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Abstract-The generalized Douglas scheme for variable coef- 
ficients is applied to the propagating beam analysis. Once the 
alternating direction implicit method is used, the truncation error 
is reduced in the transverse directions compared with the conven- 
tional Crank-Nicholson scheme, maintaining a tridiagonal system 
of linear equations. Substantial improvement in the accuracy is 
achieved even in the TM mode propagation. As an example of the 
semivectorial analysis, the propagating field and the attenuation 
constant of a bent embedded waveguide with a trench section are 
calculated and discussed. 

I. INTRODUCTION 

HE beam-propagation method (BPM) is widely used to T design various optical circuits. In addition to the BPM 
based on the fast Fourier transform [l], the finite difference 
techniques are also applied to the propagating beam analysis 
[2]-[6]. It is well known that the implicit method such as 
the Crank-Nicholson (CN) scheme allows the use of a larger 
propagation step length AZ than the explicit method. The CN 
scheme has an advantage of unconditional stability, although 
the truncation error is O ( A Z ) ~  in the transverse direction. 

To improve the accuracy, Yevick et al. [7] first introduced 
the Douglas scheme [8] into the propagating beam analysis. 
They applied the Douglas scheme to the Fresnel equation with 
the phase term being split. The truncation error is reduced to 
O ( A X ) ~ .  It should be noted, however, that splitting the phase 
term results in the fact that the step length AZ must be small. 
We can expect a larger step length when the phase term is 
not split [9]. 

Recently, we have formulated the modified finite-difference 
beam-propagation method (FD-BPM) based on the general- 
ized Douglas (GD) scheme for variable coefficients [lo], with 
the phase term being not split. The accuracy of our formulation 
is better than that of the previous one derived by Sun and Yip 
[ 1 I], maintaining the advantage that the result is not a sensitive 
function of Az. The truncation error of O ( A Z ) ~  is ensured in 
the transverse direction. 

The purpose of this paper is to discuss the application of the 
GD scheme to the propagating beam analysis in more detail. 
The GD scheme is applied to a semivectorial FD-BPM using 
the alternating direction implicit method (ADIM) [ 121-[ 151. 
Although the GD scheme holds approximately true in the 
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semivectorial FD-BPM, it still gives substantial improvement 
in the accuracy, as compared with the conventional CN 
scheme. 

After demonstrating reduction of the mode-mismach loss 
in a step-index waveguide, we present numerical results of 
a three-dimensional embedded optical waveguide. Properties 
of quasi-TE and quasi-TM polarized modes are investigated 
by solving a semivectorial equation. The field distributions 
of a bent embedded waveguide are evaluated and the effects 
of a trench section [16]-[20] on the attenuation constant are 
discussed. 

11. SCALAR FORMULATION 

We first summarize the GD scheme in a two-dimensional 
problem. The Fresnel equation for the propagating beam 
problem is expressed as 

where CT = 2jkno and v = IC2[n2(x: ,~)  - n;], in which IC is 
the free space wavenumber, n ( x ,  z )  is the index profile of the 
waveguide, and no is the reference index to be appropriately 
chosen. 

The philosophy behind the Douglas scheme is to eliminate 
the truncation error term of the order A2 where A is the trans- 
verse sampling width. When the truncation error is included, 
by Taylor's series expansion the second derivative of function 
E with respect to x is expressed as 

In the conventional CN scheme, only the first term in the 
right-hand side of (1) is evaluated, so that the truncation error 
is  AX)^. 

To reduce the truncation error, we substitute (1) into (2), 
replacing d4E/dz4 with S2(adE/dz  - vE) /Az2  + O ( A X ) ~ .  
Then, the following difference equation can be derived: 
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We now introduce the z differencing and get 

z+l  - E:+, 50 E:+' - E: Q E:?: - 23-1 + -  12 az + -  - 
12 n z  6 Az 

E 

As a result, we obtain the following high accuracy six-point 
scheme: 

r/4 - 

r/6 - 

where 

5jkno AZ 5u;Az [? == ~ 3 Fa*-. 12 

It should be noted that the term U is a variable coefficient. 
Inclusion of the u;&l terms is significant for the reduction 
in the truncation error, as have been discussed previously 
[lo]. Equation (4) can be regarded as the Douglas scheme 
generalized for variable coefficients. The six-point scheme 
allows us to use an efficient computing algorithm such as the 
Thomas algorithm, so that the computational speed is almost 
identical to that in the conventional FD-BPM [3] based on 
the CN scheme. 

