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Abstract—The generalized Douglas scheme for variable coef-
ficients is applied to the propagating beam analysis. Once the
alternating direction implicit method is used, the truncation error
is reduced in the transverse directions compared with the conven-
tional Crank-Nicholson scheme, maintaining a tridiagonal system
of linear equations. Substantial improvement in the accuracy is
achieved even in the TM mode propagation. As an example of the
semivectorial analysis, the propagating field and the attenuation
constant of a bent embedded waveguide with a trench section are
calculated and discussed.

1. INTRODUCTION

HE beam-propagation method (BPM) is widely used to

design various optical circuits. In addition to the BPM
based on the fast Fourier transform [1], the finite difference
techniques are aiso applied to the propagating beam analysis
[2]-[6]. It is well known that the implicit method such as
the Crank—Nicholson (CN) scheme allows the use of a larger
propagation step length Az than the explicit method. The CN
scheme has an advantage of unconditional stability, although
the truncation error is O(Az)? in the transverse direction.

To improve the accuracy, Yevick et al. [7] first introduced
the Douglas scheme [8] into the propagating beam analysis.
They applied the Douglas scheme to the Fresnel equation with
the phase term being split. The truncation error is reduced to
O(Axz)*. It should be noted, however, that splitting the phase
term results in the fact that the step length Az must be small.
We can expect a larger step length when the phase term is
not split [9].

Recently, we have formulated the modified finite-difference
beam-propagation method (FD-BPM) based on the general-
ized Douglas (GD) scheme for variable coefficients [10], with
the phase term being not split. The accuracy of our formulation
is better than that of the previous one derived by Sun and Yip
[11], maintaining the advantage that the result is not a sensitive
function of Az. The truncation error of O(Az)* is ensured in
the transverse direction.

The purpose of this paper is to discuss the application of the
GD scheme to the propagating beam analysis in more detail.
The GD scheme is applied to a semivectorial FD-BPM using
the alternating direction implicit method (ADIM) [12]-[15].
Although the GD scheme holds approximately true in the
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semivectorial FD-BPM, it still gives substantial improvement
in the accuracy, as compared with the conventional CN
scheme.

After demonstrating reduction of the mode-mismach loss
in a step-index waveguide, we present numerical results of
a three-dimensional embedded optical waveguide. Properties
of quasi-TE and quasi-TM polarized modes are investigated
by solving a semivectorial equation. The field distributions
of a bent embedded waveguide are evaluated and the effects
of a trench section [16]—[20] on the attenuation constant are
discussed.

II. SCALAR FORMULATION

We first summarize the GD scheme in a two-dimensional
problem. The Fresnel equation for the propagating beam
problem is expressed as

0F 9’E
where o = 2jkng and v = k?[n?(z, z) — nd], in which & is
the free space wavenumber, n(z, z) is the index profile of the
waveguide, and ng is the reference index to be appropriately
chosen.

The philosophy behind the Douglas scheme is to eliminate
the truncation error term of the order A% where A is the trans-
verse sampling width. When the truncation error is included,
by Taylor’s series expansion the second derivative of function
E with respect to z is expressed as

O*E _8°FE 1 9'E
r?  Az? 12 9zt
In the conventional CN scheme, only the first term in the
right-hand side of (1) is evaluated, so that the truncation error
is O(Ax)2
To reduce the truncation error, we substitute (1) into (2),
replacing 8*E/8z* with §2(cdFE [0z — vE) | Ax? + O(Ax)?.
Then, the following difference equation can be derived:

Az? + O(Ax)*. )

¢*E) _1( OEN  5( OE
Az " 12\%0z )., 6\"dz ),

1 oF 1 5
+ 1—2' (O’E)i_l — E(I/E)i+1 — E(UE)Z
- Ilé(”E>i‘1 + 0(An)*. 3)
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We now introduce the z differencing and get

o Ell_ﬁ - Ef+1 50 E'ZHl ~ E! + o EIH_F% - E,
12 Az 6 Az 12 Az
S2E) 4 (82E), 1
- OB ¢ S BT + 0B))

1
LB+ wB)_]
)

As a result, we obtain the following high accuracy six-point
scheme:

+ % [(VE)§+1 + (UE)i] +
+ O(Az)? + O(Az)*.

Ci_—lE:ﬂ +& BT+ C_;lEfﬁ

= CitlEf—l + §z+Ezl + Ci-:-lE£+l 5
where
Ci _ Jkno Az v; Az
6 2822 T 24
57kn Az Sv;Az
+ _ 2o 8% i
& 3 TAzZ 12

It should be noted that the term v is a variable coefficient.
Inclusion of the v;4; terms is significant for the reduction
in the truncation error, as have been discussed previously
[10]. Equation (4) can be regarded as the Douglas scheme
generalized for variable coefficients. The six-point scheme
allows us to use an efficient computing algorithm such as the
Thomas algorithm, so that the computational speed is almost
identical to that in the conventional FD-BPM [3] based on
the CN scheme.

