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Abstract

For elastic scattering of deuterons at intermediate energies, spin-space
tensor amplitudes are introduced by the invariant-amplitude method so
that effects of Tr—and TwL-type tensor interactions are described separately.
Quantum-mechanical corrections to the classical concept of angular momenta
are shown to vanish in the derivation of the spin-space tensor amplitudes.
The expressions of cross section for unpolarized beam and analyzing powers
and polarization transfer coefficients for polarized beam are given in terms

of the spin-space tensor amplitudes.
§1. Introduction

Interactions of deuterons with nuclei are characterized by having tensor
components in addition to central and spin-orbit ones. The latters are
familiar in nucleon-nucleus interactions. For the tensor interaction, three
types were proposed earlier in the viewpoint of phenomenology”, the
coordinate-dependent one Tnr, the angular-momentum-dependent one Tu
and the momentum-dependent one Tr. In actual scattering or reactions,

however, effects of these interactions are usually mixed up with each other
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even in one observable and it is hard to distinguish the effect of a par-
ticular tensor interaction from those of the others, In the following, the
consideration will be focussed on the effects of the tensor forces in the
elastic scattering by spherical nuclei.

Recently, by the use of the adiabatic approximation and the two-step
model, the Tr-, Tr-and Tr-type tensor interactions have been derived®»®
as the second-order effect of the nucleon-nucleus spin-orbit interactions.
The result is applicable to intermediate-energy scattering because of the
nature of the approximation used, There, contributions of the Tp-interac-
tion to polarization observables have been found to be small. On the
other hand, qualitative estimations have indicated that other two tensor
interactions make significant contributions to the observables. Thus, the
second-order effect of the spin-orbit interaction possibly provides an
important correction to the Tr-type tensor interaction which has conven.
tionally been attributed to the effect of the D.state admixture in the
deuteron ground-state wave function®, and also it gives the sound basis
to the phenomenological proposal of the Twu-type tensor interaction, the
origin of which has been unclear. To investigate these contributions
quantitatively, it will be worthwhile to find a method which identifies the
effect of the Tr—tensor interaction and that of the Ti-tensor one, separately.

The method in the case of the elastic scattering has been proposed®®
by the present authors and their collaborators but it has essentially assumed
the validity of the classical concept of the orbital angular momentum and
the quantum-mechanical effect has little been investigated. One of the
purposes of the present article is to describe the details of the quantum-
mechanical effect and to give the justification of the validity of the classical
concept. The theory is based on the invariant-amplitude method, which
was proposed earlier” as a tool of the examination of roles of spin-
dependent interactions in polarization phenomena. There, the scattering
amplitude is decomposed into the invariant amplitudes classified according
to their tensorial characters in the spin space and thus it is expected to
be easy to identify the contribution of each spin-dependent interaction
separately. For the deuteron elastic scattering, we will give a short review
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of this method preceding to the consideration of the quantum-mechanical
effect.

For the practical purpose, it will be desirable to represent the physical
quantities in terms of spin-space tensor amplitudes, which are linear com-
binations of the invariant amplitudes convenient for the separation of the
Tr-and Ti-effects, because they provide the information which observable
is a good measure of a particular spin-dependent interaction. Such re-
presentations will be given for cross section for unpolarized deuteron
beam and analyzing powers and polarization transfer coefficients for polarized

beam. This is the second purpose of this article.

§2. Invariant-amplitude methed in deuteron elastic scat-
tering and quantum-mechanical contributions to an-
gular momenta in the spin-space amplitudes

In this section, we will follow first the theoretical development on
the introduction of the spin-space tensor amplitudes in ref. 2. After that
the quantum-mechanical corrections will be investigated. The transition
matrix of the deuteron elastic scattering from spin-less nuclei is given by
designating the row and column by the 2z component v of the deuteron

spin as”
A B C
M=\D E —-Dj, 2D
C —-B A

where the row denotes the initial state, »1=1,0, —1 from left to right
and the column the final states, v¢=1,0, —1 form top to bottom. The
elastic scattering restricts the matrix elements as