The scalar Fresnel equation in three-dimensional (3-D) 
coordinates are as follows: 

where it is difficult to directly derive a high-accuracy scheme. 
As described in [21], the difficulty arises from the fact that 
(1/12)a4(d4E/dz4+d4E/ay4) cannot be expressed in terms 
of the Laplacian of E in a square net of points in the 2-y 
plane. To obtain a high-accuracy scheme, we have to adopt a 
hexagonal net of points. This results in a 14-point scheme. 

It should be noted, however, that once the Peace- 
man-Rachford ADIM [8], [12] is used, a high accuracy 
scheme can be obtained. The difference equation correspond- 
ing to (6) becomes 

EL+, - E z  S;EZ+l + S;E1 6;E1+' + 6iEz 
2Ay2 

+ - - 0 
AZ 2Ax2 

E'+' + E z  
2 (7) 
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Mode-mismatch loss for a step-index fiber as a function of propa- 
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Fig. 2. Mode-mismatch loss for a step-index slab waveguide as a function 
of transverse sampling width: - present, ......... CN scheme, 0 TEo 
mode, A TMo mode. 

Since the treatment regarding the two half-steps is the same, 
we only discuss the first half-step in the following. 

Equation (8) can be separated into 

This is confirmed by the fact that the integration of a ( d E / a z )  
in the interval [z,Az/2] using (10) and (11) results in (8). 
Since the forms of (10) and (1 1) are almost the same as (l), we 
can use the GD scheme even in a 3-D problem. The efficient 
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Fig. 3. Configuration of a bent embedded optical waveguide. 

computing algorithm can again be used as in the case of a 
two-dimensional problem. As a result, the following difference 
equations split into two steps are derived: 

Fig. 1 shows the mode-mismatch loss evaluated at z = 
500 pm as a function of propagation step length Az. For 
comparison, the data obtained from the conventional ADIM 
based on the CN scheme are also presented. It is found that 
the accuracy of the GD scheme is better than that of the CN 
scheme. The numerical result is not a sensitive function of Az. 

111. SEMIVECTORIAL FORMULATION 
Consideration is next given to the semivectorial analysis, 

in which we solve the scalar wave equation but accounts for 
the discontinuity in fields caused by the index variation. The 
semivectorial Fresnel equation is expressed as 

ff- d E  = - (L{ z ( n z E ) } )  + $ + vE. (15) d z  dx n2 dx 

Equation (15) can also be solved by the ADIM. Equations 
corresponding to (10) and (1 1) are, respectively 

in which 

where a = x or y. 
At the edge of the computational window the transparent 

boundary condition (TBC) [22] is imposed. The TBC may fail 
for radiation fields with an appreciable wave vector spread. 
However, as will be shown later, the TBC works well in the 
analysis of a bent waveguide. This is due to the fact that the 
radiation field is dominated by a single transverse wave vector 
component. 

To demonstrate the effectiveness of the GD scheme, we 
first investigate the propagation error of the fundamental mode 
LP01 in a step-index optical fiber. We evaluate the following 
mode-mismatch loss LM 

where E is the propagating field and Eo is the incident field of 
the fundamental mode. The mode-mismatch loss is known to 
be a sensitive indicator of the accuracy of a beam-propagation 
method [3]. 

The fiber has a core radius of T = 5 pm, and the refractive 
indices of NCO = 1.504 and NCL = 1.500. A stepped approx- 
imation is used for the circular core [ 181. The computational 
window dimensions are given by L, x L, = 125 x 125 pm2 
and the wavelength is X = 1.55 pm. In the analysis, the 
reference index is chosen to be that in the cladding. 

The second derivative with respect to y can be treated as in 
the case of (3). Unfortunately, the Taylor’s series expansion 
regarding the second derivative with respect to II: is not simple 
because of the existence of the index term. Therefore, by 
analogy with (2) we assume the following relation based on 
the Stern’s expression [23] 

d aiEi-1 - 2biE; + ciEi+l 
- dx (L{ n2 z ( n Z E ) } )  dx = Ax2 

- --6’(crE 1 - vE) (18) 
12 

in which 

Although (18) dose not ensure the truncation error of O ( A Z ) ~ ,  
it leads to substantial improvement in accuracy as will be 
found later. 

After some manipulations, we obtain the following differ- 
ence equations: 
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Fig, 4. 
mode without trench, and (d) quasi-TM mode with trench. 

Field distributions of a bent embedded optical waveguide. (a) Quasi-TE mode without trench, (b) quasi-TE mode with trench, (c) quasi-TM 

in which 1.0. The computational window dimensions are 6.10 pm and 
14.88 p m  for NCO = 1.5 and 1.1, respectively. This means 
that the number of transverse sampling points is in a range of 
200 to 600 depending on Ax under the condition of the fixed 
window dimension. The wavelength is X = 1 pm. The loss 
evaluation is carried out at a propagation distance of 500 pm. 

