides. The electric field satisfies the

Fig. 3. Comparison between the phase distributions obtained from the hybrid
technique and the FD-TDM.

Fig. 4. Configuration of a hemispherically ended coreless fiber.

scalar wave equation

(9)
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where is the velocity of light in free space. Using a central
difference formula, we derive

(10)

where and
in which and represent increments along

the time, transverse and propagation directions, respectively.
On the fiber axis, we again apply L’Hospital’s rule

to the second term of (9). Finally, we have

(11)

where In contrast to the FD-BPM, the FD-TDM is
an explicit scheme in which the field values at two previous
time steps are required. At the edge of the calculation region,
we apply Mur’s absorbing boundary condition [18] extended
to cylindrical coordinates [9].

B. Technique of Connecting FD-BPM with FD-TDM

In this section, we describe the method of utilizing the
field obtained from the FD-BPM as the incident field in the
FD-TDM. First, the forward-propagating wave is calculated
using a wide-angle FD-BPM of (7) and (8). Although the
paraxial FD-BPM can also be used, the wide-angle FD-BPM
is more appropriate when the fields contain radiation modes.
The obtained electric field at a position where
the FD-BPM is connected with the FD-TDM, is expressed as

(12)

Separating the electric field into an amplitude term and
a phase term we can rewrite (12) as

(13)

On the other hand, the electric field for the scalar FD-TDM
can be expressed as

(14)

Substituting (13) into (14), and changing it into the expression
of an instantaneous value, we can get the incident field of
the FD-TDM located at the connecting position. As revealed
in [12], the existence of the phase term gives rise to
considerable parasitic waves. Therefore, we apply a gradual
exicitation method [19], [20], in which a sine function of the

quarter period is multiplied. As a result, we use

(15)

(16)

where is a rising time. As discussed in [12], the use
of (15) greatly contributes to reduction of the parasitic waves
with subsequent faster convergence of the numerical results.
In this paper, we choose m

Once a steady-state field is obtained in the FD-TDM region,
the backward-propagating wave is extracted and is used as
the incident field for the backward FD-BPM. The steady-state
field in the FD-BPM region can be obtained by adding the
forward- and backward-propagating waves [4]. Without loss of
generality, the present technique can also be used in Cartesian
coordinates.

C. Confirmation of the Connecting Technique

To confirm the validity of the hybrid technique, we compare
the field obtained from the hybrid technique with that obtained
when only the FD-TDM is employed. Consideration is given
to a coreless fiber (CF) with a facet shown in the inset of
Fig. 1. The length of the CF is taken to be m
The adjacent media to the CF is air. The core radius of the
input fiber is m and the refractive indices of core
and cladding are and respectively. A
wavelength of is used, so that the normalized
frequency is The input field is the fundamental
mode which is launched at m The connecting
position between the FD-BPM and the FD-TDM is chosen
to be m so that the incident field for the FD-
TDM is launched at m toward the direction
using the technique described in [9] and [21]. The computation
parameters are taken to be m
and m in the FD-TDM region. The same
discretization mesh is also used for the FD-BPM region. The
number of transverse grid points is 2000.

Fig. 1 shows the field distribution calculated from the hybrid
technique. Almost the same distribution is obtained when
only the FD-TDM is employed. Due to the reflection at the
interface with air, the field exhibits a standing wave in the
CF. Fig. 2 shows a comparison between the fields obtained
from the hybrid technique and the FD-TDM. The field is
compared at m It is found that the two curves
are almost indistinguishable. Slight field variation observed
in the air region is due to incompleteness of the absorbing
boundary condition. The phase variation obtained from the
hybrid technique also agrees well with that obtained from the
FD-TDM, as shown in Fig. 3. The phase difference is observed
only in negligible fields. From the above-mentioned results,
it can be said that the field obtained from the FD-BPM is
satisfactorily connected with that in the FD-TDM.

The FD-BPM and the FD-TDM have different numerical
dispersion characteristics. Hence, we also check the con-
vergence of the numerical results as a function of mesh
sizes and Further calculation shows that the results
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(a)

(b)

Fig. 5. Field distributions.

obtained with m are virtually
superimposed on the results in Figs. 1, 2 and 3.

