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Fini te-Difference Beam Propagation 
Method Based on the Generalized 

Douglas Scheme for a Nonuniform Grid 
Junji Yamauchi, Member, ZEEE, Jun Shibayama, Minoru Sekiguchi, and Hisamatsu Nakano, Fellow, ZEEE 

Abstract- The finite-difference beam propagation method 
based on the Douglas scheme is extended to a nonuniform grid. 
The truncation error is reduced to ~ ( A z ) ~ ,  provided the grid 
growth factor is r = 1 + ~ ( A z ) ,  while maintaining a tridiag- 
onal matrix. The numerical results show that the accuracy is 
improved as compared with that obtained from the conventional 
nonuniform Crank-Nicholson scheme. 

Zndex Terms- Finite-difference methods, optical propagation, 
optical waveguides. 

I. INTRODUCTION 
0 IMPROVE computational efficiency of the finite- T difference beam propagation method (FD-BPM), a 

nonuniform transverse sampling grid is often employed 
[1]-[5]. The truncation error of the conventional nonuniform 
difference approximation to the second derivative is O( Ax)2, 
provided the grid growth factor is r = 1 + O(Ax). Yevick 
et al. [l] refined the conventional nonuniform operator of the 
second derivative and improved its accuracy. Unfortunately, 
this results in a pentadiagonal matrix with time-consuming 
procedures. 

For a uniform grid, the truncation error can be reduced to 
O ( A X ) ~  by using the Douglas scheme, maintaining a tridiag- 
onal matrix [6]. Recently, the authors have also developed the 
modified FD-BPM based on the generalized Douglas (GD) 

ariable coefficients [7]. However, it has been 
believed that the Douglas scheme is valid only for a uniform 
grid [6]. In 1995, the authors pointed out that Douglas scheme 
can be extended to a nonuniform grid [SI. 

In this letter, we present the detailed derivation of a novel 
FD-BPM based on the Douglas scheme generalized for a 
nonuniform grid. The philosophy behind the present formula- 
tion is to eliminate the low-order error terms in Taylor series 
expansion. It is demonstrated that the truncation error can 
be reduced to O ( A X ) ~ ,  provided the grid growth factor is 
r = 1 + O(Ax). For the assessment of the accuracy, the 
effective index of a graded-index waveguide is calculated 
using the imaginary-distance BPM [9]-[ll]. In addition, the 
overlap integral between the numerically determined field and 
the exact solution is evaluated. It is found that the present 
scheme offers significant improvement, as compared with the 
conventional nonuniform Crank-Nicholson (CN) scheme. 
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11. FORMULATION 

We derive a high-accuracy nonuniform scheme in a two- 
dimensional (2-D) problem. The Fresnel equation is expressed 
as 

dE d2E 
dx ax2 

+ vE 5- E - 

where n = 2jkno and U = k2[n2(x,x) - ng] in which k is 
the free space wavenumber, n(x, z )  is the index profile of the 
waveguide, and no is the reference index to be appropriately 
chosen. 

The nonuniform sampling grid under consideration is shown 
in the inset of Fig. 2, where r represents the grid growth factor. 
By Taylor series expansion, E,+1 and E,-1 are expressed as 

aE, 1 2a2E, E;+1 =E, + rAx- + -r2Ax - 
dx 2 8x2 

1 d3EZ 1 d4 E, + -r3Ax3- + -r4Ax4- 
6 dx3 24 ax4 (2) 

From (2) and (3), we have 

2 - - d2 E; 
dx2 ( r2  + 1)Ax2 

8Ei 6E; 1 d2E; 1 d3 E, 
- - -- - -(r - 1)Ax- - - ( r2  - r + 1)Ax2- dx Ax 2 dx2 6 ax3 

where 
Ei+1 - E;-1 

SE; = 1 '  
r + i  

By substituting (5) into (4), the second 
written in the form 

(5 )  