C=A—E— V2 (B+D)cotd. 2.2

The matrix elements in the plane-wave states, A~FE describe the exact
scattering amplitude in the non-relativistic form. To decompose the am-
plitudes according to the tensorial property in the spin space, we will
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expand M into the spin-space temsor operators, the # component of the

rank K tensor being denoted by Sk,
M= 5;(—* Se-c Rec @3

where Rx. is the counter part, the coordinate-space tensor. By taking the

matrix element of (2.3), we get®
<ve; kilM\vi; k1>
K n -
=N Alvi—velKe) X [Ce(k) X CR -+ (k)] xe
K r=K-K
X F:(E, cos 8), @

where v’s are the z components of the deuteron spin, ki and kr are the
initial and final momenta and £i and k¢ are their solid angles. The
quantity K is K for K=even and K+1 for K=odd. In (2.4), the geo-
metrical factor of the matrix element of Sk-. appears as the CG coefficient
and that of Rg. is described by the & component of the rank X tensor
in the ordinary space is constructed by Ce(k) and Ce(ke). The re-
maining factor Fx:(E, cos§) is invariant under the rotation of the
coordinate axis and thus called as the invariant amplitude. The amplitude
is designated by K, which is the rank of the associated spin-space tensor
operator, and is a function of the CM energy E and the scattering angle
8 but, in the following, we will skip these arguments for simplicity.
Using (2.4), one gets in the reference frame, z/ki and ¥/ kiX ki,

1 1 /
A=\/%Foo+ —212—(3C0820—1)F20+36050F21+ %Fzz,
B=\/%sin0Fu+\/%cosﬂsin0on+v—é—sin0F2|,
C= %singl)on,
D=—/Lsin0 Fii+ /3 cos 05in 0 Fuort o/ L sin 0 s,

E=4/5 Fo J—é (3 cos* 0~ 1)Fu— 2 cas 0 Fu—y/ 2Fa @9



Hosei University Repository

25
Eq. (2.2) gives
Fap=Fs,. 2.6)

Thus we can choose four independent amplitudes, i. e. one scalar, one
vector and two tensor ones. Referring to the consideration on the second-

rank tensor amplitudes given later, we will define the four amplitudes as

U=2A+E= 3 Fo, @n
S.=_B—D=«/% sin 0 Fu,, @8
T.=B+D=1/ % sin 0(¥'6 cos 0 Fao-+ Far), (2.9)

Ty=C+ \/% (B+D) cot = F(VEFutFieos 2, (210)
where U is proportional to Foe and is the scalar amplitude, S is propor-
tional to Fu and is the vector one and 7. and T consist of Fzo and Fa
and are the tensor ones. The scalar amplitude is associated with the scalar
interaction in the spin space. Thus U describes the scattering amplitude
due to the central interaction in the sense of the effective interaction.
Other amplitudes, S, 7. and 7} are similarly related to the respective
spin-dependent interactions. Among these amplitudes, the magnitude of
U is expected to be the largest because the central interaction is usually
stronger than spin-dependent interactions. As will be discussed below,
T. and T, describe the effect of the Tr-type tensor interaction and that
of the Tu-type one separately in the high-energy limit. Hereafter, we
will call these amplitudes U~ T as the spin-space tensor amplitudes.

The Tr-and Ti-type tensor interactions are defined as®

Tr=(S:(s, 8)- R:(R, R))Ur(R), 2.11)
Tu=(5:(8, 8)+R:(L, L)) UL(R), @2.12)

where S: and R: are the second-rank tensor operators constructed by their
arguments, 8, R and L being the deuteron spin, its space coordinate from
the target and the corresponding angular momentum. To define the two
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tensor amplitudes so as to describe the scattering by the Tr-tensor interaction
and that by the Ti-tensor one separately, we will introduce the plane-
wave Born approximation (PWBA) and a classical concept for the angular
momentum. Later, the quantum-mechanical corrections are investigated.
However, the final justification is provided by the quantitative numerical
calculations, which has been given in ref. 2. The PWBA provides the

following relation® for the Tr-type tensor interactions,

V6 Fao=—Fa; (2.13)

for a projectile of any spin. This relation has been numerically examined
for scattering of "Li by ®*Ni and has been found to be valid even at E1ab
=20 MeV in a good approximation®. Due to (2.10) and (2.13), T,=0
for Tr tensor interactions at high energies.

