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Abstract-The accuracy of the implicit finite-difference beam 
propagation method (FD-BPM), in which the phase term is 
not split, is improved using the generalized Douglas scheme. 
The propagation error of the fundamental mode in two- and 
three-dimensional waveguides is evaluated by the mode-mismatch 
loss calculation. It is demonstrated that the truncation error 
is reduced to O(A.Z)~ in the transverse direction, even when 
the parabolic wave equation contains variable coefficients. The 
computational time is almost identical to the conventional FD- 
BPM based on the Crank-Nicholson scheme. 

I. INTRODUCTION 

HE ACCURACY of the finite difference beam- T propagation method (FD-BPM) [ l ]  can be improved 
by replacing the Crank-Nicholson (CN) scheme with the 
Douglas scheme [2]. The truncation error of O(AX)~  in the 
transverse direction can be reduced to O(AZ)~.  Yevick et al. 
[3] first introduced the Douglas scheme into the propagating 
beam analysis with splitting the phase term. This procedure, 
however, has a disadvantage that the step length AZ in the 
propagation direction should be small. Recently, Sun and Yip 
[4] formulated the modified FD-BPM based on the Douglas 
scheme in which the phase term is not split. Their formulation 
has an advantage that the numerical result is not a sensitive 
function of Az. However, they employed the Douglas scheme 
for constant coefficients, so that they did not take into account 
variable coefficients in the phase term. This does not ensure 
the reduction of the truncation error to O(AX)~,  when the 
space has the index change in the transverse directions. 

In this letter, we present a modified FD-BPM, based on 
the Douglas scheme generalized for variable coefficients. The 
accuracy of our formulation is better than that in [4] and the 
truncation error of O ( A X ) ~  is ensured. The present scheme 
is also applied to the altemating direction implicit method 
(ADIM) [5], [6] for the analysis of a three-dimensional optical 
waveguide. 

11. DISCUSSION 

For simplicity, we explain the present scheme using a two- 
dimensional problem. When the truncation error is included, 
the second derivative of function E is expressed as 
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where S2E = E;+1 - 2E; + Ei-1 is defined. In the conven- 
tional FD-BPM, only the first term in the right-hand side of 
(1) is evaluated, so that the truncation error is O(Ax)’. Higher 
accuracy can be realized by evaluating the second term in (1). 

The parabolic wave equation is expressed as 

aE a2E 
az a x 2  

0- = - + v E  

where (T = 2jkno and Y = k2[n(x,z)’ - nil, in which IC is 
the free space wavenumber, n(x7  z )  is the index profile of the 
waveguide and no is the reference index to be appropriately 
chosen. We substitute (2) into (I), replacing d4 E/dx4 with 
b 2 ( d E / d z  - v E ) / A x 2  +  AX)^. Then, the following 
difference equation can be derived. 

From (3), we can easily obtain the six-point scheme with 
centered z difference. It should be noted that the variable terms 
vi+l appear, which are not taken into account in [4]. These 
terms are significant for the reduction in the truncation error, 
as will be seen later. 

Since (3) leads to a tridiagonal system of linear equations, 
an efficient computing algorithm can be used as in the case 
of the CN scheme. It follows that the computational speed is 
almost identical to that in the conventional FD-BPM. 

As a measure of the numerical accuracy, we evaluate the 
mode-mismatch loss L M ,  which is known to be a sensitive 
indicator of the accuracy of the BPM [ 11. In a two-dimensional 
waveguide, LM is defined as 

(4) 

where E is the propagating field and EO is the incident field 
of the fundamental mode. 

In the following analysis, the transparent boundary condition 
[7] is imposed at the edge of the computational window, and 
the reference index is chosen to be that in the cladding. 
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Fig. I .  Mode-mismatch loss as a function of transverse sampling width Ax. 
A step-index slab waveguide is investigated. Four schemes are compared. The 
least loss is observed in the generalized Douglas scheme. 

