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Abstract—The modified finite-difference formula is presented
for the second derivative of a semivectorial field in a step-index
optical waveguide. The present formula achieves a truncation
error of O(�x2) provided the discontinuity coincides with a mesh
point or lies midway between two mesh points. Furthermore, the
formula allows a general position of the interface, when used
with the beam-propagation method (BPM). To demonstrate the
effectiveness of the formula, asymmetric step-index waveguides
are analyzed using the imaginary-distance BPM.

Index Terms—Finite-difference methods, optical propagation,
optical waveguides.

I. INTRODUCTION

W HEN a step-index optical waveguide is analyzed using
a finite-difference method, care has to be taken at an

interface between two different media [1]. Stern [2] developed
the finite-difference formula for a semivectorial field in wave-
guides with refractive-index discontinuities. Subsequently,
Kim and Ramaswamy [3] extended Stern’s expression to a
general position of the interface with respect to mesh points.
Meanwhile, Vassallo [4] generalized Stern’s expression and
proposed the improved finite-difference formulas for scalar
and semivectorial fields. The study similar to that of Vassallo
was also made by Wijnandset al. [5]. It should be noted,
however, that all the expressions presented so far have had a
truncation error of for semivectorial fields.

The purpose of this letter is to present an improved finite-
difference formula for a semivectorial field, which ensures
a truncation error of provided the interface co-
incides with a mesh point or lies midway between two
mesh points. When used with the beam-propagation method
(BPM), the present formula allows a general position of the
interface without the knowledge of the propagation constant.
To demonstrate its higher accuracy than previous formulas,
an asymmetric step-index slab waveguide and an embedded
waveguide are examined. The accuracy of the mode profile
and the propagation constant is evaluated using the imaginary-
distance BPM [6]–[8].
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Fig. 1. Mesh points near a discontinuity.

II. DISCUSSION

Following the procedure developed by Vassallo [4], we treat
three consecutive mesh points with a discontinuity between
points and as shown in Fig. 1. The interface is at
distance (with from point . We derive the
finite-difference approximation for the second derivative at
point .

We consider the one-dimensional Helmholtz equation ex-
pressed as

(1)

where is the free-space wavenumber,is the propagation
constant, and is the index profile.

To obtain the finite-difference formula regarding
we first express the fields and using Taylor’s series
expansion. is given as

(2)

With respect to the continuity relations at the interface
should be satisfied. Let and refer to the fields at
the infinitesimally right and left of the interface, respectively.
When is used, can be written as

(3)

On the other hand, using can be expressed as

(4)
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Since the relation between and is given by

can be rewritten in the form

(5)

where

and

The finite-difference formula for the second derivative can
be obtained by substituting (2) into (5). Unfortunately, (5) is
not simple. Therefore, Vassallo neglected the terms, and
contented himself with a zeroth-order formula. However, in
this formulation we retain the terms. Then, we establish
the following finite-difference formula:

(6)

where

in which . It is worth mentioning that the
coefficient of vanishes when either 0 or
0.5. In other words, (6) achieves a truncation error of
provided the interface coincides with a mesh point or lies
midway between two mesh points. Now we comment on the
relation between (6) and previous formulas. After neglecting
the term, we obtain Vassallo’s expression [4] with

0. Furthermore, (6) reduces to Stern’s expression [2] by
making 0 and 0.5.

To investigate the properties of various formulas, we first
analyze an asymmetric step-index slab waveguide. The refrac-
tive indices of the core, substrate and superstrate are chosen to
be 3.512, 3.17 and 1.0, respectively.
The core width is taken to be 0.5 m. The imaginary-
distance BPM [6]–[8] is used to obtain the lowest eigenmode
at a wavelength of

Consideration is given to the accuracy of the field profile.
The overlap integral between the numerical and exact solutions
is evaluated. The correlation between them predicts the accu-
racy of the finite-difference formula. The results as a function

Fig. 2. Overlap integral between the numerical and exact fields in an
asymmetric slab waveguide as a function of transverse mesh width.

Fig. 3. Overlap integral between the numerical and exact fields in an
asymmetric slab waveguide as a function of interface position.

of transverse mesh width are shown in Fig. 2. In this analysis,
is fixed to be 0.5. The propagation step length is taken to be

0.1 m The computational window dimension is fixed
to be 6 m. Calculations are made at a propagation distance of
50 m. No significant additional computation time is observed
for the present formula, and the memory requirement of the
present formula is the same as that of Vassallo’s one. It
is clearly seen that the present formula leads to substantial
improvement in accuracy over not only Stern’s one but also
Vassallo’s one.

It is interesting to investigate the properties of (6) as
a function of , with the term being omitted.
Fig. 3 shows the overlap integral as a function of. In this
calculation, is chosen to be 0.0119 m, and other
numerical parameters are the same as those in Fig. 2. For
comparison, the results obtained from Vassallo’s expression
are also presented. It is seen that the results obtained from
(6) show oscillatory behavior as a function of. As expected,
the result exhibits the same value at 0 and 0.5, while
achieving higher accuracy. In contrast, Vassallo’s expression
is insensitive to the change in.
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Fig. 4. Effective index of an embedded waveguide as a function of the total
number of mesh points in the transverse directions.

Fig. 5. Contour plots of the field.

To eliminate the dependence ofon accuracy in (6), we
have to evaluate It should be noted that when
(6) is used with the BPM, we can evaluate just
as in the case of the generalized Douglas scheme [9]. The
third derivative can be regarded as , where

. The second derivative is replaced
using the Fresnel equation, so that the truncation error of (6) is
reduced to . The result obtained from this technique is
also presented in Fig. 3. It is found that the dependence ofon
accuracy is almost eliminated. Alternatively, we can eliminate
the second derivative using (1). In this case, the second term
in the right-hand side of (6) becomes

. Calculation shows that the results are
almost the same as those obtained using the Fresnel equation.
It should be noted, however, that the latter technique requires
the knowledge of .

Finally, we apply the present formula to the alternating-
direction implicit method, and analyze a three-dimensional
embedded waveguide shown in the inset of Fig. 4. The re-
fractive indices are chosen to be 1.5, 1.55, and

1.0, respectively. The aspect ratio of is two.
The quasi-TM mode at a wavelength of 1.55 m is
considered. The computational window dimensions are fixed
to be 17 m and 10.2 m. Since the exact mode
profile cannot be obtained in a three-dimensional waveguide,
we assess the accuracy using the convergence of. Fig. 4
shows as a function of the total number of mesh points,

, in the transverse directions. The propagation step
length is 0.25 m. We can find faster convergence of the
present formula. The contour plots of the field are illustrated in
Fig. 5. The electric-field discontinuities across the horizontal
interfaces are clearly visible.

III. CONCLUSION

The modified finite-difference formula which ensures a
truncation error of has been presented for the analysis
of a semivectorial field in a step-index optical waveguide.
The formula is derived by taking into account the higher
order term, which is related to the interface conditions at a
discontinuity. To assess the accuracy, the overlap integral in
an asymmetric slab waveguide and the propagation constant
of a three-dimensional embedded waveguide are evaluated by
the imaginary-distance beam-propagation method. The present
formula offers substantial improvement in the analysis of the
semivectorial fields compared with the conventional ones.
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