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TABLE I 

ELLIPTIC CYLINDER; b/a = 1.5 
COMPARISON OF NUMER~CAL AND ASYMPTOTIC RESONANCES FOR 

I 

Pole  pole  Location 
# 

L Magnitude 
Numerical I Asymptotic I error(l) 

1 -0.561 + j 0.376 I -0.543 + j 0.478 I 6.6 

2 I -0.674 + j 1.123 I -0.685 + j 1.189 I 4.6 

3 I -0.750 + j 1.886 I -0.784 + j 1.924 1 2.3 

4 I -0.800 + j 2.634 I -0.863 + j 2.670 I 1.9  

5 I -0.838 + j 3.397 I -0.929 + j 3.424 I 1 . 4  

6 I -0.810 + j 4.125 I -0.988 + j 4.182 I 2.0 

I I 

I I I 

I I I 

I I I 

I I I 

I I I 
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Numerical  Analysis of Asymmetrical Spiral Antenna 
1 

HISAMATSU NAKANO, MEMBER, IEEE, K. HIROSE, AND 
m J I  YAMAUCW, MEMBER, IEEE 

Abstract-The radiation characteristics of a two-wire spiral antenna in 
which the ode arm is truncated are evaluated on the basis of the analyzed 
current distribution.  It is numerically demonstrated that either sense of 
circular polarization is generated by changing the phase relation of feed 
points. The variation in the axid ratio is examined as a’ function of 
truncation amount of the one arm. 

INTRODUCTION 

In order to generate either sense  of circular polarization 
from  a single twewire spiral antenna, Kaiser proposed  a spiral 
antenna whose arm lengths differ by  a  quarter wavelength [ 11. 
He experimentally showed that changing the  phase  relation of 
feed  points allows generation of either sense  of circular polariza- 
tion. Although arm asymmetry, such as  a Kaiser’s model  men- 
tioned above, introduces attractive features, no rigorous  studies 
on an  asymmetrical spiral antenna have not appeared to date. 

The  ‘purpose of this communication is to reveal theoretically 
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the  radiation  characteristics of an asymmetrical spiral antenna. 
We use a spiral antenna  with two off-center  sources,  which is 
close to Kaiser’s experimental  model.  The  radiation characteris- 
tics are calculated  from  the  current  distribution  determined 
numerically using  an integral equation [2]. The behavior of the 
axial ratio is investigated as a  function of the  truncation  amount 
of the  one arm. 

CONFIGURATION 

Fig. 1 shows the  antenna  configuration  and the  excitation 
modes.  The  antenna arm is characterized  by  Archimedean spiral 
function r = a& (a = spiral constant, = winding  angle). In 
the  present spiral, the  outer  circumference is taken to  be 1.5 X 
(X = wavelength of operating  frequency),  and  the spiral arm 
length is 4.73 X. 

The spiral  is excited at two  symmetrical  points  with  respect 
to the origin [3], as  in the case  of a  dipole  antenna  with two 
sources [4]. These two  points are located  near  the  origin  and 
the  distance  between  the  two  points is 0.125 A. The excitation 
modes shown in Figs. l(b)  and 1(c)  are called  “antiphase excita- 
tion”  and  “in-phase  excitation,”  respectively. 

NUMERICAL AND EXPERIMENTAL  RESULTS 
The  current  distributions  for  the  truncation  amount of 2 = 

h/4 are  shown in Fig.  2.  The  analysis is carried  out using a simpli- 
fied integral equation [ 2 ] .  The applied voltage  of each  source is 
1 V. It is found  for  the  antiphase  excitation  that  the  currents 
gradually decay due to radiation. The current  distribution  has 
fashion similar to that of a  conventional  center-fed spiral antenna 
with  symmetrical  arms [5]. Since the sense of the spiral as viewed 
from the -z side is right-handed as shown  in Fig. l(a),  the travel- 
ing currents  toward  the  arm  ends  radiate  a circularly polarized 
wave  of right-hand sense on the +z axis. 