Let us consider the property of the Twu-type tensor interaction in a
simple way, that is, treat the operator L in the framework of the classical
concept. The g component of the space tensor R:(L, L) in (2.12) is
written explicitly as

Re=X (A1 mm’12¢) L Lu. 2.1
Since L is perpendicular to the momentum in the classical concept, Lo=0,
and we get

g# 1, 2. 15)

which leads to

ve—uFE£1 .16
for

<wrlSz,—glu1>#0.

The restriction on v in (2.16) means that for the Tu-type tensor

interaction
B=D=0. @17
Combining this to (2.9),
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T.=0 2.18)

for the Ti—type tensor interaction.

Therefore, when only the two types, T and Ti, are considered as
tensor interactions, one will distinguish approximately the effect of one
type from that of the other type by using T. and Tj; i.e. 7. describes
dominantly the effect of the Tr-type interactions while T} describes that
of the Ti-type ones. The quantum-mechanical treatment of L will pro-
duce a correction to (2.17); that is, the TiL-type tensor interaction may
possibly contribute to the matrix elements, B and D, due to the correc-
tion. The corrections are estimated by the PWBA. They are found to be
asymptotically small by a factor 1/L for each partial wave of the angular
momentum L. Moreover, the correction vanishes in B+D because of the
opposite sign of the correction term between B and D. The proof is
given below.

The matrix element of the Twv interaction between the plane-wave

states, f and i, is given by
Fogny=<xog€®eR| Tilx, el B>, (2.19

where 3’s are the spin function of the deuteron and ki(kr) and vi(vr) are
the CM momentum of the deuteron and the z component of the spin in

the initial (final) state. Inserting (2.12) into (2.19),
fl’fl’[= ; (_)°<ny|s2—q|xv‘>
X <eikeR| 37 (1 1pp’ 129D Ly Ly Un(R) ik R >
&

= 2 (=)* o QUISHID (12— gl1v2) 5} (L 1 120) Ly (2. 20)

where

1. Se""‘rRL,.L,,' Uu(R)ekRdR, (2.21)

P T
o @
Adopting the coordinate axis same as before and using

eiMR= /7 O VILF1 jur (bR Yino(R)
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and
e ikiR=4g LZ;’ (=) 51 (ktR) YiuChe) Yl:u(ié):
we get
Lo =5 By B O VILHT YVuulh) <LMIL,Lye\L’ 0>
X j JLlre R UL(R)j-(MR)RYR. 2.22)
Further,
<IMILWLw|L"0>=L(L+1DL 10 (L)L 1 g/ ul LMD b1,

(2.23)

which leads to

Tow= 5 VELFT LCLA1(L 10 # 1Ly Y(L 1 g pl LMD

(2n )”
X YL,.H'(fc:)j Je(lee RDUL(R) j. (s RDR*R. 224

For (L10y'|Ly’)+#0, the allowed g is
g ==l

Furthermore, the classical concept of L restricts g by g# +1, i.e.
p==x1

Therefore, the quantum-mechanical correction arises from
p2=0 with p'==1, (2.25)

where p’=—1 is for B and p'=1is for D. The CG coefficients appear-
ing in (2.20) and (2.24) are totally unchanged for changing of the sign
of ¢’ and Yo Cks) gives the opposite sign for g’=+1. Then, the quantum-
mechanical correction has the same value but the opposite sign for B and
D. This means that the correction is zero for B+D in the PWBA and
qualifies that 7. is little affected by this interaction. Further, using the
asymptotic form of Yiwx for large L, one can derive that the correction
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term itself is smaller by 1/L for each partial wave than the classically
allowed terms; gz and g'==*1. It should be noted that the present
theoretical development can be extended so as to include spin-independent
distortions in the initial and final waves, by replacing j.(kiR) and j.(ksR)
with their respective distorted radial wave functions. This will qualify
the wider validity for the conclusions obtained above.