Fig. 2 shows the mode-mismatch loss as a function of trans- 
jkno A2 V .  .Az verse sampling width. For comparison, the results obtained 

by the CN scheme are also shown. The mode-mismatch loss 
y a , 3  6 2Ay2 48 

observed for the GD scheme is found to be much smaller than 5 jkno Az 5u;,jAz E*. . = - F-f- that for the CN scheme. It is worth mentioning that the GD 
scheme is effective even in the TM mode. 

Y 213 Ay2 24 ' 

As an application of the GD scheme to a three-dimensional 
waveguide, we analyze a bent embedded waveguide shown in 
Fig. 3. The refractive indexes are NCO = 1.55 and NCL = 
1.50. The wavelength of X = 1.55 pm is used. The aspect 
ratio of WIT is chosen to be 2, and the width W is taken to 
be 3.4 pm, so that only the fundamental mode propagates. The 

j k n o  AZ vi .A% 

5jkno Az 5u. .A% 

I+. . = ~ k- ai,j f A 
x a l J  6 2Az2 48 

E*. . z - 
X Z J  3 A22 24 -bi,j f A 

U '  .A% 
c;,j f z,J 

f .7kn,o & 
q x i , j  = 6 2A22 48 
<*. .='&-*"'3 

To verify the improvement in the numerical accuracy of 
the semivectorial analysis, we treat two step-index slab wave- 
guides with a different core index NCO. The propagation of 
TMo mode is studied together with that of TEo mode. The 
core width is designated as 2 0 .  The normalized frequency is 
taken to be V = 1.5. The cladding index NCL is fixed to be 
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Attenuation constant as a function of spacing between core and 
(a) Quasi-TE mode and (b) quasi-TM mode. 

bending radius is )2 = 500 pm. The computation parameters 
are as follows; Ax = Ay12 = 0.085 pm, AZ = 0.25 pm, 
the numbers of transverse sampling points are N,  = 120 and 
Ny = 160. The fundamental-mode field is excited at z = 0. 
The index profile of the waveguide bend is transformed into 
that of an equivalent straight waveguide [24]. 

Fig. 4(a) and (c) shows the steady-state field distribution 
observed at a propagation distance of 1200 pm. It is seen 
that the field deforms toward the outer side of the bend. The 
deformation of the field for the quasi-TM mode is found to 
be larger than that for the quasi-TE mode. This results in a 
larger attenuation constant in the quasi-TM mode as will be 
shown in Fig. 5. 

To suppress the field deformation, we place the trench 
section at the outer side of the bend, as shown in Fig. 3. 
The width of the trench is the same as that of the core. The 
refractive index in the trench is NTR = 1.45, and the spacing 
between the core and the trench is S = W/4. Figures 4(b) and 
(d) show how the trench enhances the field evanescence. 

Effects of the trench location on the attenuation constant 
a are shown in Fig. 5. The attenuation constant is evaluated 

using 

The ADIM with the phase term being not split does not 
conserve power. Therefore, we should check that a evaluated 
for the straight waveguide is sufficiently smaller than that 
caused by the bend. Preliminary calculation shows that a 
for the straight waveguide is less than 0.00004/mm for both 
modes, and is negligible in the following discussion. 

Fig. 5 shows that the attenuation constant is small when 
the trench is made near the core. The appropriate location of 
the trench is close to the so-called radiation point, where the 
field becomes radiative. In this case, the appropriate location is 
around S = W/4 regardless of the polarization. It is also seen 
that N exhibits oscillatory behavior as a function of spacing S, 
as in the case of a two-dimensional step-index slab waveguide 
[19]. As discussed in detail in [20], this behavior can be 
explained by the fact that the sandwiched region between 
the core and the trench turns to a quasiwaveguiding region 
whose effective index changes as a function of spacing S. As 
expected, Q converges to a value without the trench as the 
spacing S is further increased. 

IV. CONCLUSION 

The improved FD-BPM based on the generalized Douglas 
scheme for variable coefficients, in which the phase term is not 
split, has been discussed. The use of the Peaceman-Rachford 
ADIM achieves the reduced truncation error in the transverse 
directions, maintaining a tridiagonal system of linear equa- 
tions. The computational time is almost identical to that in the 
conventional CN scheme. The mode-mismatch loss calculation 
shows that the present scheme is effective even in the analysis 
of TM mode propagation. As an example of the semivectorial 
analysis, the field deformation and the attenuation constant of 
a bent embedded waveguide are evaluated. Calculation shows 
how the trench enhances the field evanescence with subsequent 
reduction in the attenuation constant. 
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