
PDF issue: 2025-02-05

A Finite-Difference Time-Domain Beam-
Propagation Method for TE- and TM-Wave
Analyses

MUGITA, Takanori / NAKANO, Hisamatsu / YAMAUCHI, Junji /
SHIBAYAMA, Jun / YAMAHIRA, Atsushi

(出版者 / Publisher)
IEEE

(雑誌名 / Journal or Publication Title)
Journal of lightwave technology / Journal of lightwave technology

(号 / Number)
7

(開始ページ / Start Page)
1709

(終了ページ / End Page)
1715

(発行年 / Year)
2003-07



JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 7, JULY 2003 1709

A Finite-Difference Time-Domain Beam-Propagation
Method for TE- and TM-Wave Analyses
Jun Shibayama, Member, IEEE, Member, OSA, Atsushi Yamahira, Takanori Mugita,
Junji Yamauchi, Member, IEEE, Member, OSA, and Hisamatsu Nakano, Fellow, IEEE

Abstract—The application of the existing time-domain beam-
propagation method (TD-BPM) based on the finite-difference (FD)
formula has been limited to the TE-mode analysis. To treat the TM
mode as well as the TE mode, an improved TD-BPM is developed
using a low-truncation-error FD formula with the aid of the alter-
nating-direction implicit scheme. To improve the accuracy in time,
a Padé (2,2) approximant is applied to the time axis. Although the
truncation error in time is found to be (� 2), as in the case of the
Padé (1,1) approximant, this method allows us to use a large time
step. A substantial reduction in CPU time is found when compared
to the conventional method in which a broadly banded matrix is
solved by the Bi-CGSTAB. The effectiveness in evaluating the TE-
and TM-mode waves is shown through the analysis of the power
reflectivity from a waveguide facet. This method is also applied to
the analysis of a waveguide grating. The accuracy and efficiency of
the TD-BPM are assessed in comparison with the finite-difference
time-domain method.

Index Terms—Finite-difference methods, optical beam propaga-
tion, optical waveguides, time-domain analysis, waveguide grating.

I. INTRODUCTION

A NALYSIS treating reflected waves is indispensable for
modeling of many optical components and devices.

Reflected waves can be treated by the finite-difference time-
domain (FDTD) method [1]. Unfortunately, the FDTD method
requires a small time step to fulfill the stability criterion. This
increases the amount of computation for the analysis of an
optically large structure.

To improve the efficiency in the time-domain analysis, con-
siderable attention has been paid to the time-domain beam-prop-
agation method (TD-BPM) [2], [3]. The feature of the TD-BPM
is that the slowly varying envelope approximation (SVEA) is ap-
plied to the time axis, leading to a parabolic equation (a time-
domain parabolic equation approach is also found in under-
water acoustics [4]). The SVEA allows us to use an implicit
scheme with a subsequent larger time step than that in the FDTD
method. For the formulation of the TD-BPM, the finite-differ-
ence (FD) [3], [5]–[11] and the finite-element (FE) methods
[12], [13] have mainly been used to discretize the space. Note
that the application of the FD-based TD-BPMs developed so far
has been limited only to the TE-mode analysis. The fact that the
use of the alternating-direction implicit (ADI) scheme leads to
high computational efficiency [10] encourages us to develop an
FD-based TD-BPM for the TM-mode analysis.
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For the BPM in a frequency domain, we have formulated
modified FD formulas with second-order accuracy for both TE
and TM modes [14], [15]. Subsequently, Chiouet al.have im-
proved the modified FD formula, leading to the fourth-order ac-
curacy with the aid of the generalized Douglas (GD) scheme for
a two-dimensional (2-D) waveguide [16] (we refer to the for-
mula as IFD4). Taking advantage of the ADI scheme, we have
succeeded in applying the IFD4 to the analysis of a three-dimen-
sional (3-D) waveguide, while maintaining a tridiagonal matrix
[17], [18].

Note that the formulation of the 3-D BPM in the frequency
domain corresponds to that of the 2-D TD-BPM. This fact moti-
vates us to modify the 3-D BPM with the IFD4 to the TD-BPM.
The modification is expected to allow the time-domain simula-
tion of the TM mode as well as the TE mode with high accuracy.