(6) 

derivative can be 

d2E, S2E; 1 a 3  E, 
__ - - -- - ( T  - 1)Ax- 
ax2 Ax2 3 8x3 

(7) 
1 d4 E, 

- -(r2 - T + l)Ax2- 
12 8x4 
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Fig 1 Effective-index ei-ror as a functlon of transverse samphng wldth 
(T = 1) 

where 
2 

S2E - -[Ez-1 - (1 + 1 / ~ ) E z  + E2+1/r]. (8) " r + l  

terms in the right-hand sides of (5) and (7) 
are the conventional nonuniform approximations to the first 

s, respectively. Equation (8) has widely 
d to analyze an optical waveguide [2]-[41. It should 

(8) have the truncation error of O ( A Z ) ~  
f r = 1 + O(Ax). 

We now introduce the GD scheme [7] in order to evalu- 
ate the third and fourth derivatives in (7). Using (I), these 
derivatives are rewritten as 

It should be noted that the truncation error can be reduced to 
0 ( provided the condition of r = 1 + 0 ( Az) is satisfied. 

From the foregoing, we can establish 

S2Ez 3 r 2 - 3 r + l (  E ) C- - VE - -- 

Ax2 6r ( r+1)  2+1 

- r 2 + 7 r - 1 (  E ) \ 
+ 0- - u E  

6r 2 

Alternatively, we can replace S in (9) by the following 
three-point representation: 

In this case, we obtain the slightly different result: 

@E2 - r 2 + r -  1 dE 
Ax2 6r(r + 1) (% - - 

2+1 

In this case, we obtain the slightly different result: 

@E2 - r 2 + r -  1 dE 
Ax2 6r(r + 1) (% - - 

2+1 

Fig 2 Effective-index error as 

As can be expected, ea 
uniform case when r = 1 

window edge, the transparent bo 
incorporated. 

condition [ 121 i s  easily 

We treat a symmetric 
the refractive index is 
where n, = 2.1455, 
wavelength considered here i s  
eigenmode is analyzed using 

(9) E9I-El1l. 
We first summarize the result 

The numerical parameter 

effective index as a func 

Since the reduced trunc 

nonuniform grid. The grid 
center of the waveguide to 
window. Throughout this 

made under the CO 

window dimension 

growth factor r .  In 

large. In contrast, the 

is opposite to that in (11). 
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Fig. 3. 
exact solution as a function of grid growth factor T .  

Overlap integral between the numerically determined field and the 

o CD scheme (Eq.(ll)) 

grid growth factor r 
Fig. 4. Effective-index error of a three-dimensional waveguide as a function 
of grid growth factor r.  

Consideration is also given to the accuracy of a field profile. 
The overlap integral between the numerical and exact solutions 
is evaluated. Fig. 3 shows that the overlap integral for the 
present scheme with r = 1.3 nearly coincides with that for the 
conventional one with T = 1. In the above analysis, the total 
number of the transverse sampling points 2 M are reduced from 
400 (T = 1: a uniform grid) to 60,40 and 30 when r is 1.1, 1.2 
and 1.3, respectively. This fact greatly contributes to reduction 
in computational time while maintaining its accuracy. 

As a further application, we analyze a three-dimensional 
waveguide whose index profile takes a Gaussian function 

n(z ,  y) = n8 + Anexp(-z2/d2)ezp(-y2/d2) (14) 

where ns = 2.146, An = 0.01, and d = 3.5 pm. The 
computaional window size is approximately 2L, x 2L, = 16 
pm x 16 pm. The initial sampling widths are Ax1 = Ay1 = 
0.2 pm, and Az = 0.5 pm, X = 1.3 pm. We apply (11) 
to the alternating-direction implicit method. Fig. 4 shows the 
effective-index error as a function of r(= r, = r,), in which 
a value obtained from the GD scheme with T = 1 is assumed 
to be exact. The GD scheme is also effective in the analysis 
of a three-dimensional waveguide. 

The discussion in this letter has been restricted to the 
eigen mode analysis. When we apply the present scheme 

to the propagating beam analysis of a longitudinally varying 
structure, we may have to use an adaptive grid in which the 
missing values of the field are determined by an interpolation 
technique [ 131. 