The  theoretical  current  distribution  for the in-phase excita- 
tion shows standing wave fashion,  as shown in Fig.  2(b). It should 
be noted  that  the standing-wave ratio of the  current is reduced 
toward  unity  as  the  point  of  observation is  moved  away from  the 
arm ends  toward  the origin. T h i s  behavior  can be explained in 
terms of the  interference of two  currents. One  is a traveling 
current  from  the  source  toward  the arm end  with little attenua- 
tion  and  the  other is a  reflected  current  from  the arm end  to- 
ward the  source, decaying due to radiation. The reflected  current 
radiates  a circularly polarized wave of  left-hand sense on  the +z’ 
axis, which is the  opposite of the sense obtained  for  the anti- 
phase  excitation.  Thus,  selection of either sense  of circular 
polarization is realized  by  changing the  excitation  mode. 

Fig. 3 shows the  theoretical and experimental  radiation 
patterns.  It is  seen that  the broad axial beam is radiated  for each 
excitation  mode.  The axial ratios for  the  antiphase  excitation 
and  in-phase  excitation  are  1.3 dB (measured  value = 0.9 dB) 
and 1.8 dB (measured value = 3.4  dB), respectively.  It is worth 
mentioning that  both senses  of a circularly polarized wave  are 
obtained  with  the  radiation  pattern being nearly  unchanged. 

So far, the  study  has  been restricted to  the case  where the 
truncation  amount is h/4. It is  significant to examine  how  the 
changes in the  truncation  amount 2 :affect  the  radiation  charac- 
teristics. 

Fig. 4 shows the axial ratio on the z axis  as a  function of 
truncation  amount.  The axial ratio for  the  antiphase excita- 

(I 
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Fig. 1. Antenna configuration and excitation modes. (a) Antenna configura- 
tion. (b) Antiphase excitation. (c) In-phase excitation. Spiral constant a = 
5.83 X lo-”; wire radius = 2.33 x IO-%; maximum winding angle 4, 
= 41.4 rad. 
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Fig. 2. Current distributions when the one arm is truncated by M4. (a) 
Antiphase excitation. (b) In-phase excitation. 
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Fig.  3. Radiation patterns when the one arm is truncated by U4. (a) Antiphase 
excitation. (b) In-phase excitation. 
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Fig. 4. Axial ratio as a function of truncation amount of the one arm. - : a 
region where the deviation angle of the maximum radiation from the z axis 
is within 6”. 

tion  is almost independent  of  the  truncation  amount of the  one 
arm. Axial ratios of  less than 2.0 dB are  obtained in the direc- 
tion  of  the z axis. The direction  of the maximum  radiation 
remains on the z axis even when the  truncation  amount is h/2. 

For  the in-phase excitation,  there  exists a truncation range  in 
which a  circularly polarized wave is radiated. Although axial 
ratios of less than 3.0 dB are obtained over  a  relatively  wide 
truncation range, the direction of the maximum radiation  tends 
to  deviate from  the z axis  as the  truncation  amount is increased 
or decreased from X/4. The sense selection  for  the  tolerable 
deviation  angle within 6” is possible in a truncation range  of 
2h/16 to 5x116, as shown in Fig. 4. 

CONCLUSION 

The radiation  characteristics  of an asymmetrical spiral antenna 
have been investigated on  the basis of  the analyzed current dis- 
tribution. It is quantitatively confirmed that changing the excita- 
tion  mode allows  selection  of either sense of circular  polariza- 
tion. If the tolerable deviation of  the maximum  radiation  from 
the z axis is within 6”, the sense  selection can be made  in a 
truncation range of 2hj16 to 5h/16. 
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Simple  Expressions for a Function Occurring  in 
Diffraction Theory 

JOHN L. VOLAKIS, MEMBER, IEEE, A N D  THOMAS B. A.  SENIOR, 
FELLOW, IEEE 

Abstract-The Maliuzhinets (integral) function arises in connection with 
diffraction by a half-plane. Two simple expressions are  derived which, 
when used in conjunction with known identities, serve to approximate the 
function  to a high degree of accuracy throughout the entire complex plane. 