Similar considerations can be applied to another problem. Neglecting
the spin dependence of the propagator, it is shown that the second-order
contribution of the TuL-type tensor interaction does not form S, the vector
amplitude, in the classical limit. When the quantum-mechanical correc-
tions are taken into account, one can prove that the contributions of the
correction terms are cancelled with each other in each of B and D because
the correction from g'=1 and that from g'=—1 have the same magnitude
but the opposite sign. Thus, in the present approximations, the above
conclusion based on the classical concept does hold even if the quantum-
mechanical corrections are included.

Finally, the following should be emphasized. In ref. 2, numerical
calculations confirm for some typical cases that the contribution of the Twu

interaction to B-+D is quantitatively small,

§ 3. Expressions of analyzing powers and polarization trans-
fer coefficients by the spin-space tensor amplitudes

Since the spin-space tensor amplitudes, U, S, T. and T, describe the
effects of the central, spin-orbit, Tr-type tensor and TL-type tensor in-
teractions separately as shown in the preceding section, here we will ex-
press physical observables in terms of these amplitudes. These expressions
are useful in finding the effect of the above spin-dependent interactions
in the observables. In the viewpoint of the recent progress in the experi-
mental technique on the polarized deuteron beam, we will treat the cross
section by the unpolarized beam and the analyzing powers and polariza-

tion transfer coefficients by the polarized beam. They are defined below.?’
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Using the scattering T-matrix M defined in the preceding section, the
cross section o, the vector analyzing power Ay and the tensor analyzing
powers Axx, Ayy and Ax: are given by

o=3N, G.1
y= J%Tr(MPyM"), (3.2)
Ay= % Tr(M Py M?Y) (3.3
with
N=Te(MM®, G0

where i and j describe one of x, y, z. The polarization transfer coefficients
Ky, K%, Ki* and Ki*' (i, j, k and | are one of x, y, z) are given by

Ki= IlvTr(MﬁnM"ﬁJ), (3.5)
K= ]—:\l/,-Tr(M_PuM"Pu), 3.6
Kilk= ]% Tr(MPM* Py, G.7
Kiji= ]%Tr(MPuM*Pm). 3.8

The spin operator P: and Py are given in ref. 9.
Using (2.1), (2.5) and (2.7)~(2.10), the cross section, the analyzing
powers and the polarization transfer coefficients are expressed by the spin-

space tensor amplitudes as follows.

4\/2

a=%{IUI’+3ISI’+8ITpI’+ AT Re(T*T,o}
3.9

=202 | (V=2Tyr g TS, (3.10)




Hosei University Repository

31

4 — 1+3cos @
{gRG(UTﬁ*) \/ _35111—-R (UTa*)

4 ., 1+3cosd 2___ 2
g | Tl ——5 g ag | Tl ISl

_MR (T«T5*)+3Re(S Ta*)} (3.11)

2Y2 Ry~ SiT1

1(_8 .
Ayy—N{ .R(UTp )+

4‘/2 Re(Ta T )} (3.12)

2
+§—|Tl+l5|+
7R{(U+ S cot 0— 2T+——1—T)T*}

V2 T 2sing "

Axz= i]\/'—
(3.13)

2 . 1 1+3cos?
N {[U] +2R2(UT5* —W_R (UT )

K=

3c050 1 IT-|2+2~/52 3:050 Re( T Ty )}

=8| Tpl*+ ——7— -
(3.14)

Ke= {IUI +2Re(UTp*)+MR (UT.*)—8| Tf*

Mwmw J‘%R (T.,Tﬁ*)] (3.15)

sin'