We first investigate the propagation error in a step-index 
slab waveguide whose core width is 2 0  = 7.546 pm. Fig. 1 
shows the mode-mismatch loss as a function of transverse 
sampling width. The refractive indices of the core and cladding 
are NCO = 1.002 and NCL = 1 .OOO, respectively. The compu- 
tational window dimension is 107.8 pm and the wavelength is 
X = 1 pm. The loss evaluation is carried out at a propagation 
distance of 500 pm. For reference, the results obtained by 
the CN scheme in [I] and by the scheme in [4] are also 
shown. It is found that the mode-mismatch loss observed for 
the present scheme is smaller than those for the previous ones. 
Comparison between the result in the present scheme and that 
in [4] indicates that the inclusion of the variable terms vi*l 
remarkably improves the accuracy. 

To confirm the accuracy of the present scheme, we have 
also tested the FD-BPM using a higher order (ten-point) 
scheme, since its truncation error is O(AZ)~.  Fig. 1 indicates 
that the accuracy is close to that of the present scheme. It 

Fig. 2. Mode-mismatch loss as a function of propagation step length A r .  
The waveguide is the same as that in Fig. 1. The cases with and without 
splitting the phase term are compared. The results obtained from the general- 
ized Douglas scheme without splitting the phase term are not sensitive to the 
change in the propagation step length, as in the case of the Crank-Nicholson 
scheme without splitting the phase term. 

should be noted, however, that the ten-point scheme results in 
computational penalty due to the solution of the pentadiagonal 
matrix. 

Fig. 3. Mode-mismatch loss as a function of propagation step length Az. A 
step-index fiber is investigated. The least loss is found in the ADIM based on 
the generalized Douglas scheme without splitting the phase term. 

One may feel strange that the ten-point scheme is slightly 
less accurate than the present scheme. This is, however, due 
to the fact that in the ten-point scheme the centered difference 
formula is again used to evaluate d2E/dx2  in d4E/dx4 = 
S2(d2E/dx2) /Ax2 ,  while d2E/dx2  is exactly replaced in 
the present scheme. 

Fig. 2 shows the mode-mismatch loss as a function of 
propagation step length Az. The computation parameters 
which are not specified are the same as those in Fig. 1. 
The results for the present scheme are compared with those 
obtained from the CN scheme, without splitting the phase term 
in [l], and the Douglas scheme, with splitting the phase term 
in [3]. It is worth mentioning that the loss for the present 
scheme is not a sensitive function of Az, as in the case 
of the CN scheme [8]. In contrast, the loss observed for 
the scheme with splitting the phase term increases as Ax is 
increased. 

As a further test on the accuracy, we calculate the coupling 
length when the same waveguides are placed with a gap 
of 2 0 .  The result is compared with that obtained from the 
exact solution. For example, for Ax = 0 1 5  = 0.7546 pm, 
the present scheme exhibits an error of less than 0.13%, 
while the CN scheme does 0.21%, indicating the substantial 
improvement in the accuracy. 

We next apply the present scheme to the Peace- 
man-Rachford ADIM. The waveguide considered here 
is a step-index fiber with a core radius of T = 5 pm. The 
refractive indexes are chosen to be NCO = 1.504 and 
NCL = 1.500. The wavelength of X = 1.55 pm is used. The 
computation window dimensions are given by L, x L, = 125 
x 125 pm2. Fig. 3 shows the mode-mismatch loss evaluated 
at z = 500 pm as a function of Az. It is clear that the 
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accuracy of the present scheme is improved, when compared 
with the ADIM’s based on the CN scheme [5 ] ,  [6] and on the 
Douglas scheme with phase-term splitting. 

III. CONCLUSION 
The modified FD-BPM, based on the generalized Douglas 

scheme in which the phase term is not split, has been for- 
mulated. The truncation error is reduced to O ( A X ) ~  in the 
transverse direction, even when the parabolic wave equa- 
tion contains variable coefficients. The computation time is 
almost identical to the conventional FD-BPM based on the 
Crank-Nicholson scheme. We also apply the present scheme 
to the alternating direction implicit method and demonstrate its 
effectiveness in the analysis of a three-dimensional waveguide. 
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