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Abstract—The input impedance matrix element of the method
of moments (MoM) for an arbitrarily shaped wire antenna printed
on a dielectric material is formulated to be composed of
three terms , , and � involving single-, double-,
and triple-integral calculations, respectively. The MoM based on
the formulated in this paper (new MoM) is applied to two
antennas—a meander loop antenna and a grid array antenna—as
well as a simple loop used as a reference antenna. The computation
time to obtain the current distribution of each antenna by the new
MoM technique is compared with the time required for the conven-
tional MoM, which has an impedance matrix element composed of
four terms, all involving triple-integral calculations. It is revealed
that the new MoM drastically reduces the computation time: for
example, by a factor of 937 for the grid array antenna. In addition,
the radiation characteristics of these two antennas are discussed. It
is found that a reduced-size meander loop (62% smaller than the
simple loop reference) has a radiation pattern similar to the simple
loop reference. It is also found that the grid array has an axial beam
radiation pattern without side lobes in the principal planes.

Index Terms—Grid array antenna, meander loop antenna,
method of moments (MoM), printed wire.

I. INTRODUCTION

AN integral equation for a straight wire printed on a dielec-
tric substrate has been derived and applied to the analysis

of a printed dipole antenna [1]. In addition, an integral equation
for an arbitrarily shaped wire antenna printed on a dielectric
substrate has been derived and applied to the analysis of printed
zigzag dipole, loop, and spiral antennas [2]. Note that the dielec-
tric substrate used in [1] and [2] is backed by a conducting plane,
and the antenna structure is referred to as the C-type structure
in this paper. Also, note that the integral equation for the C-type
structure (referred to as the C-type integral equation) has been
solved using the method of moments (MoM) [3].

The MoM impedance matrix element for the C-type in-
tegral equation in [2] is explained in detail in [4]. This matrix
element is composed of four terms , , ,
and , all being expressed in triple-integral form and re-
quiring a long time to compute.
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An integral equation for an arbitrarily shaped wire antenna
printed on a semi-infinite dielectric material has already been
derived in [5]. The antenna structure in [5] is referred to as the
D-type structure in this paper. It is emphasized that the D-type
structure does not have a conducting plane backing the dielec-
tric, unlike the C-type structure. Note that the integral equation
for the D-type structure (referred to as the D-type integral equa-
tion) is formulated to have the same form as that for the C-type
integral equation; however, the Hertz vector potential functions
appearing in the D-type integral equation differ from those in
the C-type integral equation.

The D-type integral equation has also been solved using
the MoM [5], where the impedance matrix element is
expressed as . The first term is
composed of four double-integral terms ( , ,

, and ). The second term is composed of
four triple-integral terms ( , , ,
and ). The second term smoothly varies with the dis-
tance between source and observation points and is calculated
using an interpolation technique. This interpolation technique
reduces the computation time.

This paper presents a newly developed MoM technique for
solving the C-type integral equation, with the aim of reducing
the long computation time. The technique comprises application
of the interpolation technique in [5] and use of a new technique
for reducing the computation time of the double-integral cal-
culations in the MoM impedance matrix element. In addition,
the radiation characteristics of two antennas obtained using the
newly developed MoM technique are presented.

A decomposition technique for the Hertz vector potential
functions (used for the new MoM calculation) is described
in Section II. The decomposition technique results in the
impedance matrix element . The
first term involves double-integral calculations. If a
single-integral term is extracted from the first double-integral
term , that is

the remaining double-integral calculations for the after the
extraction are expected to take less computation time than the
original double-integral calculations for the (such an ex-
traction is discussed in [6]; however, it is not described in detail).

0018-926X/$20.00 © 2005 IEEE
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Based on this expectation, this paper performs extraction of a
single-integral term (realized on the basis of a closed-form elec-
tric field expression, which is not presented in [5] and [6]) from
the original double-integral term . Note that the second
term in the involves triple-integral calculations
and is processed using the interpolation technique in [5] to re-
duce computation time.

Application examples of the newly developed MoM
impedance matrix element to printed antennas are
shown in Section III, where meander loop and grid array
antennas [7]–[11] are analyzed and reduction in the compu-
tation time is discussed. The computation time to obtain the
current distribution of each antenna is compared with the time
required using the conventional in [2]. It is found that the
computation time for the grid array antenna, for example, is
drastically reduced by a factor of 937.

In addition to demonstrating the reduction in the computation
time, this paper analyzes the radiation characteristics of these
two antennas. The analysis reveals that transformation from the
straight-arm filaments of the loop to meandering arm filaments
contributes to reduction in the loop size, while not deteriorating
the radiation pattern. It is also revealed that the grid array an-
tenna radiates an axial beam without side lobes in the two prin-
cipal planes. Note that the validity of the MoM analysis results
based on the new is confirmed by comparing them with
results obtained using the finite-difference time-domain method
(FDTDM) [12].