In this paper, we develop an IFD4-based TD-BPM for the
analysis of both TE and TM modes. To maintain the accuracy
when using a large time step, we apply a Padé (2,2) approxi-
mant [19], [9] to the time axis. So far, the truncation error in
time for the TD-BPM has not been discussed in detail. There-
fore, we derive the truncation errors for the Padé (1,1) and (2,2),
paying attention to the use of the ADI scheme (comparison to
the frequency-domain analysis is presented in Appendix B). Al-
though the error of the Padé (2,2) is found to be as in
the case of the Padé (1,1), the amplitude of the error is smaller
than that of the Padé (1,1), allowing the use of a larger. It is
shown, through numerical examples of pulse propagation, that

in the Padé (2,2) can be chosen to be ten times as large as
that in the Padé (1,1). It is also demonstrated that the present
method is more efficient than the method with the conventional
Crank–Nicolson (CN) scheme, in which a broadly banded ma-
trix is solved by the Bi-CGSTAB [20]. To check the validity of
evaluating polarization dependence, we analyze the power re-
flectivity from a waveguide facet, in which the radiation waves
are absorbed using the perfectly matched layer (PML) boundary
condition. Numerical results for the TE and TM modes show
excellent agreement with Vassallo’s results [21]. Further con-
sideration is given to the analysis of a waveguide grating. The
spectral responses comparable to those from the FDTD method
can be obtained by the TD-BPM with a reduction in CPU time.

II. FORMULATION

A. Fourth-Order Accurate Finite-Difference Formula (IFD4)

To make the discussion self-contained, we briefly describe
the IFD4 that satisfies the boundary condition at the interface be-
tween two different media. We follow the procedure formulated
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Fig. 1. Sampling points near the interface.

by the GD scheme [16], [18], in which the modified FD formulas
[14], [15] have been extended to the fourth-order accuracy.

The sampling points near the interface are defined as shown
in Fig. 1, in which or . Throughout this paper, we
only consider the case where the interface liesmidwaybetween
sampling points, i.e., .

and must satisfy the following boundary conditions:

(1)

(2)

where

for TE mode

for TM mode

in which , , and represent the refractive index, electric,
and magnetic fields, respectively. Using Taylor series expan-
sions, and are expressed by the fields at the sampling
points. Then, is connected with in accordance with the
boundary conditions including up to the fifth derivative. Doing
so leads to the following equation:

(3)

The coefficients ( ) in (3) are presented in
Appendix A. Equation (3) means that and are
expanded in terms of , in which the field discontinuity at the
interface is taken into account.

Before deriving a fourth-order formula, we prepare the first
and second derivatives with . Using

(4)

we get

(5)

and

(6)

Eliminating the first derivative in (3), we obtain

(7)

where , , and are defined in Appendix A. Since
for , the right-hand side of (7) reduces to

(8)

The first and second derivatives in the parenthesis of (8) are
replaced with (5) and (6), respectively. Since the left-hand side
of (7) corresponds to (6), (8) can be written as follows:

(9)

Equation (9) is referred to IFD4, which will be applied to the
ADI scheme in the next section.

In this formulation, the interface has been assumed to lie
midway between sampling points. Under this assumption, the
structures to be treated in Sections III and IV are accurately
modeled while maintaining . For generic problems with
an arbitrary interface, one may use a staircase approximation.
Further study, however, shows that the formulation can be gen-
eralized to allow an arbitrary interface position [17], in which
the coefficients’ s should be slightly modified, although the
truncation error deteriorates into [18].

B. Derivation of TD-BPM Equations Based on the ADI Scheme

Using the time dependence of and ignoring the tem-
poral second derivative based on the SVEA, we start with the
following basic equation:

(10)

where ,

for TE mode

for TM mode

in which , , and are the centered frequency, the refractive
index, and the speed of light in a vacuum, respectively. Equation
(10) can be formally written as

(11)

where represents the matrix of the finite-difference approx-
imation to . In the conventional method, the exponential func-
tion of (11) is approximated by the Padé (1,1) approximant. The
Padé (1,1) approximant is identical to the CN scheme, which
has the advantage of selecting a large time stepwithout en-
countering a stability problem. However, a large often de-
grades the accuracy in time. In order to avoid this degradation,
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we apply the Padé (2,2) approximant to the exponential function
of (11)[19], [9].