I.  INTRODUCTION 

The function 

$ A Z )  = exp [-i n sin u - 2 f i n  sin ( 4 2 )  + 2u 

cos u 

(1) 

with z = x + jy was first introduced  by  Maliuzhinets [ l ]  and is 
commonly  referred to as the  Maliuzhinets  half-plane  function. 
It arises in connection  with the electromagnetic  problem of dif- 
fraction  by  a resistive or  impedance  half-plane [2], and in the 
latter application z = n - @ f x with  cos x = r ]  (or l/r]), where q 
is a nom.alized surface  impedance  and $J is the angle  of incidence 
or diffraction. Thus, z is complex if r] is complex  or if r ]  is  real 
andr]>(or<) 1 .  

With the growing interest in how  the  material  properties  of  a 
body affect its scattering, it has  become  important to employ 
the diffraction  coefficients [2], [3] for nonperfectly  conducting 
edges, and  this  requires  a knowledge  of the Maliuzhinets func- 
tion. Bucci [4] has  tabulated $,(z) and Maliuzhinets [ 5 ]  men- 
tions  another  tabulation  but gives no reference.  For  routine 
applications,  however,  the  apparent  complication of the  expres- 
sion (1) is a  major  deterrent to  its use,  and if $,(z) is to be 
incorporated into  a scattering  code it is desirable (if not essen- 
tial) to be able to compute  the  function  in  a simple manner. 

Two simple analytical  approximations whose  accuracy  is 
adequate  for  most  purposes  are  presented  here.  The  expressions 
correspond to the small argument  and large  imaginary argument 
approximations of $&). These, when  used in  conjunction  with 
the identities given  below,  cover the  entire  complex z plane  with 
a  maximum  amplitude  error  of 0.27 percent. 
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11. SOME PROPERTIES  OF THE FUNCTION 
The  Maliuzhinets half-plane  function is  an  even meromorphic 

function of z and  some  of its  properties have  been developed by 
Bowman [6]. An alternative expression is 

- exp [ -t 1’ %],  cos u 

and  one of the recurrence  relations satisfied by $,(z) is 

cos(”’) 4 8  

$n@) = {J/,(n/2)12 
$,(z - n) 

with 

$,(n/2) = 0.96562. 

rl 

$7r(z*> = $:(4 ( 5 )  

where the asterisk denotes  the  complex  conjugate,  and by  using 
(3)-(5) $,(z) can be determined  throughout the entire complex 
plane from  a knowledge  of its  behavior in the strip 0 < x  < n/2, 
y 2 0. It is therefore sufficient to confine  our attention  to the 
strip shown  shaded  in Fig. 1. 

HI. ANALYTICAL  APPROXIMATIONS 

The Maliuzhinets half-plane  function is real  when x = 0 
or y = 0, and to illustrate the general  behavior of the func- 
tion, Fig. 2 shows the  amplitude  and  phase of $,(z) as func- 
tions of y on  the  boundaries x = 0, x = n/2 and  center x = 
n/4 of the strip. The  variation  with y (as  well  as with x) is  ap- 
proximately that of a quadratic  function over at least the range 
of y covered in Fig. 2, and this suggests that a simple analytical 
expression  could  provide  an  adequate  approximation to $,(z) 
for all except  the largest  values ofy.  

4 

The  Taylor series expansion  of $,(z) about z = 0 is [4] 

where ? 

16 

and  a small argument  approximation to  $,(z) is therefore 

$,(z) = 1 - 0.01390 z 2 .  (6) 

If y 3 0 an alternative approximation  can be obtained  from (2) 
by  replacing, for  example,  cos z by (1/2)e-i’ and is i 

y = In 2 = 0.693 15 
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