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Abstract—The modified finite-difference formula is presented ;
for the second derivative of a semivectorial field in a step-index discontinuity —
optical waveguide. The present formula achieves a truncation :

error of O(Az?) provided the discontinuity coincides with a mesh N Di P Tin
point or lies midway between two mesh points. Furthermore, the di oi din1
formula allows a general position of the interface, when used } } ]
with the beam-propagation method (BPM). To demonstrate the il . ; w1
effectiveness of the formula, asymmetric step-index waveguides < Ax—><EAXH

are analyzed using the imaginary-distance BPM.

Index Terms—Finite-difference methods, optical propagation, Fig- 1. Mesh points near a discontinuity.

optical waveguides. Il. DISCUSSION

Following the procedure developed by Vassallo [4], we treat
. INTRODUCTION three consecutive mesh points with a discontinuity between
HEN a step-index optical waveguide is analyzed usir@pints i and + 1, as shown in Fig. 1. The interface is at
a finite-difference method, care has to be taken at gistance{Az (with 0 < £< 1) from pointi. We derive the
interface between two different media [1]. Stern [2] developdihite-difference approximation for the second derivative at
the finite-difference formula for a semivectorial field in wavepoint i.
guides with refractive-index discontinuities. Subsequently, We consider the one-dimensional Helmholtz equation ex-
Kim and Ramaswamy [3] extended Stern’s expression topgessed as
general position of the interface with respect to mesh points. 3oz
Meanwhile, Vassallo [4] generalized Stern’s expression and ad;(Q ) + [K*n*(z) = Flg(x) = 0 (1)
proposed the improved finite-difference formulas for scalgfhere’ is the free-space wavenumbét,is the propagation
and semivectorial fields. The study similar to that of Vassallgpnstant, anch(z) is the index profile.
was also made by Wijnandst al. [5]. It should be noted,  To obtain the finite-difference formula regardi@gep; /922,
however, that all the expressions presented so far have haglefirst express the fields;_; and; 41 Using Taylor’s series

truncation error ofO(Ax) for semivectorial fields. expansion.¢;_, is given as
The purpose of this letter is to present an improved finite- b Aw?
difference formula for a semivectorial field, which ensures Pi-1 =di = Ar o+ —— o3
a truncation error ofO(Az?) provided the interface co- A 83; *
incides with a mesh point or lies midway between two - L+ O(AzY). (2)

i i : 6 O3
mesh points. When used with the beam-propagation methoq, .. L . .
(BPM), the present formula allows a general position of th C{Nlth respect tap; 11, the continuity relations at the interface

interface without the knowledge of the propagation constar%oglq be satisfied. Lepr and ¢, refer fo the fields at
. . . the infinitesimally right and left of the interface, respectively.
To demonstrate its higher accuracy than previous formul

an asymmetric step-index slab waveguide and an embed EN¢r is Used.p;4, can be written as

id ined. Th he mod il IR Az® Ppr
waveguide are examined. The accuracy of the mode profile bir =dr+ (1— Az F(1-¢)?
and the propagation constant is evaluated using the imaginary- Ox 2 Ox?

distance BPM [6]-[8]. Az® Por
[61-{8] +(1- PSSR oA, ®
On the other hand, using;, ¢;, can be expressed as
8¢Z 2 A.’IZQ 82¢z
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Since the relation betweepr and ¢y, is given by 104 £ S —— — g
¢r =0¢L E o present E
IR — 9oL 105 | o Vassallo [4] i
Oz Oz g E
o 50 = E & Stern [2] E
R _ L 202 2 = 8 ]
a2 _9[ orz TH n”l)%} S 10k ]
83¢R _ 83¢L 2/ 2 2 a(/)L § E §
052 ox3 + k=(n; —”i+1)%- = i ]
¢i+1 can be rewritten in the form & 107
+ |1 = &+ 6 + mAz? 95+1—_5 Ay 1078 ¢
3 dx g 3
Az? 32¢; - -
+9£2+2£1_£ +91_£2—— -9 ) T S B A N 1 T B SN SN
[ (1= +60- 8455 il o d

+ [0€% + 367 (1 = &) + 36¢(1 — £)? transverse mesh width Ax [gm]

3 Az 33, 4
+ (1 _5) ] 6 Or3 +O(A$ ) (5) Fig. 2. Overlap integral between the numerical and exact fields in an
where asymmetric slab waveguide as a function of transverse mesh width.
9 = 7112/7112_1_1 and m= %kQ(l - 5)2(7112 - n3+1) 10_6 = T T T T T T T T T
The finite-difference formula for the second derivative can g ® 3%¢i/3x® is evaluated
be obtained by substituting (2) into (5). Unfortunately, (5) is 53 - o Jgi/dx® is omitted ]
not simple. Therefore, Vassallo neglected the® terms, and - 10-7 L o Vassallo [4]
contented himself with a zeroth-order formula. However, in & | E
this formulation we retain the\z® terms. Then, we establish & 8 ]
the following finite-difference formula: = 10*3‘— i
82¢i a¢i—1 + b(/)z + C(/)i—i—l Az 83@ % F 3
= —_— O(Az?) (6 - # ]
By I ¢ gps 10RO ]
Where © 10-—9 | 1 1 1 1 1 ¢ 1 1 ¢ |
a =14 (0 —1)¢ +mAz’l 0.0 0.5 1.0
b==2—(0—-1)(1+&) —mAz*(6+1) £
c=1

