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Abstract-The finite-difference beam-propagation method (ED- 
BPM) with a (1,l) PadC approdmant operator is formulated for 
circularly symmetric waveguides. A tapered step-index fiber is 
analyzed, and the computed field distribution is compared with 
that from the scalar finite-difference time-domain method (FD- 
TDM). The present method offers improvement in the evaluation 
of a radiation-mode field compared with the conventional FD- 
BPM based on the paraxial approximation. 

I. INTRODUCTION 

HE finite-difference beam-propagation method [ 11 (FD- 
BPM) is an efficient means of analyzing the propagating 

beam in an optical waveguide. However, it is well-known in 
the rectangular coordinates that the accuracy of the FD-BPM is 
degraded in the analysis of wide-angle propagation because the 
paraxial approximation is employed. To avoid this degradation, 
several techniques have been proposed [2]-[3] using Pad6 
approximant operators. Recently, Yevick and Hermansson 
[4] discussed the convergence properties of wide-angle tech- 
niques. 

Since the conventional BPM in the rectangular coordinates 
results in reduced computational efficiency for propagation 
problems in circularly symmetric waveguides, a method of 
analyzing a propagating field in the cylindrical coordinates 
has also received much attention [5]-[9]. All the BPM’s in 
the cylindrical coordinates reported so far are based on the 
paraxial approximation. It should be noted that the BPM based 
on the finite-difference techniques [9] has the advantage that 
a transparent boundary condition [ 101 is easily incorporated. 
However, it can be predicted that the accuracy of the conven- 
tional FD-BPM for circularly symmetric waveguides is also 
degraded in the analysis of wide-angle propagation. 

In this letter, we formulate a FD-BPM with a (1,l) PadC 
approximant operator for circularly symmetric waveguides to 
attain a high degree of accuracy in analyzing wide-angle beam 
propagation We treat a tapered step-index fiber, and compare 
the field distribution computed from the present method with 
that from the scalar finite-difference time-domain method 
(FD-TDM) [ I l l  in the cylindrical coordinates [12]. The FD- 
TDM has penalty in the computation time, but the result is 
accurate since no approximation is introduced with respect to 
the propagating beam direction. Recently, some discrepancy 
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between the €9-TDM and the FD-BPM based on the paraxial 
approximation was reported in the evaluation of a radlation- 
mode field in a slab optical waveguide [13]. This is partly 
due to the fact that a radiation-mode field includes wide- 
angle propagating beam components. Therefore, we check 
the accuracy in the wide-angle beam propagation using the 
results obtained from the FD-TDM. We show that the present 
method offers improvement in the analysis of a radiation-mode 
field, while maintaining the advantages of the conventional 
FD-BPM. 

11. FORMULATION 
We consider the propagation of a field of E(r,  4, z )  in an 

optical fiber. The scalar Helmholtz equation in the cylindrical 
coordinates is 

d2E d2E 1dE 1 d2E 
7 + ~ + -- -I- -- + kgn2(r, 4, Z ) E  = o 
dz  dr2  r dr r2 &p2 (1) 

where ko is the wavenumber in free space, E(r,  4, z ) e z p ( j w t )  
is a component of the electric field at an angular frequency of 
w,  and n(r, 4,  z )  is the index profile of the waveguide. For 
convenience, the electric field E is expressed as 

E(T, A.) = G(r, z)e~pp(-jkonoz)ezp(jZ4) (2) 

where no is a reference refractive index and 1 is integer. 
Substituting (2) into (l), we obtain 

(3)  

(3) reduces to the paraxial equation, when we neglect the term 
of &. Here, & is evaluated by the following way [3]. 

We may formally rewrite (3)  in the form: 

(4) 

where 

When the recurrence relation with respect to & is utilized, 
the following simplified equation with the (1,l) PadC operator 
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is obtained 

To (6)' the Crank-Nicholson (CN) scheme is applied and the 
difference equation is derived. The CN scheme is an implicit 
method and is known to be highly stable. For the difference 
equations, the following simplifying symbol will be used: 

(7) $(T,  z )  = $((i - l )Ar,  kAz) = $S 
where i and IC are integers. Then the difference equation for 
i > 1 is as follows: 

1 - jIConoAz 
l+ jkonoAz '  

The indeterminate form at the origin r = 0 can be eval- 
uated by L'Hospital's rule. Taking into account the circular 
symmetry of the field, 4," = q!$ezp(j/r), we obtain for i = 1: 

where 

b = (1 + expj'") ( 2  - g) 
and 

(8) and (9) lead to a tridiagonal system of linear equations. 
Hence, an efficient computing algorithm can be used as in the 
case of the FD-BPM with the paraxial approximation. It should 
also be noted that a transparent boundary condition [lo] can 
easily be incorporated in the present method. 