The (2,2) Padé approximant of (11) is given by

(12)

With the multistep method [22], (12) can be reduced to the fol-
lowing two-step algorithm:

for and (13)

where . The superscript indicates
the position along the time axis. Note that the direct applica-
tion of (9) to (10) or (13) results in linear equations; each equa-
tion involves nine unknowns. As a result, the system of equa-
tions becomes a broadly banded matrix, which is usually solved
by iterative techniques such as the Bi-CGSTAB. This is highly
time-consuming, as will be seen later. Therefore, we employ the
ADI scheme to maintain a tridiagonal matrix.

To solve (13) by the ADI scheme, we divide it as follows:

(14)

Applying (9) to the second derivatives in (14), we have

(15)

Finally, we obtain the following equations:

(16)

(17)

It is worth mentioning that (16) and (17) maintain tridiagonal
matrices, which can be solved by efficient techniques such as
the Thomas algorithm.

In general, the formulation for the TM mode results in
a nonunitary matrix, which may give rise to a numerical
instability. This is often significant for a three-dimensional
full-vectorial BPM in the frequency domain [23], [24]. For-
tunately, we do not encounter any stability problem in the
following analyses. One reason for this is that we only treat
two-dimensional slab waveguides. In addition, the present

TD-BPM is based on the so-called semivectorial formulation
that ignores mixed derivatives. This formulation may relieve
the stability problem, when compared to the full-vectorial BPM
in the frequency domain.

C. Error Analysis in Time

So far, no literature has investigated the truncation error in
time for the TD-BPM. In this section, we check the truncation
error in time, following the procedure described in [25] (com-
parison to the frequency-domain BPM is given in Appendix B).
For the sake of simplicity, we investigate the case for the central
FD approximation to the space derivatives; the truncation errors
in space are and . In the following, we denote
the partial derivatives using the subscript notation, for instance,

.
First, we present the truncation error of the Padé (1,1) approx-

imant. When (11) is approximated by the Padé (1,1), which cor-
responds to the conventional CN scheme, the truncation error is
derived as

(18)
Applying the ADI scheme to the Padé (1,1) gives rise to the
additional error, so that the truncation error results in

(19)

It can be said that the truncation error is for the Padé
(1,1) approximant, regardless of the use of the ADI scheme.

For the Padé (2,2) approximant, the truncation error is derived
from (13) as

(20)

Note that only the leading term is explicitly presented for
errors of the order of . It is seen that approximating the
space derivatives by the FD formula yields truncation errors
of and in addition to . For
the ADI scheme, the following truncation error including the
additional one is derived from (14):

(21)

Consequently, the use of the ADI scheme with the Padé (1,1)
or (2,2) induces the truncation error of . Notice that the
amplitude of the additional error in (21) is just one-third of that
of (19). However, the improvement in accuracy is more signifi-
cant than that expected from the error analysis, as will be seen
in Section III.

III. A NALYSIS OF PULSE PROPAGATION

Studying the propagation of an optical pulse is essential in
the time-domain analysis. To check the accuracy of the present
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Fig. 2. Velocity of pulse as a function of�t.

TD-BPM, we investigate the velocity of the pulse in a slab wave-
guide. The refractive indexes of the core and cladding are

and , respectively, and the core is 0.262m
wide. A wavelength of m is used. The normal-
ized frequency is fixed to be , so that only the funda-
mental mode propagates. The input pulse consists of the eigen-
mode field in the -direction and the Gaussian profile with a
1 full width of 4 m in the -direction. The numerical param-
eters are as follows: the sampling widths are m
and m, and the number of sampling points are

and (due to the symmetry of the wave-
guide, only the half-region is analyzed).

Fig. 2 shows the velocity of the pulse for the TE mode as a
function of . For reference, the result obtained from the Padé
(1,1) approximant with the ADI scheme is included. In addition,
the results obtained without the ADI scheme are presented in
which a broadly banded matrix is solved by the Bi-CGSTAB.
To obtain reasonable accuracy, we set the residual in norm to be
10 . Note that the results without the ADI scheme are omitted
for fs, since the number of iteration is significantly
increased, resulting in very slow convergence.