Fig. 3. Overlap integral between the numerical and exact fields in an
d=1+ %(9 _ 1)(252 _ 5 + 1) + %mAwQF asymmetric slab waveguide as a function of interface position.

e=—(0-1)§E-1)(26-1)/d
in which I' = 8¢ + £(1 — €). It is worth mentioning that the
coefficient of 93¢, /02 vanishes when eithef = 0 or £ =

of transverse mesh width are shown in Fig. 2. In this analysis,
¢ is fixed to be 0.5. The propagation step length is taken to be
. . Az = 0.1 yum. The computational window dimension is fixed
0.5. !n other W.OFdS’ () acfyeyes a tryncatlon erroO()ﬁa:Q) . to be 6umleCaIcuIations are made at a propagation distance of
provided the interface coincides with a mesh point or ligg) o, ‘N significant additional computation time is observed
midway between two mesh points. Now we comment on thg,'1he hresent formula, and the memory requirement of the
relation between (6) and previous formulas. After ”egleCt'rtﬂ'esent formula is the same as that of Vassallo's one. It
the 9°¢; /0z° term, we obtain Vassallo's expression [4] Withg clearly seen that the present formula leads to substantial
I' = 0. Furthermore, (6) reduces to Stern’s expression [2] i nrovement in accuracy over not only Stern’s one but also
makingm = 0 and¢ = 0.5. vassallo's one.

To investigate the properties of various formulas, we first | js interesting to investigate the properties of (6) as
analyze an asymmetric step-index slab waveguide. The refracfynction of ¢, with the 83¢;/9z3 term being omitted.
tive indices of the core, substrate and superstrate are Chosepigg 3 shows the overlap integral as a function¢ofin this
be ncore = 3.512,n5u, = 3.17 andnsy, = 1.0, respectively. calculation, Az is chosen to bev/42 ~ 0.0119um, and other
The core width is taken to bes = 0.5 um. The imaginary- numerical parameters are the same as those in Fig. 2. For
distance BPM [6]-[8] is used to obtain the lowest eigenmod@®mparison, the results obtained from Vassallo’s expression
at a wavelength ofA = 1.55 pm. are also presented. It is seen that the results obtained from

Consideration is given to the accuracy of the field profil§6) show oscillatory behavior as a function &fAs expected,
The overlap integral between the numerical and exact solutiahg result exhibits the same value &t= 0 and 0.5, while
is evaluated. The correlation between them predicts the acaghieving higher accuracy. In contrast, Vassallo’s expression
racy of the finite-difference formula. The results as a functids insensitive to the change i
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Finally, we apply the present formula to the alternating-
direction implicit method, and analyze a three-dimensional
embedded waveguide shown in the inset of Fig. 4. The re-
fractive indices are chosen to bhg = 1.5, n; = 1.55, and
ny = 1.0, respectively. The aspect ratio & /7" is two.
The quasi-TM mode at a wavelength af = 1.55 ym is
considered. The computational window dimensions are fixed
to be L, = 17 pm andL,, = 10.2 zm. Since the exact mode
profile cannot be obtained in a three-dimensional waveguide,
we assess the accuracy using the convergencgg/ of Fig. 4
showsf/k as a function of the total number of mesh points,
Nz x N,, in the transverse directions. The propagation step
length isAz = 0.25.m. We can find faster convergence of the
present formula. The contour plots of the field are illustrated in
Fig. 5. The electric-field discontinuities across the horizontal

Fig. 4. Effective index of an embedded waveguide as a function of the totAlterfaces are clearly visible.

number of mesh points in the transverse directions.

Fig. 5. Contour plots of the field.

To eliminate the dependence &fon accuracy in (6), we
have to evaluate?®;/dz>. It should be noted that when [4]

(6) is used with the BPM, we can evalua®¢; /023, just

as in the case of the generalized Douglas scheme [9]. Thg

third derivative can be regarded &§?¢;/9z?), whereé =

(¢ — di—1)/Ax + O(Ax). The second derivative is replaced
using the Fresnel equation, so that the truncation error of (6) ig
reduced taD(Az?). The result obtained from this technique is

also presented in Fig. 3. It is found that the dependenéenaf

accuracy is almost eliminated. Alternatively, we can eliminate
the second derivative using (1). In this case, the second term

in the right-hand side of (6) becom@s:?n?_; — 3%)d;—1 —

(k?n? — 3?)¢;]e/3. Calculation shows that the results are

I1l. CONCLUSION

The modified finite-difference formula which ensures a
truncation error of2(Az?) has been presented for the analysis
of a semivectorial field in a step-index optical waveguide.
The formula is derived by taking into account the higher
order term, which is related to the interface conditions at a
discontinuity. To assess the accuracy, the overlap integral in
an asymmetric slab waveguide and the propagation constant
of a three-dimensional embedded waveguide are evaluated by
the imaginary-distance beam-propagation method. The present
formula offers substantial improvement in the analysis of the
semivectorial fields compared with the conventional ones.
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