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Abstract— The finite-difference beam propagation method
based on the Douglas scheme is extended to a nonuniform grid.
The truncation error is reduced to O(Ax)*, provided the grid
growth factor is » = 1 4+ O(Axz), while maintaining a tridiag-
onal matrix. The numerical results show that the accuracy is
improved as compared with that obtained from the conventional
nonuniform Crank—Nicholson scheme.

Index Terms— Finite-difference methods, optical propagation,
optical waveguides.

I. INTRODUCTION

O IMPROVE computational efficiency of the finite-

difference beam propagation method (FD-BPM), a
nonuniform transverse sampling grid . is often employed
[1]-[5]. The truncation error of the conventional nonuniform
difference approximation to the second derivative is O(Axz)?,
provided the grid growth factor is » = 1 + O(Az). Yevick
et al. [1] refined the conventional nonuniform operator of the
second derivative and improved its accuracy. Unfortunately,
this results in a pentadiagonal matrix with time-consuming
procedures.

For a uniform grid, the truncation error can be reduced to
O(Az)* by using the Douglas scheme, maintaining a tridiag-
onal matrix [6]. Recently, the authors have also developed the
modified FD-BPM based on the generalized Douglas (GD)
scheme for variable coefficients [7]. However, it has been
believed that the Douglas scheme is valid only for a uniform
grid [6]. In 1995, the authors pointed out that Douglas scheme
can be extended to a nonuniform grid [8].

In this letter, we present the detailed derivation of a novel
FD-BPM based on the Douglas scheme generalized for a
nonuniform grid. The philosophy behind the present formula-
tion is to eliminate the low-order error terms in Taylor series
expansion. It is demonstrated that the truncation error can
be reduced to O(Az)?, provided the grid growth factor is

= 1 4 O(Az). For the assessment of the accuracy, the
effective index of a graded-index waveguide is calculated
using the imaginary-distance BPM [9]-[11]. In addition, the
overlap integral between the numerically determined field and
the exact solution is evaluated. It is found that the present
scheme offers significant improvement, as compared with the

. conventional nonuniform Crank-Nicholson (CN) scheme.
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II. FORMULATION

We derive a high-accuracy nonuniform scheme in a two-
dimensional (2-D) problem. The Fresnel equation is expressed
as

oF  8%E

o =
dz ~ 8z
where ¢ = 2jkno and v = k*[n%(z,z) — n2] in which k is
the free space wavenumber, n(z, z) is the index profile of the
waveguide, and n¢ is the reference index to be appropriately
chosen. _ .

The nonuniform sampling grid under consideration is shown
in the inset of Fig. 2, where r represents the grid growth factor.
By Taylor series expansion, F;1; and E;_; are expressed as
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By substituting (5) into (4), the second derivative can be
written in the form
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Fig. 1. Effective—ihdex error as 'a function of transverse sampling width
(r =1).
where
2 .
§E; = m[E¢—1 —(1+1/r)Ei+ Eiy1 /] (8)

Evidently, the. first terms in the right-hand sides of (5) and (7)
are the conventional nenuniform approximations to the first
and second derivatives, respectively. Equation (8) has widely
been used to analyze an optical waveguide [2]-[4]. It should
be noted that (6) and (8) have the truncation error of O(Ax)?
under the condition of r = 1 + O(Az).

We now introduce the GD scheme [7] in order to evalu-
ate the third and fourth derivatives in (7). Using (1) these
derivatives, are rewritten as

3B, 6§ [ OE
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It should be noted that the truncation error can be reduced to
O(Axz)*, provided the condition of r = 14+ O(Az) is satisfied.
From the foregoing, we can establish
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Alternatively, we can -replace § in (9) by the following
three-point representation: .
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In this case, we obtain the slightly different result:
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Fig. 2. Effective-index error as-a function.of :grid grthh factor .