. V2
K= 5 Re{a(T.+95)*%), (3.16)
Ki&= Y2 by (a(T.—S)*) (3.17)
3N : ’ )
where a is given by
(3.18)

a=U+aT— Y2 T,
sin #

2 w__ 1 1tcosd ® *}
Kxy —NIm{UTp ov5  sinf To¥4 V2 cot @ T-Ts*t,
(3.19
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2 1 d
K¥1x=1_‘vlm["‘"UTﬂ*+ 21/2 ﬂ—UTn*"' '\/2 Coto TaTﬁ }
(3.20)
sz’=QIm[(Ucot 8—2Tpcot 0———— )T (3.2D
N ? VT '

[vrr-vsr-ar.rprasTio- 22 2-sTal,
(3.22)

1
v2N

Kyi= dzNIm{UT.,*+US*—4T.T,s* —4ST*+ = ‘/ ST*}

(3.23)
m;:ﬁm{ﬁ UT.*— "2U5*+2F 3 T.T5*
—2—‘/—2—ST*+1-;Z+;0ST.*}, (3. 24)
Kyy?= zs‘l/vz Im{(U—ZT;+7§tiTT,)S*}=Ay, (3.25)
K= Im [—QUSx VEUTH— z‘gfsn*
+1—;§iﬁ°;—08T,*—2 v2 T, T,,*}, (8. 26)
K,”—I%Im{ Y2 yshy VT UTH— 2‘/2
+2 522 ST+ 2V LTy } 3.20)
Ke=— 3 NRe{UT,* —3US*— 2T, To*+6 TsS*
—%nsm%mw}, (3. 28)
Ky= NRe{ZUT —aT, a0 s
+ s:;za |Ta|=}, (3. 29)



Hosei University Repository

33
_ 1 ¥ * 6 cos ¢ "
Karr= Re{zun AT, T — 220 T
+Y2 |T,,|=} (3. 30)
sin &
x:.—_l__ — *__ k * %
Ki**= \fZ_NRe{ UT*—3US*+2TsT*46T:S
_ 1—cos @ " 9cosf—1 }
3 x/—Z—sin P Tas + \/ 2 S ITaI k) (3- 31)
u—_g. _l 2_2_. L] M *
I{yy —NRe[ GIUI 3UT§ + 3\/Zsin0 UTu
_l 2 _Z}_ %, cosf—1 o e
]Sl + T.S +'2‘ sint 0 ITal 2|T3|
+ «/71—25—g T Ty* } (3.32)

As was pointed out in the preceding section, the magnitude of U is
the largest among those of all spin-space tensor amplitudes and thus the
terms having U make large contributions to the physical quantities.
However, as is seen in the above expressions, most of the quantities have
two or more terms which include U, the effects of which are mixed up
with each other. For making the effect of a particular spin-dependent
interaction clear, it is useful to treat suitable linear combinations of the
observables. The quantity K;*, for example, includes US* and UT.*,
the latter of which is a good measure of the effect of the Ts-type tensor
interaction. To avoid the disturbance due to the US* term, the following

linear combination is useful.
Kyt %A,=]lvzm (VT U-3Scot0—2vE THTH.  (3.33)

This conclusion has been confirmed by numerical calculations in ref. 2.

§4. Summary

This note describes the method to decompose the deuteron scattering
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amplitude so that each component, the spin-space tensor amplitude, repre-
sents selectively the effect of a particular spin-dependent interaction. In
particular, it is shown that the quantum-mechanical corrections to the
classical concept of the angular momentum which has been used in the
previous work are cancelled out with each other and thus the previous
development is justified. The cross section, the analyzing powers and the
polarization transfer coefficients are expressed in terms of the spin-space
tensor amplitudes, the results of which represent the effect of each spin-
dependent interaction explicitly. Using these, it is shown that the special
linear combination of the observables can emphasize the effect of the
particular spin-dependent interaction. We hope that these representations
are useful in planning of experimental measurements as well as in the
theoretical analyses of the experimental data.
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