The scalar Fresnel equation in three-dimensional (3-D)
coordinates are as follows:

oF 0?E B
g 9 = + oy? +v
where it is difficult to directly derive a high-accuracy scheme.
As described in [21], the difficulty arises from the fact that
(1/12)A%(8*E /8z*+0*E /9y*) cannot be expressed in terms
of the Laplacian of E in a square net of points in the z-y
plane. To obtain a high-accuracy scheme, we have to adopt a
hexagonal net of points. This results in a 14-point scheme.

It should be noted, however, that once the Peace-
man-Rachford ADIM [8], [12] is used, a high accuracy
scheme can be obtained. The difference equation correspond-
ing to (6) becomes

El+1 _ El 65El+1 + 6926El
lea =

(6)

i i
2B + 62

Az 2Ax2 2Ay2
El+1 {
I/———Zﬂ. ©)
We divide the propagation step into two steps of size Az/2
Eit1/2 _ gl 6JZUEH-1/2 5§El B2 L gl
a = v
Az/[2 Ax? Ay? 2
3)
Bl _ pit1/2 52El+1/2 6§El+1
TTTAZ/2 T Ag? Ay?
Joa=! 1+1/2
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Fig. 1. Mode-mismatch loss for a step-index fiber as a function of propa-
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Fig. 2. Mode-mismatch loss for a step-index slab waveguide as a function
of transverse sampling width: present, ......... CN scheme, O TEq
mode, /A TMy mode.

Since the treatment regarding the two half-steps is the same,
we only discuss the first half-step in the following.
Equation (8) can be separated into

I 1
82
@%) - 2(_ay§) LB,
gE\ /2 2E +1/2 Lt
i ¥ B /2
(Uﬁz) 2(8332> +vE . (1)

This is confirmed by the fact that the integration of ¢(9E/9z)
in the interval [z, Az/2] using (10) and (11) results in (8).
Since the forms of (10) and (11) are almost the same as (1), we
can use the GD scheme even in a 3-D problem. The efficient

10)
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Fig. 3. Configuration of a bent embedded optical waveguide.

computing algorithm can again be used as in the case of a
two-dimensional problem. As a result, the following difference
equations split into two steps are derived:

_ 41/2 | pm 4172 1+1/2
Coi1 ;8 1j +5z”E + wit1,jBit1;

+ !
Cyw 1E 7] 1+ gyt J 71 + Cyz1+1Ei,j+1 (12)
— I+1 E - ElL
Cyiyj 1E M -1t ‘Eyw +1 + C 4,j+1 ;+1
EY2 l+1 2 EiL/2
<m 17] i 1y/] +§m,] / +<m+1] t+1,/j 13
in which
C _ _ Jkng Az v jAz
o 6 2Aq0? 48
_ 5jkng Az Su; Az
5111 ] - :F 2 o
3 Aa 24

where a = z or y.

At the edge of the computational window the transparent
boundary condition (TBC) [22] is imposed. The TBC may fail
for radiation ficlds with an appreciable wave vector spread.
However, as will be shown later, the TBC works well in the
analysis of a bent waveguide. This is due to the fact that the
radiation field is dominated by a single transverse wave vector
component.

To demonstrate the effectiveness of the GD scheme, we
first investigate the propagation error of the fundamental mode
LPy; in a step-index optical fiber. We evaluate the following

mode-mismatch loss Ly,
2 2
/] iz )[dBl

(14
where F is the propagating field and Ey is the incident field of
the fundamental mode. The mode-mismatch loss is known to
be a sensitive indicator of the accuracy of a beam-propagation
method [3].

The fiber has a core radius of » = 5 pum, and the refractive
indices of Nco = 1.504 and N¢g, = 1.500. A stepped approx-
imation is used for the circular core [18]. The computational
window dimensions are given by L, x L, = 125 x 125 ym?
and the wavelength is A = 1.55 um. In the analysis, the
reference index is chosen to be that in the cladding.

Ly = —IOIOg(‘/EOE*d:Udy
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Fig. 1 shows the mode-mismatch loss evaluated at z =
500 pm as a function of propagation step length Az. For
comparison, the data obtained from the conventional ADIM
based on the CN scheme are also presented. It is found that
the accuracy of the GD scheme is better than that of the CN
scheme. The numerical result is not a sensitive function of Az.

III. SEMIVECTORIAL FORMULATION

Consideration is next given to the semivectorial analysis,
in which we solve the scalar wave equation but accounts for
the discontinuity in fields caused by the index variation. The
semivectorial Fresnel equation is expressed as

oF 7]

1 ({8, o 0’E

R R S e ) il

i 8x(n2{8w(n )}) + 0y?

Equation (15) can also be solved by the ADIM. Equations
corresponding to (10) and (11) are, respectively

OE 0?2E\" .
(5) =2(5z) s

AEN™? a1 (0 /2
(L) <22 (L 2um)) ™ v

an

+vE. (15)

(16)

The second derivative with respect to y can be treated as in
the case of (3). Unfortunately, the Taylor’s series expansion
regarding the second derivative with respect to x is not simple
because of the existence of the index term. Therefore, by
analogy with (2) we assume the following relation based on
the Stern’s expression [23]

2 1 J ZE) _ a; F; 1 —2b;F; + CiEi+1
Ox oz o

Azx?
1 OF
— =52 E 18
12 ( oz 7 ) (18)
in which
o 2mi
= "12—1 +n}’
1 1
2
et ()
o 2n?y,
bondg

Although (18) dose not ensure the truncation error of O(Aw)4,
it leads to substantial improvement in accuracy as will be
found later.