Section IV summarizes the results obtained in this paper. It is
emphasized that two processes lead to a remarkable reduction
in computation time: application of the interpolation technique
shown in [5] to the triple-integral term and the new ex-
traction of a single-integral term of ( )
from the original double-integral .

II. NUMERICAL METHOD

A. Integral Equation for a Wire on a Dielectric Substrate

Fig. 1 shows an arbitrarily shaped wire on a dielectric sub-
strate backed by a conducting plane, where both the substrate
(which has relative permittivity and thickness ) and the con-
ducting plane are of infinite extent. It is assumed that the dielec-
tric substrate is lossless, and the wire is perfectly conducting. It
is also assumed that the wire radius is small relative to the wave-
length and only the axial component of the current contributes
to the antenna characteristics. The electric field tangential to the
wire axis (scattering field) is expressed as

(1)
where [ ] and [ ] are the distances along
the wire from its starting point to observation and source points,
respectively; and are the unit vectors tangential to the wire
axis at distances and , respectively; is the current at
distance ; is the wire length; is the wave number in free

Fig. 1. An arbitrarily shaped wire on a dielectric substrate.

space ( ); and and are components of
the Hertz vector potential function [1]

(2)

(3)

where ; is a Bessel function of the first
kind of order zero with ;

; and
with and .

Equation (1) is referred to as the C-type integral equation.
This has the same form as that of the D-type integral equation [5]
but and of the C-type integral equation differ
from those of the D-type integral equation. The conventional
MoM impedance matrix element in [2] for the C-type in-
tegral equation is composed of four terms ( , ,

, and ), each involving triple-integral calculations,
and hence it requires considerable computation time. Reduc-
tion in the computation time in this paper is performed through
two steps. The first step is to decompose each of and

into a free-space Green’s function term (or a weighted
free-space Green’s function term) and a remaining term; in other
words, the first step is to derive a perturbation term, from which
the triple-integral calculations in the MoM impedance matrix
element are formulated. Note that the interpolation technique in
[5] is applied to the triple-integral calculations. The second step
is to decompose an original double-integral term of the MoM
impedance matrix element into a single-integral term and a re-
maining term. It is emphasized that the second step provides a
new technique of reducing the computation time required for
the original double-integral term.

B. Decomposition of the Scattering Field

The first step in reducing the computation time is to derive a
perturbation term. Subtracting a free-space Green’s function
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( with ) from

yields the perturbation term [13]

(4)

Similarly, subtracting a weighted Green’s function (defined
as ) from yields the perturbation term

(5)

where

(6)

Using (4) and (5), (1) is decomposed into

(7)

where is the tangential component of an incident elec-
tric field and

(8)

(9)

(10)

The sum ( ) in (7) involves single-integral calculations,
as seen from (8) and (9), while in (7) [or (10)] involves
double-integral calculations because each of the perturbation
terms and in (10) is expressed in single-integral form,
as seen from (4) and (5). When the MoM is applied to (7), the
impedance matrix element for th basis and th testing func-
tions is written as ,
where the first term involves double-integral
calculations, due to the integration over the single-integral
calculations of , and the second term
involves triple-integral calculations, due to the integration over
the double-integral calculations of . It is noted that the
interpolation technique in [5] can be applied to the second
term to reduce the computation time; therefore,
further reduction in the computation time for the impedance
matrix element depends on the first double-integral term

.
The computation labor of the double-integral term

is reduced when is
expressed as the sum of a single-integral term and a remaining
double-integral term

For this, the single-integral in must be ex-
pressed in closed form. This is summarized in the next section.

Fig. 2. A magnified view of two pairs of segments.

Note that the closed form of derived for the C-type integral
equation can also be used for the MoM for the D-type integral
equation [5].

C. Closed Form of

The second step in reducing the computation time starts with
subdividing the wire shown in Fig. 1 into numerous segments,
each being regarded as linear. Fig. 2 shows a magnified view of
two pairs of segments in the vicinity of and : one is composed
of the ( 1)th and th segments and the other is composed of
the ( 1)th and th segments. The ( 1)th segment starts at

and ends at . Similarly, the ( 1)th segment
starts at and ends at .

The unknown current on the wire is expanded as
, where is the th piecewise sinusoidal basis

function over a region ranging from to ;
that is

(11)

(12)

Then, (8) is expressed in closed form as

(13)

where

(14)

in which the segment lengths are made to be equal (
); ( ) is the radial distance from

the th wire segment axis to the observation point specified by
distance , as shown in Fig. 2; and , , , and

are vector quantities [14]

(15)

(16)

Authorized licensed use limited to: HOSEI UNIVERSITY KOGANEI LIBRARY. Downloaded on October 1, 2009 at 01:33 from IEEE Xplore.  Restrictions apply. 