IV. CONCLUSION 

The generalized Douglas scheme for a nonuniform grid 
has been applied to the finite-difference beam propagation 
method. The formulation shows that the finite-difference equa- 
tion results in a tridiagonal matrix achieving the truncation 
error of O ( A X ) ~ ,  provided the grid growth factor is T = 
1 + O(Ax). The numerical results regarding a graded-index 
waveguide reveal the superiority of the present scheme over 
the conventional nonuniform scheme. 

ACKNOWLEDGMENT 

While the authors were preparing this manuscript, one of the 
authors (J. Yamauchi) had the opportunity to discuss a high 
accuracy scheme with Dr. G.R. Hadley of Sandia National 
Laboratories. The authors would like to express their gratitude 
to him for fruitful discussions. 

REFERENCES 

D. Yevick, J. Yu, M. Munowitz, and D. Vezzetti, “Modal analysis of 
semiconductor rib waveguides employing nonequidistant grids,” J. Opt. 
Soc. Amer. A, vol. 8, no. 9, pp. 1385-1388, 1991. 
Y. Chung, and N. Dagli, “Analysis of Z-invariant and Z-variant semi- 
conductor rib waveguides by explicit finite difference beam propagation 
method with nonuniform mesh configuration,” IEEE J. Quantum Elec- 
tron., vol. 27, pp. 2296-2305, 1991. 
T. Rasmussen, J. H. Povlsen, and A. Bjarklev, “Accurate finite difference 
beam propagation method for complex integrated optical structures,” 
IEEE Photon. Technol. Lett., vol. 5, pp. 339-342, 1993. 
P. L. Liu, S. L. Yang, and D. M. Yuan, “The semivectorial beam prop- 
agation method,” IEEE J. Quantum Electron., vol. 29, pp. 1205-1211, 
1993. 
G. S. Pu, T. Mizumoto, and Y. Naito, “Modified numerical technique for 
beam propagation method based on the Galerkin’s technique,” ZEZCE 
Trans. Electron., vol. E77-C, no. 3, pp. 510-514, 1994. 
D. Yevick, C. Rolland, W. Bardyszewski, and B. Hermansson, “Fresnel 
studies of reflected beams,” ZEEE Photon. Technol. Lett., vol. 2, pp. 
490492, 1990. 
J. Yamauchi, J. Shibayama, and H. Nakano, “Modified finite-difference 
beam propagation method based on the generalized Douglas scheme for 
variable coefficients,” ZEEE Photon. Technol. Lett., vol. 7, pp. 661-663, 
1995. 
J. Yamauchi, 0. Saito, and H. Nakano, “Improved finite-difference 
beam-propagation method for nonuniform grid,” ZEZCE Spring Nul. 
Conv. Rec., C-211, 1995. 
D. Yevick, and W. Bardyszewski, “Correspondence of variational finite- 
difference (relaxation) and imaginary-distance propagation methods for 
modal analysis,” Opt. Lett., vol. 17, no. 5, pp. 329-330, 1992. 
C. L. Xu, W. P. Huang, and S. K. Chaudhuri, “Efficient and accurate 
vector mode calculations by beam propagation method,” J.  Lightwave 
Technol., vol. 11, pp. 1209-1215, 1993. 
S. Jungling and J. C. Chen, “A study and optimization of eigenmode 
calculations using the imaginary-distance beam-propagation method,” 
ZEEE .I. Quantum Elecrron., vol. 30, pp. 2098-2105, 1994. 
G. R. Hadley, “Transparent boundary condition for beam propagation,” 
Opt. Lett., vol. 16, no. 9, pp. 624-626, 1991. 
C. Massini, G. Bellanca, P. Bassi, and R. Sorrentino, “An FD-BPM with 
adaptive mesh for longitudially varying optical structure,” Opt. Quantum 
Electron., vol. 27, no. 10, pp. 951-959, 1995. 

Authorized licensed use limited to: HOSEI UNIVERSITY KOGANEI LIBRARY. Downloaded on August 31, 2009 at 23:58 from IEEE Xplore.  Restrictions apply. 