In the following discussion, we regard a velocity of
0.0829 m fs as a converged value, since the Padé (2,2)
without ADI gives a constant value of 0.0829m fs ranging
from to fs. It is seen in Fig. 2 that the Padé (1,1)s
with and without the ADI scheme yield the converged values
for and fs, respectively. As found in (19), the differ-
ence between the two methods lies in the additional error that is
caused by the ADI scheme. Therefore, the additional error gen-
erated from the ADI scheme for the Padé (1,1) severely affects
the accuracy, particularly for a large . In contrast, the Padé
(2,2)s with and without the ADI scheme yield the converged
values for and fs, respectively. The contribution of
the Padé (2,2) toward maintaining the accuracy is significant
when using the ADI scheme, although the comparison of (19)
and (21) indicates that the amplitude of the additional error is
only one-third of that of the Padé (1,1). To explain this reason,
we may have to perform the numerical dispersion analysis.
Very recently, Limet al. [11] have calculated the numerical

Fig. 3. CPU time needed for pulse propagation (t = 10 fs).

dispersion of the TD-BPM, in which only a simple model has
been investigated: a homogeneous free-space region in one
dimension. Unfortunately, the numerical dispersion analysis for
the present TD-BPM is not simple, since the method treats an
inhomogeneous region in two dimensions and its formulation
is based on the ADI scheme. The analysis is therefore beyond
the scope of this paper and will be left for a future study.

Here we compare CPU times among the four methods. The
time step is chosen to yield the converged value of the pulse
velocity as discussed above. The calculations are carried out on
an 850-MHz PC. Fig. 3 shows the CPU time needed for pulse
propagation ( fs) as a function of sampling points in the
-axis. Note that the CPU time does not linearly increase when

using the Bi-CGSTAB, while it monotonically increases when
using the ADI scheme. It is worth mentioning that the use of the
Padé (2,2) with the ADI scheme leads to a substantial reduction
in CPU time.

IV. A NALYSES OFREFLECTION PROBLEMS

A. Waveguide Facet

We analyze the facet reflectivity of an optical waveguide,
which exhibits polarization dependence in a strongly guiding
structure. The waveguide to be analyzed is the same as that used
in Fig. 2, except that the end of the waveguide is terminated with
air (see the inset of Fig. 4). In a previous paper [7], we calcu-
lated the power reflectivity using only the cross-section of the
pulse in the transverse direction. However, the reflectivity in this
calculation was found to be somewhat sensitive to the choice of

. To avoid this, we calculate

(22)

for the TE mode, where and represent the input and
reflected fields, respectively. For the TM mode, we use the fol-
lowing formula similar to Vassallo’s [27, (2)]:

(23)
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Fig. 4. Power reflectivity as a function of normalized core width.

In this structure, the radiation waves occur at the interface
between the waveguide and the air region. To absorb the ra-
diation waves, we apply the so-called coordinate scaling PML
[26], which matches the ADI scheme. The PML parameters are
chosen as a conductivity profile of and a theoretical re-
flection coefficient of 10 for a 16-cell PML.

Fig. 4 shows the power reflectivity as a function of core width
normalized to a wavelength of m. A waveguide

with is also investigated. The time step and the
longitudinal sampling width are taken to be fs and

m, respectively. The number of sampling points
is 20 in the core. It is found that the results obtained from the
TD-BPM agree well with those from the spectral method [21],
demonstrating the validity of the TD-BPM for both TE- and
TM-mode analyses.

Since the validity of the present TD-BPM has been verified
for the problem with a single interface, consideration is given
next to a problem with multiple interfaces.

B. Waveguide Grating

We analyze the waveguide grating shown in Fig. 5. The re-
fractive indexes are , and .
The grating period is m and there are 20
periods in the core. This numerical example is chosen to show
strong polarization dependence. In order to check the efficiency
and the accuracy, we also analyze the same structure using the
FDTD method.