After some manipulations, we obtain the following differ-
ence equations:

zi-1,j fﬂ,/erfm” l+1/2+77;z+1,j fﬁ/f
=i Big o1 + B+ G Bl (19)
y_w IEH_1 1+ §szEH_l + Cy_hj+1‘b—ﬂ,—;-li—l
=G BN+ 6B ot B 0
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Fig. 4. Field distributions of a bent embedded optical waveguide. (a) Quasi-TE mode without trench, (b) quasi-TE mode with trench, (c) quasi-TM

mode without trench, and (d) quasi-TM mode with trench.
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To verify the improvement in the numerical accuracy of
the semivectorial analysis, we treat two step-index slab wave-
guides with a different core index Nco. The propagation of
TMy mode is studied together with that of TE; mode. The
core width is designated as 2. The normalized frequency is
taken to be V' = 1.5. The cladding index Ncy, is fixed to be

1.0. The computational window dimensions are 6.10 ym and
14.88 pm for Nco = 1.5 and 1.1, respectively. This means
that the number of transverse sampling points is in a range of
200 to 600 depending on Az under the condition of the fixed
window dimension. The wavelength is A = 1 um. The loss
evaluation is carried out at a propagation distance of 500 pm.

Fig. 2 shows the mode-mismatch loss as a function of trans-
verse sampling width. For comparison, the results obtained
by the CN scheme are also shown. The mode-mismatch loss
observed for the GD scheme is found to be much smaller than
that for the CN scheme. It is worth mentioning that the GD
scheme is effective even in the TM mode.

As an application of the GD scheme to a three-dimensional
waveguide, we analyze a bent embedded waveguide shown in
Fig. 3. The refractive indexes are Ngo = 1.55 and N¢p, =
1.50. The wavelength of A = 1.55 pum is used. The aspect
ratio of W/ is chosen to be 2, and the width W is taken to
be 3.4 pm, so that only the fundamental mode propagates. The
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Fig. 5. Attenuation constant as a function of spacing between core and
trench. (a) Quasi-TE mode and (b) quasi-TM mode.

bending radius is R = 500 pm. The computation parameters
are as follows; Az = Ay/2 = 0.085 pm, Az = 0.25 pm,
the numbers of transverse sampling points are N, = 120 and
N, = 160. The fundamental-mode field is excited at z = 0.
The index profile of the waveguide bend is transformed into
that of an equivalent straight waveguide [24].

Fig. 4(a) and (c) shows the steady-state field distribution
observed at a propagation distance of 1200 pm. It is seen
that the field deforms toward the outer side of the bend. The
deformation of the field for the quasi-TM mode is found to
be larger than that for the quasi-TE mode. This results in a
larger attenuation constant in the quasi-TM mode as will be
shown in Fig. 5.

To suppress the field deformation, we place the trench
section at the outer side of the bend, as shown in Fig. 3.
The width of the trench is the same as that of the core. The
refractive index in the trench is Ntr = 1.45, and the spacing
between the core and the trench is S = W/4. Figures 4(b) and
(d) show how the trench enhances the field evanescence.

Effects of the trench location on the attenuation constant
« are shown in Fig. 5. The attenuation constant is evaluated

2405

using

o =

1 1 (P(z—l—Az)). @1

“2az "\ P(r)
The ADIM with the phase term being not split does not
conserve power. Therefore, we should check that « evaluated
for the straight waveguide is sufficiently smaller than that
caused by the bend. Preliminary calculation shows that «
for the straight waveguide is less than 0.00004/mm for both
modes, and is negligible in the following discussion.

Fig. 5 shows that the attenuation constant is small when
the trench is made near the core. The appropriate location of
the trench is close to the so-called radiation point, where the
field becomes radiative. In this case, the appropriate location is
around S = W/4 regardless of the polarization. It is also seen
that o exhibits oscillatory behavior as a function of spacing S,
as in the case of a two-dimensional step-index slab waveguide
[19]. As discussed in detail in [20], this behavior can be
explained by the fact that the sandwiched region between
the core and the trench turns to a quasiwaveguiding region
whose effective index changes as a function of spacing S. As
expected, o converges to a value without the trench as the
spacing S is further increased.

IV. CONCLUSION

The improved FD-BPM based on the generalized Douglas
scheme for variable coefficients, in which the phase term is not
split, has been discussed. The use of the Peaceman—Rachford
ADIM achieves the reduced truncation error in the transverse
directions, maintaining a tridiagonal system of linear equa-
tions. The computational time is almost identical to that in the
conventional CN scheme. The mode-mismatch loss calculation
shows that the present scheme is effective even in the analysis
of TM mode propagation. As an example of the semivectorial
analysis, the field deformation and the attenuation constant of
a bent embedded waveguide are evaluated. Calculation shows
how the trench enhances the field evanescence with subsequent
reduction in the attenuation constant.
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