Next, we formulate the scalar FD-TDM for circularly sym- 
metric waveguides [12]. The formulation can be regarded 
as an extension of the scalar FD-TDM in the rectangular 
coordinates [ 1 11 to the cylindrical coordinates. We assume that 
n is independent of time. The electric field can be expressed as 

(10) E(r, h z ,  t )  = $(r,  z ,  t)ezdjW) 

so that a scalar wave equation becomes 

(11) 
a2$ i d $  i2 a2$ n 2 d 2 $  = o  
dr2 r dr r2 822 c2 dt2 

where c is the velocity of light in free space. Using a central 
difference formula, we derive 

where n = nf, t = (m - l)At, r = ( i  - l )Ar ,  and z = ( I C  - 
l )Az,  in which 4t, Ar and Ax represent increments along 
the time, transverse and propagation directions, respectively. 

On the fiber axis, r = 0, we again apply L'Hospital's rule 
to the second and third terms of (1 1). Then, we have 

(13) reduces to the following difference equation: 

where n = nt. In contrast to the FD-BPM, the FD-TDM is an 
explict scheme iii which the field values at two previous time 
steps are required. At the edge of the calculation region, we 
apply the Mur's first-order absorbing boundary condition [ 141. 

111. RESULTS 
We analyze a tapered step-index fiber shown in the inset 

of Fig. 1. The refractive indices of the core and cladding are 
nco = 1.5075 and n,l = 1.5, respectively. The initial core 
radius is r, = 5.167 pm, and the wavelength of X = 1.55 pm 
is used, so that ihe normalized frequency of the input fiber is 
taken to be V S 3.15. The input field is the second-order mode 
LPll, which can be obtained analytically. The fiber is tapered 
with Bt = 15.0" and Lt = 15.5 pm, and is connected with 
a single-mode fiber. The computation parameters are taken 
to be Ar = r,/199.5 2 0.0259 pm and Ax = 0.0250 pm. 
The number of lransverse grid points is 500. We compare the 
field distribution computed from the FD-BPM with that from 
the FD-TDM ( c k t  = 0.0020 pm). The discretization mesh for 
each method is taken to be the same. For the analysis using the 
FD-TDM, we employ a monochromatic driving light source 
that generates thke LP11 mode at the entrance of the taper. The 
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Fig. 1. 
tion obtained from the FD-BPM with a (1,l) Pad6 approximant operator. 

Geometry of a tapered step-index fiber and its typical field distribu- 

25.5 

I $ 20.5 

15.5 

- 
h) 

__ FDBPM(Pad6) 

7 

Fig. 2. Comparison between the propagating fields obtained from the 
FD-BPM and the FD-TDM. 

resulting field is propagated in time until a steady state field 
is obtained. 

A typical field distribution obtained from the FD-BPM along 
the tapered fiber is shown in Fig. 1. To compare the fields 
obtained from different techniques in detail, we only show 

the propagating field between z = 15.5 pm and 25.5 pm in 
Fig. 2. The field obtained from the FD-TDM is that observed 
at ct = 100 pm (The field almost reaches a steady state at 
ct = 50 pm). For comparison, the results obtained from the 
FD-BPM using the paraxial approximation are also shown in 
Fig. 2(b). Due to tapering, the LPl1 mode is cut off. Therefore, 
the radiation-mode field is generated and is spread as it propa- 
gates. It is found that using the paraxial approximation makes 
an error in wide-angle propagation. For the FD-BPM using the 
(1J) Pad6 approximant operator, the field distribution fairly 
agrees with that computed from the FD-TDM. 

IV. CONCLUSION 
Finite-difference beam-propagation method with a ( 1,l) 

Pad6 approximant operator for circularly symmetric waveg- 
uides has been formulated to improve the accuracy in wide- 
angle beam propagation. For comparison, we have also for- 
mulated the scalar FD-TDM in the cylindrical coordinates. 
The analysis of a tapered fiber shows that the present method 
has reasonable accuracy in the evaluation of a radiation-mode 
field, while maintaining the advantages of a FD-BPM based 
on the paraxial approximation. 
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