As can be expected, each of (11) and (13) is reduced fo the
uniform case when r = 1 [7, equation (3)]. It is obvious that
each of (11) and (13) leads to a 6-point scheme, which can be
efficiently solved by standard techniques. At the computational
window edge, the transparent boundary condition [12] is easily
incorporated. ‘ ‘ :

11T, NUMERICAL RESULTS

We treat a symmetric graded-index slab waveguide in Which
the refractive index is n%(z) = n? + 2n;An/cosh*(2z /w),
where n, = 2.1455, An = 0.003 and w = 5 pm. A
wavelength considered here is A =1.3 um. The lowest order
eigenmode is -analyzed using the imaginary- dlstance ‘BPM
[91-[111.

We first summarize the results for a uniform grid (r= 1)
The numerical parameters are as follows: the propagation ‘step
length Az = 1 um and the total number of the transverse
sampling points 2M = 400. Fig. 1 shows the error in the
effective index as a function of Az. Also included for compar-
ison is the result obtained with the conventional CN scheme. It
should be noted that the error of the present scheme is almost
proportional to Az*, while that of the conventlonal scheme
is Az?.

Since the reduced truncation error of the present scheme
has been verified, consideration is next given to the case of a
nonuniform grid. The grid spacing increases’ gradually from the
center of the waveguide toward the edges of the computational
window. Throughout this analysis, the gnd growth factor r
is fixed. That is, the transverse samphng ‘width is expressed
as Az, = 7™ YAz, m = 1,--, M. The initial sampling
width is taken to be Azy = ‘0.208 pm. The calculation is
made under the condition” of almost the same computational
window dimension of 2L, ~ 83.2um. The propagatioﬁ stép
length is Az = 1 gm: ‘ '

Fig. 2 shows the effective-index error as a function of grid
growth factor 7. In general, the accuracy gradually decreases
as r is increased. It should be noted, however, that the present
scheme maintains high accuracy, even when r is relatively
large. In contrast, the accuracy for the conventlonal nonuii-
form CN scheme degrades considerably as r is increased. It
is interesting to note that (13) produces the error whose s1gn
is opposite to that in (11).
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Fig. 3. Overlap: integral between the numerically determined. field and the
exact solution as:a function of grid growth factor 7. '
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Fig. 4. Effective-index error of a three-dimensional waveguide as a function
of grid growth factor r.

Consideration is also given to the accuracy of a field profile.
The overlap integral between the numerical and exact solutions
is evaluated. Fig. 3 shows that the overlap integral for the
present scheme with » = 1.3 nearly coincides with that for the
conventional one with r = 1. In the above analysis, the total
number of the transverse sampling points 2\ are reduced from
400 (r = 1: a uniform grid) to 60, 40 and 30 when ris 1.1, 1.2
and 1.3, respectively. This fact greatly contributes to reduction
in computational time while maintaining its accuracy.

As a further application, we analyze a three-dimensional
waveguide whose index profile takes a Gaussian function

n(z,y) = ns + Anexp(—x2/d2)ea:p(—y2/d2) 14)

where n, = 2.146, An = 0.01, and d = 3.5 pm. The
computaional window size is approximately 2L, x 2L, = 16
pm x 16 pm. The initial sampling widths are Az; = Ay =
02 pm, and Az = 0.5 um, A = 1.3 pym. We apply (11)
to the alternating-direction implicit method. Fig. 4 shows the
effective-index error as a function of r(= r, = ry), in which
a value obtained from the GD scheme with = 1 is assumed
to be exact. The GD scheme is also effective in the analysis
of a three-dimensional waveguide.

The discussion in this letter has been restricted to the
eigen mode analysis. When we apply the present scheme
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to the propagating beam analysis of a longitudinally varying
structure, we may have to use an adaptive grid in which the
missing values of the field are determined by an interpolation
technique [13].

IV. CONCLUSION

The generalized Douglas scheme for a nonuniform grid
has been applied to the finite-difference beam propagation
method: The formulation shows that the finite-difference equa-
tion results in a tridiagonal matrix achieving the truncation
error of O(Az)%, provided the grid growth factor is r =
1+ O(Az). The numerical results regarding a graded-index
waveguide reveal the superiority of the present scheme over
the conventional nonuniform scheme.
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