NAKANO et al.: FAST MoM CALCULATION TECHNIQUE 3303

(17)

(18)

where ( ) is the distance from the segment
end point [specified by the distance ( )] to
the observation point, as shown in Fig. 2; ( )
and ( ) are the unit vectors in the and
directions, respectively; and ( ) is the unit vector
parallel to the th wire segment axis.

Note that, at this stage, the electric fields , , and
[the components of (7)] are expressed in closed form, single-
integral form, and double-integral form, respectively.

D. Impedance Matrix Element

After the current in (9) and (10) is expanded using the
th basis function, the th piecewise sinusoidal testing function

is applied to (9), (10), and (13) to derive an
impedance matrix element

th testing of

(19)

where and are terms based on the
electric fields [(13)] and [(9)], respectively, and

is based on the perturbation electric field
[(10)]

(20)

(21)

(22)

in which (23)–(25) are as shown at the bottom of the page.

Note that , , and are , , and , respec-
tively, and the subscripts ( ) and ( ) of

, , and indicate that the observation and source
points are located on the th and th elements, respectively.

is formulated in closed form, as shown in (13), and hence
in (20) merely involves a single-integral calculation. Also,

note that in (21) involves double-integral calculations, as
seen from in (23). Only in (22) involves triple-in-
tegral calculations. This is because [which is based on

and , as seen from (24)] and [which is based
on , as seen from (25)] involve triple-integral calculations,
due to the fact that and have single integral forms,
as shown in (4) and (5), respectively.

Thus, the conventional MoM impedance matrix element
in [2] and [4], composed of four terms ,
, , and , all involving triple-integral cal-

culations, is simplified to a new impedance matrix element
composed of three terms , , and , involving
single-, double-, and triple-integral calculations, respectively.
The extraction of the single-integral term from the orig-
inal double-integral and application of the
interpolation technique in [5] to lead to a remarkable
reduction in computation time, as seen in the following sections.

III. ANTENNA ANALYSIS

A. Loop Antenna

Fig. 3(a) and (b) shows loop antennas, each printed on a di-
electric substrate backed by a conducting plane. The substrate
(of relative permittivity and thickness ) and the conducting
plane are of infinite extent. These antennas are referred to as
the reference square loop antenna and the meander loop an-
tenna, respectively. Fig. 4 shows the relationship between the
sizes of these two loops. The reduction ratio of the meander
loop to the reference loop is defined as

, where and are the side lengths of the me-
ander and reference loops, respectively, and is an integer. Note
that and are the side lengths of the meander cell.

The relative permittivity and thickness are chosen
to be and , where

with being the free-space wave-
length at a test frequency of 12 GHz. The loop is made
of a thin wire of radius .
To form an axial beam (the maximum field is in the di-
rection), the peripheral length of the reference square loop
is chosen to be approximately one guide wavelength ( ):

(23)

(24)

(25)
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Fig. 3. Loop antennas. (a) Reference loop antenna and (b) meander loop
antenna.

, where the guide wavelength is
approximated with . This approxima-
tion for the guide wavelength is used throughout this paper.

Fig. 5 shows the current distribution ( ) at 12 GHz
along a meander loop with , where the total line length of
the meander is with

and . The reduction ratio
is calculated to be . It is found that
the meander loop has a standing wave current, with an almost
resistive input impedance (of 52 0.3 ). In other words, the
meander loop is almost in a resonant state. For confirmation, the
current distribution obtained by using the FDTDM [12] is also
presented with black and white dots.

Table I shows the computation times for obtaining the current
at 12 GHz using the present MoM [(19)] and the conventional
MoM [4, Eq. (28) ]. The present MoM is faster than the conven-
tional MoM with a computation time ratio of more than 230.

As seen from the current distribution of the meander loop, the
radiation fields from the currents flowing along the -directed
wire element pairs that are symmetric with respect to the axis
add in the direction, while those from the currents flowing
along the -directed wire element pairs that are symmetric with
respect to the axis cancel in the direction. It follows that the
meander loop forms an axial beam, which has the maximum ra-
diation intensity in the direction. Fig. 6 shows the radiation

Fig. 4. Relationship between the sizes of reference loop and meander loop
antennas.

Fig. 5. Current along a meander loop.

pattern of the meander loop, together with that of the reference
square loop. The half-power beam width (HPBW) of the me-
ander loop is 99 in the - plane and 85 in the - plane.
These are similar to the HPBWs of the reference antenna (93
in the - plane and 83 in the - plane). It follows that the
transformation from the straight filaments to the meander fila-
ments does not deteriorate the radiation pattern.