For the multiple interface problem treated here, the forward
and backward waves propagating toward the-directions
mainly predominate the reflectivity characteristics. It follows
that to be used is closely related to the accuracy of the
numerical results. Therefore, we investigate how large a

Fig. 5. Waveguide grating. The number of PML cells is taken to be 16.

Fig. 6. Spectral response of the power reflectivity. The center wavelengths
used in the calculation are chosen in such a way that they match the peak
wavelengths, i.e., 1.55 and 1.44�m are used for the TE and TM modes,
respectively.

can be used in this grating structure, with being fixed for
both methods.

For the present TD-BPM, we use fs and
m to calculate the spectral response of the

grating. As a result, it is found that m is suf-
ficient to yield a converged value of the spectral response, in
which one grating period is discretized by only four points. On
the other hand, for the FDTD method, should be reduced to
0.0128 m to give a converged value. In this case,is reduced
to 0.03 fs due to the stability criterion.

Fig. 6 shows the spectral response of the power reflectivity
evaluated from the ratio between the discrete Fourier transforms
of reflected pulse and the incident one, using the numerical pa-
rameters discussed above. The results of the TD-BPM are in
close agreement with those of the FDTD method for both TE
and TM modes, although the response for wavelengths larger
than 1.65 m slightly deviates from that of the FDTD method.
This deviation probably stems from the fact that the temporal
second derivative is omitted in the TD-BPM. It is noteworthy,
nevertheless, that the CPU time for the present TD-BPM is re-
duced to 30% of that for the FDTD method.

Authorized licensed use limited to: HOSEI UNIVERSITY KOGANEI LIBRARY. Downloaded on July 27, 2009 at 05:26 from IEEE Xplore.  Restrictions apply. 



1714 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 7, JULY 2003

V. CONCLUSION

A TD-BPM based on the fourth-order accurate finite-differ-
ence formula has been developed, which allows us to simulate
the waves of the TM mode as well as the TE mode. The use of
the Padé (2,2) approximant with the ADI scheme leads to ef-
ficient calculations while maintaining high accuracy. To check
the validity of the method, we analyze the facet reflectivity of
the slab waveguides with polarization dependence. The results
for the TE and TM modes agree well with those obtained from
the spectral method. Further consideration is given to the anal-
ysis of a waveguide grating. The present TD-BPM efficiently
provides spectral response comparable to the FDTD method.

Although the calculation in this paper is restricted to the case
where the interface lies midway between sampling points, this
method can be tailored to treat a general position of the interface
[17]. This enables us to analyze more complicated structures.

APPENDIX A
COEFFICIENTSUSED IN THE IFD4

The coefficients used in (3) are as follows:

where

(for TE mode)

(for TM mode)

and , in which .
The coefficients used in (7) are expressed as

APPENDIX B
COMPARISON OF THEADDITIONAL ERRORS OF THE

TIME-DOMAIN AND FREQUENCY-DOMAIN BPMS

For the TD-BPM with the Padé (1,1) approximant, the use of
the ADI scheme degrades the accuracy, particularly for a large

, as discussed in Section III. Therefore, the Padé (2,2) is re-
quired to maintain the accuracy. On the other hand, for the fre-
quency-domain BPM, the use of the ADI scheme hardly affects
the accuracy in the Padé (1,1) approximant [18]. Here, we com-
pare the additional errors generated by the ADI scheme between
the TD and frequency-domain BPMs.

For the Padé (1,1) in the frequency-domain BPM, the addi-
tional error is written as

(24)

where and , in which is the
reference refractive index.

The coefficient of (24) can be rewritten as
. For the TD-BPM, the coefficient of the

additional error in (19) can be rewritten as
. It can be seen that these two coefficients are

identical for . Therefore, we focus our attention on the
terms in the parentheses.

We compare in (24) with in (19). Notice that
can be regarded as a small value, sinceis gen-

erally chosen to be close to. This leads to the fact that is
smaller than ( ).

In addition, the derivatives in (24) may be smaller than those
in (19), since the field in the frequency-domain analysis, which
only treats a forward propagating field, is expected to move
more slowly than that in the TD analysis. It follows that the ad-
ditional error in the frequency-domain BPM is smaller than that
in the TD-BPM. This is the reason why the additional error in
the frequency-domain BPM hardly affects the numerical results.
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