III. A NALYSIS OF A LENSED CORELESSFIBER

We now analyze a hemispherically-ended coreless fiber
(CF) shown in Fig. 4. The CF is identical to that in Fig. 1
with the exception of a CF length of m The
hemispherical lens tipped on the CF end surface is formed
by the adjustment of a lens radius and a center angle
(A stepped approximation is used for the curved endface).
The refractive index of the lens is the same as that of the
cladding. A numerical calculation is carried out for

m and m The
position where the FD-BPM is connected with the FD-TDM
is taken to be m

Fig. 5 shows the field distributions m with
m and These configuration parameters

can be regarded as being optimum as will be shown in Fig. 7.
Note that the scale of the propagating directionin the
lens [Fig. 5(a)] is expanded, compared with that in the CF
[Fig. 5(b)]. We can observe the complicated field distribution
in the lens. This is due to the reflected waves caused at the
lens endface with air. The reflected power of the fundamental
mode is calculated to be 4.2%, which is the same as a value
evaluated from the simple Fresnel coefficient. The reflected
wave generated at the lens endface propagates in the CF,
causing interference with the forward-propagating wave. We
can observe a peak amplitude near a propagation distance of
150 m.

The phase variation corresponding to Fig. 5 is presented
in Fig. 6. Fig. 6(b) shows that the constant phase plane is
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(a)

(b)

Fig. 6. Phase distributions.

Fig. 7. Directive gain as a function of center angle.

gradually distorted with propagation, while Fig. 6(a) shows
that the distorted phase variation is gradually recovered. This
is due to the fact that the local velocity of the wave in air is
higher than that in the lens. It is demonstrated that the lens
operates as a phase adjustment element.

To investigate the focusing effect of the hemispherical lens,
we evaluate the far-field pattern, using the field in air.

Fig. 8. Comparison in the far-field pattern.

According to the Kirchhoff-Huygens diffraction integral, the
far field is given as follows:

(17)

in which is defined as

(18)

where is the zeroth-order Bessel function of the first
kind and is the computational window dimension. The
integration with respect to is performed using the trapezoidal
rule.

Introducing the directive gain often used in the antenna engi-
neering is convenient to know how well the CF concentrates
power into a limited solid angle. The directive gain can be
defined as the ratio of the maximum radiation intensity to the
average radiation intensity. The directive gainis expressed
as

(19)

where represents the characteristic impedance of free space
and is the input power written as

(20)

in which is the incident field and is the effective
refractive index of the fundamental mode of the input fiber.

Substituting (17) and (20) into (19), we obtain

(21)

The characteristics of the directive gain as a function of the
center angle are shown in Fig. 7. In this Figure, the lens
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(a)

(b)

Fig. 9. Field distributions. The coreless fiber is coated with the AR layer(nac = 1:225):

radius is used as a parameter and corresponds to
the case without the lens. As can be seen, each curve indicates
the existence of an optimum shape giving a maximum directive
gain. Within the range of this analysis, the maximum directive
gain is found to be 37.6 dB for m and
which is increased by 6.6 dB as compared to that without the
lens.

Fig. 8 shows the far-field patterns radiated from the CF with
the optimized lens m and and from
the CF without the lens. Each pattern is normalized by the
maximum value. Due to the phase adjustment effect, the beam
radiated from the lensed CF is sharper than that from the CF
without the lens.

Finally, we treat a lensed CF with an AR coating. Taking
account of impedance matching between the waveguide and
air, the ideal refractive-index of the AR coating should be

Hence, the refractive index of the AR coating
is fixed to be and the AR layer thickness is

m The field distribution m for the
optimum lens coated with the AR layer is shown in Fig. 9.
In contrast to Fig. 5(a), the standing wave is not observed in
the lens. It is found that the reflected fields are successfully
suppressed due to the AR coating, and the reflected power
from the endface is reduced to approximately 0.01%. Further
calculation shows that the far-field pattern is almost the same
as that observed without the AR coating.

Although the reflected fields are greatly suppressed by the
ideal AR coating, the refractive index of the AR coating,

chosen in the above analysis is not realistic.
Therefore, we also analyze the case for which
corresponds to MgF. The reflected power is calculated to be
1.5%.

IV. CONCLUSIONS

We have systematically described a hybrid technique that
combines the scalar FD-BPM and the scalar FD-TDM in cylin-
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drical coordinates. The hybrid technique enables us to analyze
optically large structures with a longitudinal discontinuity and
has the advantage of computational efficiency compared with
the conventional technique in which only the FD-TDM is
applied to the large structures.

As an application, a lensed coreless fiber has been analyzed.
The phase adjustment effect of the lens is demonstrated by
the phase distribution of the propagating field. The far-field is
also calculated and the effect of power concentration due to
the lens is evaluated by the directive gain often used in the
antenna engineering. The parameters of an optimum lens are
determined by the directive gain characteristics. Consideration
is also given to the effect of an antireflection coating.
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