So far, a test frequency of 12 GHz has been used. Next, the
frequency response of the meander loop is investigated, using
frequencies from 10.5 to 13.5 GHz. Fig. 7 shows the voltage
standing-wave ratio (VSWR) (relative to 50 ) as a function
of frequency. The frequency bandwidth for a VSWR crite-
rion is calculated to be 5.2%. Within this 5.2% VSWR band-
width, the gain is relatively constant with a maximum value of
5.9 dBi. Note that the gain is calculated using

, where and are the radi-
ation field components expressed using spherical coordinates

, is the intrinsic impedance 120 , and is the
power input to the antenna. Also, note that the gain of the ref-
erence antenna is close to that of the meander loop, showing a
maximum value of 6.2 dBi within the same frequency range of
10.5 to 13.5 GHz.

Authorized licensed use limited to: HOSEI UNIVERSITY KOGANEI LIBRARY. Downloaded on October 1, 2009 at 01:33 from IEEE Xplore.  Restrictions apply. 



NAKANO et al.: FAST MoM CALCULATION TECHNIQUE 3305

TABLE I
COMPARISON OF COMPUTATION TIMES FOR A MEANDER LOOP ANTENNA USING THE PRESENT MOM AND CONVENTIONAL MOM

TABLE II
COMPARISON OF COMPUTATION TIMES FOR A GRID ARRAY ANTENNA USING THE PRESENT MOM AND CONVENTIONAL MOM

Fig. 6. Radiation patterns of reference loop and meander loop antennas.

Fig. 7. VSWR of a meander loop antenna.

B. Grid Array Antenna

Fig. 8 shows a grid array printed on a dielectric substrate of
relative permittivity and thickness . The - and -directed
wire elements of radius have lengths and , respectively.
Each -directed element acts as a radiation element and each

-directed element acts as a transmission line joining neigh-
boring -directed elements [7]–[11]. The -directed element
length is always chosen to be in this paper. The
number of -directed elements .

Fig. 8. A grid array antenna.

Fig. 9. Current amplitude along a grid array.

The test frequency is set to be 12 GHz. The grid array to be
analyzed here has the following parameters: ,

, , and
, where .
Fig. 9 shows the current amplitude at 12 GHz, where

and
. Note that and are approximately 2 and ,

respectively. For confirmation, the current distribution obtained
using the FDTDM is presented with black dots. The MoM and
FDTDM results are in good agreement. The computation times
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Fig. 10. Radiation pattern of a grid array antenna as a function of the
x-directed element length L .

Fig. 11. Input impedance Z of a grid array antenna.

Fig. 12. Gain of a grid array antenna.

for obtaining the current at 12 GHz using the present and con-
ventional MoM methods are shown in Table II. The present
MoM reduces the computation time by a factor of 937.

Fig. 10 shows the radiation patterns at 12 GHz for
. The radiation patterns

for do not have side lobes in the - and -

planes, as desired. The HPBW of the radiation beam for
is 20 in the - plane and 19 in the - planes, with

a gain of approximately 18.1 dBi.
Figs. 11 and 12 show the frequency responses of the input

impedance ( ) and the gain , respectively.
It is found that the resistive value is relatively constant in
this analysis range. The gain is between 17.2 and 18.5 dBi.
The validity of the present MoM results for the gain is confirmed
by the FDTDM results.

IV. CONCLUSION

This paper presents a numerical technique based on the MoM
for obtaining the current along an arbitrarily shaped wire printed
on a dielectric substrate, where the input impedance matrix ele-
ment is formulated
using three terms , , and , involving single-,
double-, and triple-integral calculations, respectively.

To show the power of the new formulation of , two
antennas (meander loop and grid array antennas) are analyzed.
The computation time for obtaining the current of each antenna
based on the new is compared with the computation time
required using the conventional impedance matrix element,
composed of four terms expressed in triple-integral form. It is
revealed that the MoM with the new drastically reduces
the computation time (by a factor of 231 for the meander
loop antenna and 937 for the grid array antenna). Thus, the
extraction of the single-integral term from the original
double-integral and application of the inter-
polation technique to the triple-integral term are found
to be effective in reducing the MoM computation time.

The radiation characteristics of these two antennas are also
calculated using the obtained currents. The calculations reveal
the following facts.

1) A loop antenna with meander cells (which is 62% smaller
than the reference loop without meander cells) shows ra-
diation patterns similar to those of the reference loop. The
meander loop has a frequency bandwidth of 5.2% for a
VSWR criterion.

2) A grid array with appropriately selected grid cell lengths
and shows radiation patterns with no side lobes in

the principal - and - planes. A gain of 18.1 dBi is
obtained with 25 radiation elements.
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